Given: m∠AEB = 45°

∠AEC is a right angle.


Prove: bisects ∠AEC.



Proof:

We are given that m∠AEB = 45° and ∠AEC is a right angle. The measure of ∠AEC is 90° by the definition of a right angle. Applying the gives m∠AEB + m∠BEC = m∠AEC. Applying the substitution property gives 45° + m∠BEC = 90°. The subtraction property can be used to find m∠BEC = 45°, so ∠BEC ≅ ∠AEB because they have the same measure. Since divides ∠AEC into two congruent angles, it is the angle bisector.

Answers

Answer 1
Final answer:

The segment bisects \AEC because \AEB and \BEC are both 45\u00b0, proven using the Angle Addition Postulate and the Subtraction Property of equality.

Explanation:

To prove that the segment bisects \AEC, begin by acknowledging the given information that m\AEB = 45\u00b0 and \AEC is a right angle with a measure of 90\u00b0. According to the Angle Addition Postulate, m\AEB + m\BEC = m\AEC. Substitute the known values to get 45\u00b0 + m\BEC = 90\u00b0. Utilizing the Subtraction Property of equality allows us to solve for m\BEC, finding it to also be 45\u00b0. This means that \BEC ≅ \AEB which leads us to conclude that since they have equal measures, the segment indeed bisects \AEC.


Related Questions

Which is the simplified form of r^-7+s^-12

Answers

Answer:

The simplest form is 1/r^7 + 1/s^12

Step-by-step explanation:

The given expression is r^-7+s^-12.

Notice that the exponents of both the base are negative

So, we will apply the rule which is:

a^-b = 1/a^b

Which means that to change the exponent into positive we will write it as a fraction:

r^-7+s^-12.

= 1/r^7 + 1/s^12..

Therefore the simplest form is 1/r^7 + 1/s^12....

Answer:

The simplest form is 1/r^7 + 1/s^12

Step-by-step explanation:

Given that (X+3) is a factor of the expression x^3 + 4x^2 + px + 3 , find the value of p. Hence, solve the equation x^3 + 4x^2 + px + 3=0, expressing the complex number in the form a + bi​

Answers

Answer:

[tex]p=4[/tex]

[tex]x=\frac{-1}{2} \pm \frac{\sqrt{3}}{2}i[/tex]

Step-by-step explanation:

We are given (x+3) is a factor of [tex]x^3+4x^2+px+3[/tex], which means if were to plug in -3, the result is 0.

Let's write that down:

[tex](-3)^3+4(-3)^2+p(-3)+3=0[/tex]

[tex]-27+36-3p+3=0[/tex]

[tex]9-3p+3=0[/tex]

[tex]9+3-3p=0[/tex]

[tex]12-3p=0[/tex]

[tex]12=3p[/tex]

[tex]p=4[/tex]

So the cubic equation is actually [tex]x^3+4x^2+4x+3=0[/tex] that they wish we solve for [tex]x[/tex].

To find another factor of the given cubic expression on the left, I'm going to use synthetic division with that polynomial and (x+3) where (x+3) is divisor.  Since (x+3) is the divisor, -3 will be on the outside like so:

-3 |  1    4    4     3

   |       -3   -3    -3

     ---------------------

      1      1     1      0

So the other factor of [tex]x^3+4x^2+4x+3[/tex] is [tex](x^2+x+1)[/tex].

We must solve [tex]x^2+x+1=0[/tex].

Compare this to [tex]ax^2+bx+c=0[/tex].

We have [tex]a=1,b=1, \text{ and } c=1[/tex].

The quadratic formula is

[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex].

Plug in the numbers we have for [tex]a,b, \text{ and } c[/tex].

[tex]x=\frac{-1 \pm \sqrt{1^2-4(1)(1)}}{2(1)}[/tex].

Simplify inside the square root while also performing the one operation on bottom:

[tex]x=\frac{-1 \pm \sqrt{1-4}}{2}[/tex]

[tex]x=\frac{-1 \pm \sqrt{-3}}{2}[/tex]

Now our answer will include an imaginary part because of that sqrt(negative number).

The imaginary unit is [tex]i=\sqrt{-1}[/tex].

So our final answer is:

[tex]x=\frac{-1}{2} \pm \frac{\sqrt{3}}{2}i[/tex]

Final answer:

To find the value of p, substitute -3 into the polynomial since (X+3) is a factor, thus yielding p=3. With p known, the polynomial becomes [tex]x^3 + 4x^2 + 3x + 3[/tex] = 0, and can now be solved for x.

Explanation:

Finding the Value of p

Given the polynomial [tex]x^3 + 4x^2 + px + 3[/tex] and the fact that (X+3) is a factor, we can use polynomial division or synthetic division to find the value of p. Since (X+3) is a factor, when we substitute -3 for x in the polynomial, the result should be zero.

Substituting -3 into the polynomial yields:
[tex](-3)^3 + 4(-3)^2 + p(-3) + 3[/tex] = 0
-27 + 36 - 3p + 3 = 0
9 - 3p = 0.

Solving for p gives us:
3p = 9
p = 3.

Solving the Equation

Now that we know p, we rewrite the polynomial as [tex]x^3 + 4x^2 + 3x + 3 = 0[/tex] and use the fact that (X+3) is a factor to perform the division. The remainder of the division gives us a quadratic polynomial which we can solve using the quadratic formula or factoring.

Factor by grouping.

a2 + 2ab – 24b2

(a + 6b)(a + 4b)

(a – 6)(a + 4b)

(a + 6b)(a – 4b)

(a – 6b)(a – 4b)

Answers

Answer:

(a + 6b)(a - 4b)

Step-by-step explanation:

You want your midst term to result in 2ab, NOT -2ab.

I am joyous to assist you anytime.

How do you find the max or min of a function?

Answers

Answer:

If parabolas open down, then their vertices are at a maximum point, whereas if parabolas open up, their vertices are at a minimum point.

I hope this was the answer you were looking for, and as always, I am joyous to assist anyone at any time.

Final answer:

To find the max/min of a function, find where the function's first derivative is zero. Check those points with the second derivative: a positive value indicates a minimum and a negative value indicates a maximum.

Explanation:

To find the maximum or minimum of a function, you should first understand that these points occur where the derivative of the function is zero, which corresponds to the points with a flat tangent line (no slope). To derive this, differentiate the function and mark all the points where the derivative equals zero. These are potential maximum or minimum points, also known as extrema.

However, it's also important to note that a zero derivative does not always mean a maximum or minimum is present. To confirm this, you need to perform the second-derivative test. If after differentiating the first derivative you get a positive value, the original function has a minimum at that point. If it's negative, the function has a maximum.

For example, let's take the function f(x) = x². The derivative f'(x) = 2x, and setting this to zero gives us x = 0 as the only point whose derivative equals zero. Further, the second derivative, f''(x), equals 2, which is positive, indicating a minimum occurs at x = 0.

Learn more about Max/Min of a Function here:

https://brainly.com/question/17800323

#SPJ12

you can calculate the probabilityof a random event, such as the rolling of dice or dealing of cards, by _____

Answers

Answer:

Making a fraction.

Step-by-step explanation:

Put the favored outcome as the numerator. Then, put the total number of outcomes as the denominator and boom, you have calculated probability. *Thumbs Up*


Find my number, if it is a two-digit one, one of its digits is 9, and it has remainder 0 when divided by 6.

Answers

Final answer:

The two-digit number in question is 96, as it has one digit as 9 and is divisible by 6.

Explanation:

The student is asking to find a two-digit number where one of the digits is 9, and the number is divisible by 6 without any remainder. To solve this, we need to remember that for a number to be divisible by 6, it must be divisible by both 2 and 3. A two-digit number is divisible by 2 if its last digit is even.

Since one of the digits is 9 (an odd number), the other digit must be even, so our options for the two-digit numbers with a 9 are 90, 92, 94, 96, and 98. To be divisible by 3, the sum of the digits must be divisible by 3. Out of our options, only 96 has a sum of digits (9 + 6) that is divisible by 3. Therefore, the number we are looking for is 96.

Quiz 1
54 ones x 10 = ?
Choose 1 answer:
54 thousands
®
54 tens
54 hundreds
upin

Answers

54 tens is the answer.
Ten ones make one ten
54 would be ur answer I know I’m late but I hope it helps you!

Vivian can type 94 words in 4 minutes. At this rate how many words can she type in 12 minutes?

Answers

Answer:

The answer is 282

because 94 in 4 mins so you need to use multiple 94 x 3 the answer is 282.

Over the next week you want to watch a movie a day. In how many ways can this be done if you have 8 movies?

A.

56

B.

6,720

C.

40,320

D.

2,097,152

Answers

Answer:

40,320

Step-by-step explanation:

First you have 8 movies to watch.

A day passes you have 7 left, then another day passes you have 6 left...

You do this until you have 1 movie left because by then you'd have watched 7 movies in 7 days of a week.

Take the product: 8 * 7 * 6 * 5...*2*1 = 8! = 40,320

Answer: C. 40,320

Step-by-step explanation:

Given : The total number of movies = 8

Also, in one week if you watch one movie a day , then the number of possible movies you can watch in next week must be 7.

Now, the number of ways to watch 8 movies taking 7 movies from is given by permutations :-

[tex]^8P_7=\dfrac{8!}{(8-7)!}\\\\=\dfrac{8!}{1!}=8\times7\times6\times5\times4\times3\times2\times1\\\\=40,320[/tex]

Round 0.249 to the nearest tenth

Answers

Answer:

.250

Step-by-step explanation:

4 is in the tenths place, if the number to the right of a number is five or higher you round the number up.

Answer:

Step-by-step explanation:

Math courses just love this kind of question. The only worse question would be something like -0.949 rounded to the nearest 1/10

Your question should round to 0.2.

The one I presented should round to -0.9

Use the graph to answer the question.
A line with a slope of negative 5 passing through the origin.


see attached graph

Is the function even, odd, or neither? Why? Select one below

The function is even because it is symmetric about the y-axis.

The function is odd because it is symmetric about the y-axis.

The function is even because it is symmetric about the origin.

The function is neither even nor odd because it is not symmetric about the y-axis or the origin.

The function is odd because it is symmetric about the origin.

Answers

Answer:

The function is odd because it is symmetric about the origin.

Step-by-step explanation:

we know that

A function f(x) is even when

f(x)=f(-x) ----> the function is symmetry about the y-axis

A function is odd when

-f(x)=f(-x) ---> the function is symmetry about the origin

In this problem we have

f(x)=-5x

Verify if the function is even

For x=1 ----> f(1)=-5(1)=-5

For x=-1 ---> f(-1)=-5(-1)=5

so

f(x) is not equal to f(-x)

therefore The function is not even

Verify if the function is odd

we have

f(1)=-5

f(-1)=5

so

-f(1) is equal to f(-1)

-f(x)=f(-x)

therefore

The function is odd because it is symmetric about the origin.

Answer:

The function is odd because it is symmetric about the origin.

Step-by-step explanation:

The distance from the library to the post office is 5.25 miles. Use the fact that one mile is approximately 1.61 kilometers to find the distance from the library to the post office in kilometers. Round the distance to the nearest hundredth of a kilometer, if needed.

Answers

Answer:

8.45 kilometers

Step-by-step explanation:

Given

The distance from library to post office = 5.25 miles

We are given that one mile is equal to 1.61 kilometers

So to find the distance from the library to post office in kilometers we have to multiply 5.25 with 1.61

So,

The distance from library to post office in kilometers = 5.25*1.61

8.4525

Rounding off to nearest hundredth

8.45 kilometers ..

Is X=-2 a solution of inequation
2x+1> X-3? why?​

Answers

Answer:

-2 >-4

This is true, so it is a solution

Step-by-step explanation:

2x+1> x-3

Subtract x from each side

2x-x+1> x-x-3

x +1 > -3

Subtract 1 from each side

x+1-1 >-3-1

x > -4

x =-2   Substitute this into the inequality

-2 >-4

This is true, so it is a solution

Find the value for the following determinant.

Answers

Answer:

5

Step-by-step explanation:

The matrix is in the form

a  b

c   d

The determinant is

ad -bc

2 *4 - 1 *3

8 - 3

5

The widths of two similar rectangles are 16 cm and 14 cm. What is the ratio of the areas?

Answers

Answer:

8:7 and 64:49

Step-by-step explanation:

If the widths of two similar rectangles are 16 cm and 14 cm, the ratio of the areas are 8:7 and 64:49.

Solve the inequality: –3(x + 2) > 4x + 5(x – 7)

Answers

Answer:

29/12 > x

Step-by-step explanation:

–3(x + 2) > 4x + 5(x – 7)

Distribute

-3x -6 > 4x +5x-35

Combine like terms

-3x-6 > 9x -35

Add 3x to each side

-3x+3x-6 > 9x+3x -35

-6 > 12x-35

Add 35 to each side

-6+35 > 12x -35+35

29 > 12x

Divide each side by 12

29/12 > 12x/12

29/12 > x

Which graph shows the solution to the system of linear inequalities below?

Answers

Answer:

Graph C is your answer

Step-by-step explanation:

Draw the following graph using the easy coordinates, those are were y axis is zero, and the other were x axis is 0:

[tex]y=-2x+2[/tex]

First point is (1,0) and the other (0,2)

The entire region that belongs to your graph is greater than drawn line.

Draw another graph using the same easy coordinates.

[tex]y=2x-1[/tex]

First point is (0.5,0) and the other (0,-1)

The entire region that belongs to your graph is lesser than the drawn line.

When you merge those graphs into one, you can clearly see that they correspond to the C answer.

Answer:

Graph A.

Step-by-step explanation:

The given inequalities are

[tex]y>-2x+2[/tex]

[tex]y<2x-1[/tex]

The related equation of given inequalities are

[tex]y=-2x+2[/tex]

[tex]y=2x-1[/tex]

The slope of line (1) is -2 and the y-intercept is 2.

The slope of line (2) is 2 and the y-intercept is -1.

Both related lines are dotted line because the points on the line are not included n the solution set.

Check each inequality by (0,0).

[tex]0>-2(0)+2\Rightarrow 0>2[/tex] False statement

[tex]0<2(0)-1\Rightarrow 0<-1[/tex] False statement

So, (0,0) is not included in the shaded area of any of these two inequities.

Therefore, graph A shows the solution to the system of linear inequalities.

Your company is introducing a fruit drink packaged in an aluminum box with a square
base. Find the surface area of this box as a function of its dimension of its base, S, given
that volume of the box is 36 in. Graph this function and determine the dimensions that
produce a minimum surface area for this aluminum box.​

Answers

Answer:

See explanation

Step-by-step explanation:

Let x in be the base side length and y in be the height of the box. Since the base is a square, we have

[tex]S=x^2\Rightarrow x=\sqrt{S}[/tex]

The volume of the box is

[tex]V=S\cdot y\\ \\36=Sy\Rightarrow y=\dfrac{36}{S}[/tex]

The surface area of the box is

[tex]SA=2x^2+4xy\\ \\SA(S)=2S+4\cdot \sqrt{S}\cdot \dfrac{36}{S}=2S+\dfrac{144}{\sqrt{S}}[/tex]

The graph of the function SA(S) is shown in attached diagram.

Find the derivative of this function:

[tex]SA'(S)=(2S+144S^{-\frac{1}{2}})'=2-\dfrac{1}{2}\cdot 144\cdot S^{-\frac{1}{2}-1}=2-\dfrac{72}{S\sqrt{S}}[/tex]

Equate this derivative to 0:

[tex]2-\dfrac{72}{S\sqrt{S}}=0\\ \\2S\sqrt{S}=72\\ \\S\sqrt{S}=36\\ \\S^{\frac{3}{2}}=6^2\\ \\S=6^{\frac{4}{3}}[/tex]

So, the dimensions that produce a minimum surface area for this aluminum box are:

[tex]x=\sqrt{6^{\frac{4}{3}}}=6^{\frac{2}{3}} \ in\\ \\y=\dfrac{6^2}{6^{\frac{4}{3}}}=6^{\frac{2}{3}}\ in.[/tex]

Please help this is my last tutorial in this subject.......

Answers

Answer: is there anyway U can give me a more zoomed in pic

Step-by-step explanation:

help‼️ if a number is even, then it is divisible by 2. g=14

Answers

i’m pretty sure the answer is B.

Do you guys know the answer for number 3

Answers

Answer:

{3,23,39}

Step-by-step explanation:

I think that thing inside the box says 4x-5.

The numbers we are putting in are 2,7, and 11.

So when we put 2 in we get 4(2)-5 which is 8-5=3.

When we put 7 in we get 4(7)-5 which is 28-5=23.

When we put 11 in we get 4(11)-5 which is 44-5=39

So the answer is {3,23,39}.

A study of the amount of time it takes a mechanic to rebuild the transmission for a 2005 Chevrolet Cavalier shows that the mean is 8.4 hours and the standard deviation is 1.8 hours. If 40 mechanics are randomly selected, find the probability that their mean rebuild time exceeds 8.7 hours.

0.1346

0.1285

0.1946

0.1469

Answers

Answer:

0.1469

Step-by-step explanation:

Given from the question;

Mean=8.4 hrs=μ

Standard deviation=1.8 hrs=δ

Sample size, n=40

Let  x=8.7

z=(x-μ)÷(δ÷√n)  

Find z(8.7)

z=(8.7-8.4)÷(1.8÷√40)

z={0.3×√40}÷1.8=1.05409

z=1.0541

Read from the  standard normal probabilities table

P(z>1.0541)

=0.1459

Final answer:

Using the Central Limit Theorem and standard error calculation, the probability that the mean rebuild time by 40 mechanics exceeds 8.7 hours is found to be approximately 0.1469.

Explanation:

To find the probability that the mean rebuild time for a 2005 Chevrolet Cavalier transmission by 40 mechanics exceeds 8.7 hours, given that the mean is 8.4 hours and the standard deviation is 1.8 hours, we will use the concept of the sampling distribution of the sample mean. Since the standard deviation of the population is known, we apply the Central Limit Theorem, which states that the distribution of the sample means will be approximately normal if the sample size is large enough (n>30 in this case).

First, calculate the standard error of the mean (SEM) using the formula: SEM = σ/√n, where σ is the standard deviation of the population and n is the sample size. Therefore, SEM = 1.8/√40 = 0.285.

Next, find the z-score that corresponds to a mean rebuild time of 8.7 hours using the formula: z = (X - μ)/SEM, where X is the value of interest (8.7 hours), and μ is the population mean (8.4 hours). Thus, z = (8.7 - 8.4)/0.285 = 1.05.

Finally, look up the z-score in a z-table or use a statistical calculator to find the probability that Z is greater than 1.05, which is approximately 0.1469.

Therefore, the probability that their mean rebuild time exceeds 8.7 hours is 0.1469.

True or False? The first distribution shown below has a smaller mean tha
does the second distribution.
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112

Answers

Answer:

True

Step-by-step explanation:

Answer:

True

Step-by-step explanation:

1st mean: 65

2nd mean: 106.5

What is the solution to the system of equations graphed below?
y = --3/2x+2
y = 5x + 28

Answers

Answer:

(-4, 8) → x = -4 and y = 8

Step-by-step explanation:

We only need two points to plot the graph of each equation.

[tex]y=-\dfrac{3}{2}x+2\\\\for\ x=0\to y=-\dfrac{3}{2}(0)+2=0+2=2\to(0,\ 2)\\\\for\ x=2\to y=-\dfrac{3}{2}(2)+2=-3+2=-1\to(2,\ -1)\\\\y=5x+28\\\\for\ x=-4\to y=5(-4)+28=-20+28=8\to(-4,\ 8)\\\\for\ x=-6\to y=5(-6)+28=-30+28=-2\to(-6,\ -2)[/tex]

Look at the picture.

Read the coordinates of the intersection of the line (solution).

Answer:

(-4,8)

Step-by-step explanation:

Given system of equations,

[tex]y=-\frac{3}{2}x+2-----(1)[/tex]

[tex]y=5x+28------(2)[/tex]

In equation (1), If x = 0, y = 2,

If y = 0,

[tex]-\frac{3}{2}x+2=0\implies -\frac{3}{2}x=-2\implies -3x=-4\implies x=\frac{4}{3}[/tex]

Join the points (0,2) and (4/3,0) in the graph we get the line (1),

In equation (2), if x = 0, y = 28,

If y = 0,

[tex]5x+28=0\implies 5x=-28\implies x=-5.6[/tex]

Join the points (0, 28) and (-5.6,0) in the graph we get the line (2),

Hence, by graph,

The intersection point of line (1) and (2) is (-4,8)

Which is the required solution.

What are the zeros of this function

Answers

Answer:

X =3 and x =6

Step-by-step explanation:

Just look at the line where they cross another line,

Answer:

B x=3 and x=6

Step-by-step explanation:

The zeros of the function are where the function crosses the x axis

Looking at the graph

This function crosses at x=3 and x = 6

The parent function f(x)=5^x has been virtually compressed by a factor of 1/2, shifted to the left three units and up two units. Chose the correct function to represent the transformation.

Answers

Answer:

Option 2 is correct

[tex]g(x) = (\frac{1}{2})5^{(x+3)}+2[/tex]

Step-by-step explanation:

We can se ethat the given function is an exponential function.

The function is:

5^x

In order to compress the function the original function is multiplied a constant.

As the function is compressed by a factor of 1/2

The function will become:

g(x) = 1/2 * 5^x

Now the function is shifted to left which is a horizontal shift. For horizontal shift of n units, n is added to the power so the function will become:

[tex]g(x) = \frac{1}{2}5^{x+3}[/tex]

Then the function is shifted upwards two units, the vertical shhift is added to the whole function so the function will become:

[tex]g(x) = (\frac{1}{2})5^{(x+3)}+2[/tex]

Hence, Option 2 is correct ..

Clara and her brother, Carl, are at the beach for vacation. They want to rent bikes to ride up and down the boardwalk. One rental shop, Bargain Bikes, advertises rates of $5 plus $1.50 per hour. A second shop, Frugal Wheels, advertises a rate of $6 plus $1.25 an hour. How much does it cost to rent a bike for one hour from each shop? How about 10 hours?

Answers

Answer:

Let's evaluate each rental shop:

Bargain Bikes: $5 plus $1.5 per hour.

For one hour, the cost is $5 + $1.5 = $6.5. For ten hours the total cost is: $5 + 10×$1.5 = $20

Frugal Wheels: $6 plus $1.5 an hour.

For one hour, the cost is $6 + $1.25 = $7.25. For ten hours the total cost is: $6 + 10×$1.25 = $18.5

If Clara and her brother are thinking about renting a bike for an hour, Bargain Bikes is the best option. On the other hand, if they want to rent it fr several hours Frugal Wheels is the best option.

A company is replacing cables with fiber optic lines in rectangular casing BCDE. If line segment DE = 3 cm and line segment BE = 3 cm, what is the smallest diameter of pipe that will fit the fiber optic line? Round your answer to the nearest hundredth.



3.54 cm

3.91 cm

4.24 cm

4.95 cm

Answers

Answer:

The correct option is C.

Step-by-step explanation:

Given information: BCDE is a rectangular casing, DE = 3 cm and BE = 3 cm.

We need to find the smallest diameter of pipe that will fit the fiber optic line. It means we have to find the measure of DB.

The measure of all interior angles of a rectangle or square is 90°.

[tex]\angle DEB=90^{\circ}[/tex]

It means the DEB is right angled triangle.

According to the Pythagoras theorem:

[tex]hypotenuse^2=leg_1^2+leg_2^2[/tex]

In triangle DEB,

[tex](DB)^2=(DE)^2+(BE)^2[/tex]

[tex](DB)^2=(3)^2+(3)^2[/tex]

[tex](DB)^2=9+9[/tex]

[tex](DB)^2=18[/tex]

Taking square root both sides.

[tex]DB=\sqrt{18}[/tex]

[tex]DB=4.24264068712[/tex]

[tex]DB\approx 4.24[/tex]

Therefore the correct option is C.

Based on the information given, the smallest diameter will be C. 4.24 cm.

Based on the information given, it can be noted that triangle DEB us a right angle triangle. Therefore, the Pythagoras theorem can be used.

DB² = 3² + 3²

DB² = 9 + 9

DB² = 18

DB = ✓18

DB = 4.24

Therefore, the correct option is 4.24.

Learn more about diameter on:

https://brainly.com/question/1649593

Determine whether the relation represents y as a function of x.

1.) x^2+y^2=9


2.) 2xy=1

Answers

Answer:

1 is not a function

2 is a function because you can write it (AS) f(x)=1/(2x).

Step-by-step explanation:

1) x^2+y^2=9 is a circle with center (0,0) and radius 3.

To get this all I did was compare to (x-h)^2+(y-k)^2=r^2 where (h,k) is the center and r is the radius.

A circle is not a function.

You can solve solve for and see that you will get two values for y which is no go for a function.

Let's do that:

[tex]x^2+y^2=9[/tex]

Subtract x^2 on both sides:

[tex]y^2=9-x^2[/tex]

Square root both sides:

[tex]y=\pm \sqrt{9-x^2}[/tex].

2) 2xy=1

Divide both sides by 2x:

y=1/(2x).

This is a function only one y there.

Which number line shows the solution to the inequality x + 3 \< 1?
\< = less than or equal to

Answers

Answer:

For every real number x, C expresses the solution to the inequality

Final answer:

To find the solution to the inequality x + 3 < 1, subtract 3 from both sides to get x < -2. The number line would have an open circle at -2 and be shaded to the left, indicating all numbers less than -2.

Explanation:

To solve the inequality x + 3 < 1, we need to find the value of x that makes the inequality true. We start by subtracting 3 from both sides of the inequality:

x + 3 - 3 < 1 - 3x < -2

The number line for this inequality would have an open circle at -2 (since -2 is not included in the solution) and shade to the left of -2 to show that all numbers less than -2 are included. The reason we shade to the left is because those are the numbers that are less than -2, thus satisfying the inequality.

Other Questions
The average rate of change from x = -2 to x = 6 for the function shown in the graph is______? what causes noncommunicable diseases? Which Miles Davis selections did you listen to? Describe the music in details? I choose so what.can you please help me with this question with ur own words thanks Identify the three similar triangles in the figure we should to name the verticals in the correct order What is the product of 2p + q and -3q - 6p + 1 As the loan amortizes and nears the end, the majority of the payment is used to pay the ___ what answer would this be? Question is attached Why was Portugal among the first of the European nations to begin exploring in the early 1400s? Portugal was landlocked. Portugal wanted access to resources. Portugal was engaged in a Crusade. Portugal was losing a war to Spain. PLEASE HELP!!!!! Read these details about a print newspaper article. Which example correctly cites the newspaper article?author: Madeline Joeltitle: Houser Reigns Supreme in Milwaukeenewspaper title: Milwaukee Tribuneedition: late editiondate of publication: 16 July 2000issue number: D4A. 16 July 2000 late ed.: D4. Print. Milwaukee Tribune. Houser Reigns Supreme in Milwaukee. Joel, Madeline.B. Milwaukee Tribune. Joel, Madeline. 16 July 2000 late ed.: D4. Print. Houser Reigns Supreme in Milwaukee.C. Joel, Madeline. Houser Reigns Supreme in Milwaukee. Milwaukee Tribune 16 July 2000, late ed.: D4. Print.D. Houser Reigns Supreme in Milwaukee. 16 July 2000 late ed.: D4. Print. Joel, Madeline. Milwaukee Tribune. Speed limit signs are classified asA. Mandatory signsB. Regulatory signsC. Warning signsD. Traffic flow signs What is the sum of the geometric sequence 1,-6,36 if there are 6 terms Consider the set of differences, denoted with d, between two dependent sets: 84, 85, 83, 63, 61, 100, 98. Find the sample standard deviation sd and round it to the nearest tenth. Solve xto the 2nd power= 121.A. 60.5B.-11C.11D.+11 - PLEASE HELP I DONT UNDERSTAND In jumping to block a shot, a volleyball player with a weight of 600 N generates an average vertical ground reaction force of 900 N for 0.37 seconds. What is the net vertical impulse that causes her velocity to increase in the upward direction? A. suspended B. denied C. canceled D. revoked La noche Buena: Es una fiesta religiosa. Se celebra el 24 de diciembre. Se acostumbra poner el rbol de Navidad adornado de luces y adornos, ir a la Misa de Gallos y cenar la familia unida. En la Misa, los nios se visten de pastores y de las figuras principales del Nacimiento: La Virgen Mara, San Jos y los tres Reyes Magos. Luego regresan a la casa a una reunin familiar en donde usualmente se come: pasteles, arroz con gandules, lechn asado a la barita, gandinga de cerdo, cuchifritos, morcillas, guineitos verdes, tembleque, arroz con dulce, turrones, coquito y toda clase de bebidas. It's important toroutine short trips.A. prepare forB. memorizeC. save time onD. find a shortcut for A fluid has density 810 kg/m3 and flows with velocity v = z i + y2 j + x2 k, where x, y, and z are measured in meters and the components of v in meters per second. Find the rate of flow outward through the cylinder x2 + y2 = 9, 0 z 4. essay that compares and contrasts andrew jacksons address to congress and samuel memory by michael rutledge