Browning Labs is testing a new growth inhibitor for a certain type of bacteria. The bacteria naturally grows exponentially each hour at a rate of 6.2%. The researchers know that the inhibitor will make the growth rate of the bacteria less than or equal to its natural growth rate. The sample currently contains 100 bacteria.The container holding the sample can hold only 300 bacteria, after which the sample will no longer grow. However, the researchers are increasing the size of the container at a constant rate allowing the container to hold 100 more bacteria each hour. They would like to determine the possible number of bacteria in the container over time.Create a system of inequalities to model the situation above, and use it to determine how many of the solutions are viable.

Answers

Answer 1

Hey! I just answered this on plato. the answer is that it includes negative factors, which makes not all solutions viable.

Answer 2

Answer:

Look at the attachment

Step-by-step explanation:

First we need to find out the equations that will represent each inequality:

For the bacteria:

This is an exponential growth equation, the formula is simple:

y≤[tex]n*(1+r)^{x}[/tex]  where n is the starting point of the sample, r is the rate and x is the variable dependent on time so:

y≤[tex]100*(1+0.062)^{x}[/tex]

y≤[tex]100*(1.062)^{x}[/tex]

For the container:

This is a line equation, following the formula:

y<mx+b where m is the slope or growing rate (100 more per hour), and b is the starting point (300 bacteria)

y< 100x+300

The graph will be like is showed in the attachment, and the solution is the intersecting area to the right of both functions, since they are trying to find out if the inhibitor works, the rate of growth will be equal or smaller than 6.2% thus closing in to 100 bacterias as a constant in time if it works.

Browning Labs Is Testing A New Growth Inhibitor For A Certain Type Of Bacteria. The Bacteria Naturally

Related Questions

Fill in the blank.

100-10-30-10-_-30=20

Answers

The answer is zero because 100-10=90-30=60-10=50-0-30=20

Answer:

0

Step-by-step explanation:

100 - 10 = 90

90 - 30 = 60

60 - 10 = 40

40 - 10 = 30

10 cards are numbered from 1 to 10 and placed in a box. One card is
selected at random and is not replaced. Another card is then randomly
selected. What is the probability of selecting two numbers that are less than
62​

Answers

Answer:

0.889

Step-by-step explanation:

I think it is multiplied.

10 *9 = 90

which is the total number of ways you can draw 2 cards without replacement.

I think it is easier to figure out how many possibilities there are over 62 and go from there.

10*9

10*8

10*7

===========

9*8

9*7

So there are 5 combinations that are over 62. There are 5 more possibilities because you could draw them in the reverse order

9 * 10

8 * 10

7 * 10  

8* 9

7 * 9

In all there are 10 ways of drawing numbers that are over 62

So what is the probability of drawing 2 cards above 62?

10/90 = 1/9 = 0.111

Therefore, there must be a probability of 1 - 0.111 for under 62 = 0.889

Scott poured a cup of hot coffee and let it cool. The temperature of the coffee after x minutes is given by the function f(x). The temperature is measured in degrees Fahrenheit. What does f(10)=120 tell you?

Answers

Answer:

Step-by-step explanation:

f(10) = 120 tells you that after x = 10 minutes, the coffee is 120 degrees

The statement f(10)=120 indicates that after 10 minutes, the coffee's temperature is 120 degrees Fahrenheit.

When we see an equation such as f(10)=120, it tells us that after 10 minutes, the temperature of the coffee has cooled down to 120 degrees Fahrenheit. The function f(x) describes the temperature of the coffee after x minutes, so the specific point f(10)=120 provides us with a snapshot of the temperature at that particular time.

A triangular field has sides of 218.5 m and 224.5 m, and the angle between them measures 58.20 . Find the area of the field.

Answers

Answer:

20,845 square meters

Step-by-step explanation:

We can use the formula for area of a triangle to figure this out easily.

Area = [tex]\frac{1}{2}abSinC[/tex]

Where

a and b are the two side lengths of the triangle given, and

C is the ANGLE BETWEEN the two sides

Clearly, we see that one side is 218.5 and other is 224.5 and the angle between them is given by 58.2 degrees. Now we simply substitute these values into the formula and get the area:

[tex]A=\frac{1}{2}abSinC\\A=\frac{1}{2}(218.5)(224.5)Sin(58.2)\\A=20,844.99[/tex]

Rounding, we get the area to be 20,845 square meters

Answer:

20,845 m2

Step-by-step explanation:

I got it correct on founders edtell

You have two circles, one with radius r and the other with radius R. You wish for the difference in the areas of these two circles to be less than or equal to 5\pi. If r+R=10, what is the maximum difference in the lengths of the radii?

Answers

The maximum difference in the lengths of the radii is 1/2.

To solve this problem, let's denote the radius of the smaller circle as ( r ) and the radius of the larger circle as ( R ). We're given that [tex]\( r + R = 10 \)[/tex].

The area of a circle is given by the formula [tex]\( A = \pi r^2 \)[/tex], where ( r ) is the radius.

We want the absolute difference in the areas of the two circles to be less than or equal to [tex]\( 5\pi \)[/tex]. So, we can set up the following inequality:

[tex]\[ |(\pi R^2) - (\pi r^2)| \leq 5\pi \][/tex]

[tex]\[ |(\pi (10-r)^2) - (\pi r^2)| \leq 5\pi \][/tex]

Expanding and simplifying:

[tex]\[ |(100\pi - 20\pi r + \pi r^2) - (\pi r^2)| \leq 5\pi \][/tex]

[tex]\[ |100\pi - 20\pi r| \leq 5\pi \][/tex]

[tex]\[ 100 - 20r \leq 5 \][/tex]

[tex]\[ 100 - 5 \leq 20r \][/tex]

[tex]\[ 95 \leq 20r \][/tex]

[tex]\[ \frac{95}{20} \leq r \][/tex]

[tex]\[ r \geq \frac{19}{4} \][/tex]

So, the maximum difference in the lengths of the radii is when [tex]\( r = \frac{19}{4} \)[/tex] and [tex]\( R = 10 - r = 10 - \frac{19}{4} = \frac{21}{4} \)[/tex].

The maximum difference in the lengths of the radii is [tex]\( \frac{21}{4} - \frac{19}{4} = \frac{2}{4} = \frac{1}{2} \)[/tex].

Can someone help with this problem on literal equations to get variable A by itself? Will give lots of points

Answers

Answer:

Step-by-step explanation:

Part A

xf = xo + vo* t + 1/2 a*t^2                    Subtract xo

xf - xo = 0*t + 1/2 a*t^2                        multiply by 2

2(xf - xo) = at^2                                    divide by t^2

2(xf - xo ) / t^2 = a

Part B

Givens

xo =0

vo = 0

a = 10  m/s^2

xf = 120 m

Solution

xf = xo + vo* t + 1/2 a*t^2              Substitute the givens

120 = 0 + 0 + 1/2 * 10 * t^2            Multiply by 2

120*2 = 10* t^2                  

240 = 10*t^2                                  Divide by 10

240/10  = t^2

24 = t^2                                          take the square root of both sides.

√24 = √t^2

t = √24

t = √(2 * 2 * 2 * 3)

t = 2√6

HELP ASAP Translate 6(4j+5+4j) in to a verbal expression w step by step. WILL MARK BRAINLIEST

Answers

The answer would be 24j+30+24j which is 48j+30

A wholesaler requires a minimum of 4 items in each order from its retail customers. The manager of one retail store is considering ordering a certain number of sofas, x, and a certain number of pillows that come in pairs, y. Which graph represents the possible combinations of sofa and pillow orders the manager can have?

Answers

Answer:

Option D

Step-by-step explanation:

We have the following variable definitions:

sofas: x

pillows: y

Pillows come in pairs so we have 2y pillows

The total order for all the possible combinations is:

[tex]x+2y[/tex]

The wholesaler requires a minimum of 4 items in each order from its retail customers. This means the retailers can order 4 or more.

Therefore the inequality is:

[tex]x+2y\ge4[/tex]

To graph this inequality, we graph the corresponding linear equation, [tex]x+2y=4[/tex]  with a solid line and shade above.

The correct choice is D

See attachment

Answer:The last graph is the right one

From a group of 8 volunteers, including Andrew and Karen, 4 people are to be selected at random to organize a charity event. What is the probability that Andrew will be among the 4 volunteers selected and Karen will not?

Answers

Answer:

The probability that Andrew will be among the 4 volunteers selected and Karen will not is 2/7.

Step-by-step explanation:

From the given information it is clear that

The total number of volunteers, including Andrew and Karen = 8

The total number of volunteers, excluding Andrew and Karen = 8-2 = 6

We need to find the probability that Andrew will be among the 4 volunteers selected and Karen will not.

Total number of ways of selecting r volunteers from n volunteers is

[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

Total number of ways of selecting 4 volunteers from 8 volunteers is

[tex]\text{Total outcomes}=^8C_4=70[/tex]

Total number of ways of selecting 4 volunteers from 8 volunteers, so that Andrew will be among the 4 volunteers selected and Karen will not is

[tex]\text{Favorable outcomes}=^1C_1\times ^6C_3=1\times 20=20[/tex]

The probability that Andrew will be among the 4 volunteers selected and Karen will not is

[tex]P=\frac{\text{Favorable outcomes}}{\text{Total outcomes}}[/tex]

[tex]P=\frac{20}{70}[/tex]

[tex]P=\frac{2}{7}[/tex]

Therefore the probability that Andrew will be among the 4 volunteers selected and Karen will not is 2/7.

Final answer:

The probability that Andrew is selected and Karen is not from a group of 8 volunteers for a 4-person task is 2/7.

Explanation:

The question is asking about the probability of a specific event happening when a group of volunteers is randomly selected. The key to solving this problem is knowing how to calculate combinations.

There are 8 volunteers in total and we know that 4 people are to be selected. The total number of ways 4 people can be selected from 8 is given by the combination formula C(n, r) = n! / (r!(n-r)!), where n is the total number of elements, r is the number of elements to choose, and ! represents the factorial operator.

So, total combinations = C(8, 4) = 8! / (4!(8-4)!) = 70.

Now, we need to find the combinations in which Andrew is chosen and Karen is not. This situation is equivalent to selecting 3 people from the remaining 6 people (excluding Andrew and Karen). Therefore, these combinations = C(6, 3) = 6! / (3!(6-3)!) = 20.

The probability that Andrew will be among the 4 volunteers selected and Karen will not is therefore 20/70 = 2/7.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ12

An equation is shown below: −2(4x − 1) − 7 = 5 Which statement shows a correct next step in solving the equation? The equation can become −2(4x − 1) = −2 by applying the distributive property. The equation can become −2(4x − 1) = 12 by applying the addition property of equality. The equation can become −2(4x − 1) = 12 by applying the commutative property of addition The equation can become −2(4x − 1) = −2 by applying the subtraction property of equality.

Answers

The first step is to add 7 to both sides, applying the addition property of equality:

[tex]-2(4x-1)-7+7=5+7 \iff -2(4x-1)=12[/tex]

Answer:

The equation can become −2(4x − 1) = 12 by applying the commutative property of addition

Step-by-step explanation:

Marya wants to factor the polynomial 36x3 – 22x2 – 144x. which term can she add to the polynomial that would not change its greatest common factor? check all that apply. a. 11 b. 50xy c. 40x2 d. 24 e. 10y

Answers

Answer:

[tex]50xy[/tex] and [tex]40x^2[/tex].

Step-by-step explanation:

The given polynomial is [tex]36x^3-22x^2-144x[/tex].

The prime factorization of each term are;

[tex]36x^2=2^2\times 3^2\times x^3[/tex]

[tex]-22x^2=-2\times 11\times x^2[/tex]

[tex]-144x=-2^4\times 3^2\times x[/tex]

The greatest common factor of these three terms is [tex]2x[/tex].

Now observe that:

The GCF of [tex]2x[/tex] and 11 is 1

The GCF of [tex]2x[/tex] and 50xy is 2x

The GCF of [tex]2x[/tex] and [tex]40x^2[/tex] is 2x

The GCF of [tex]2x[/tex] and 24 is 2

The GCF of [tex]2x[/tex] and 10y is 2

The correct options are [tex]50xy[/tex] and [tex]40x^2[/tex].

Which of the following is the rule for rotating the point with coordinates (x,y), 180° counterclockwise about the origin?

A. (x,y) → (y,x)
B. (x,y) → (y,-x)
C. (x,y) → (-y,-x)
D. (x,y) → (-x,-y)

Answers

Answer:

  D.  (x, y) → (-x, -y)

Step-by-step explanation:

A. (x,y) → (y,x) . . . . reflects across the line y=x

B. (x,y) → (y,-x) . . . . rotates 90° CCW

C. (x,y) → (-y,-x) . . . . reflects across the line y=-x

D. (x,y) → (-x,-y) . . . . rotates 180° about the origin

Answer:

The correct option is D.

Step-by-step explanation:

If a point rotating 180° counterclockwise about the origin, then the sign of each coordinate is changed.

Consider the coordinates of a point are (x,y).

If a (x,y) rotating 180° counterclockwise about the origin, then the rule of rotation is defined as

[tex](x,y)\rightarrow (-x,-y)[/tex]

In which (x,y) is the coordinate pair of preimage and (-x,-y) is the coordinate pair of image.

Therefore the correct option is D.

If a point reflects across the line y=x , then

[tex](x,y)\rightarrow (y,x)[/tex]

If a point rotated 90° clockwise, then

[tex](x,y)\rightarrow (y,-x)[/tex]

If a point reflects across the line y=-x, then

[tex](x,y)\rightarrow (-y,-x)[/tex]

The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes.


6
4
10
12

Answers

Answer:

Option D (12).

Step-by-step explanation:

The law of outcomes states that if there are m ways to do Event 1 and n ways to do Event 2, then if both Event 1 and Event 2 are combined, then the possible outcomes will be m*n. Similarly, in this case, there are 2 types of products, 2 types of materials, and 3 types of colours. So according to the law of outcomes, simply multiply the numbers to gain the total possible outcomes:

Possible outcomes = 2 * 2 * 3 = 4 * 3 = 12.

So Option D is the correct answer!!!

Answer:

12 is correct.

Step-by-step explanation:

Use the Distributive Property to rewrite the expression. 9(y + 4)

Answers

Answer:

Answer would be 9y+36

Step-by-step explanation:

Because if you distribute the 9 inside the parenthesis, you'd get

9*y=9y and 9*4=36

so 9y+36

Hope my answer was helpful to you!

Final answer:

The Distributive Property is used to rewrite the expression 9(y + 4) as 9y + 36 by multiplying 9 by each term inside the parentheses.

Explanation:

To use the Distributive Property to rewrite the expression 9(y + 4), we would distribute the number 9 to both y and 4 inside the parentheses. This means we multiply 9 by y and then multiply 9 by 4, combining the results with the addition operations between them.

Using the distributive property, we get:

9 times y = 9y

9 times 4 = 36

So, the expression will be rewritten as:

9y + 36

Therefore, by distributing the 9, we have turned the original expression into a sum of two terms, which are a number, variable, or a product/quotient of numbers and/or variables separated by + or - signs. In this case, the terms are 9y and 36.

Which equation represents a circle with the same radius as the circle shown but with a center (-1, 1)

Answers

Answer:

Option 4: (x+1)^2+(y-1)^2 = 16

Step-by-step explanation:

The radius of the given circle in attached picture is: 4 units

The center is denoted by (h,k) = (-1,1)

So,

The standard form of equation with center at (h,k) and radius r

(x-h)^2 + (y-k)^2 = r^2

Putting the values

(x-(-1))^2 + (y-1)^2 = 4^2

(x+1)^2+(y-1)^2 = 16

Hence option number 4 is correct ..

Suppose that a classroom has 8 light bulbs. The probability that each individual light bulb works is 0.8. Suppose that each light bulb works independently of the other light bulbs. What is the probability that all eight of the light bulbs work?

a.0.17
b.0.13
c.0.00001024
d.0.8

Answers

Answer:

a. 0.17

Step-by-step explanation:

Total number of light bulbs = 8

The probability that each individual light bulb works = 0.8

The working of light bulbs is independent of each other, this means one light bulb does not influence the other light bulbs.

We need to calculate the probability that all eight of the light bulbs work. Since the light bulbs work independently, the overall probability of independent events occurring together is the product of their individual probabilities. Therefore,

Probability that all eight of the light bulbs work = 0.8 x 0.8 x 0.8 x 0.8 x 0.8 x 0.8 x 0.8 x 0.8

= [tex](0.8)^{8}[/tex]

= 0.16777216

≈ 0.17

Thus, option a gives the correct probability that all eight of the light bulbs work

You can use binomial distribution, and thus, its probability function to find the needed probability.

The probability that all eight of the light bulbs work is 0.167

How to find that a given condition can be modeled by binomial distribution?

Binomial distributions consists of n independent Bernoulli trials.

Bernoulli trials are those trials which end up randomly either on success (with probability p) or on failures( with probability 1- p = q (say))

Suppose we have random variable X pertaining binomial distribution with parameters n and p, then it is written as

[tex]X \sim B(n,p)[/tex]

The probability that out of n trials, there'd be x successes is given by

[tex]P(X =x) = \: ^nC_xp^x(1-p)^{n-x}[/tex]

Using the above method to find the needed probability

Since all the light bulbs' working is independent, and each bulb's chance of working is 0.8 and there are 8 bulbs, thus,

n = 8

p = 0.8

and Let X be a random variable tracking how many out of 8 bulbs are working, then we have:

[tex]X \sim B(8, 0.8)[/tex]

Then, the needed probability is P(X = 8) (since we need to know probability that all 8 bulbs will work)

By using the probability mass function of binomial distribution, we get:

[tex]P(X =x) = \: ^nC_xp^x(1-p)^{n-x}\\P(X = 8) = \:^8C_8(0.8)^8(1-0.8)^{8-8} = 1 \times (0.8)^8 \times 1 \approx 0.167[/tex]

Thus,

The probability that all eight of the light bulbs work is 0.167

Learn more about binomial distribution here:

https://brainly.com/question/14446233

Solve for x: 4(x + 2) = 3(x − 2)

A) −2
B)−4
C) −10
D) −14

Answers

4(x+2)=3(x-2)

Multiply the first bracket by 4

Multiply the second bracket by 3

4x+8=3x-6

Move 3x to the left hand side, whenever moving a number with a letter the sign changes ( positive 3x to negative 3x)

4x-3x+8=3x-3x-6

x+8=-6

Move positive 8 to the right hand side

x+8-8=-6-8

x=-14

Check answer by using substitution method

Use x=-14 into both of the equations

4(-14+2)=3(-14-2)

-56+8=-42-6

-48=-48

Answer is -14- D)

Final answer:

The algebraic equation 4(x + 2) = 3(x − 2) is solved by distribution, combining like terms, and isolating the variable x, which results in x = -14.

Explanation:

This is a simple algebraic equation problem. We solve 4(x + 2) = 3(x − 2) by following these steps:

Distribute 4 on the left through both terms inside the parentheses to obtain 4x + 8. Do the same with 3 on the right side to get 3x - 6. Subtract 3x from both sides to get x + 8 = -6. Then subtract 8 from both sides of the equation to isolate x, which equals -14.

So, x = -14 is the solution.

Learn more about Algebraic equation here:

https://brainly.com/question/953809

#SPJ3

5. To get to the library from his house, Robert biked 6 kilometers due east and then
8 kilometers due south. On the way back, he cut across a field, taking the shortest
possible route home.
How far did Robert bike on the round-trip?
Home
6 km
8 km
Library

Answers

Answer:

24 kilometers.

Step-by-step explanation:

The shortest path between two points is a straight segment that connects the two points.

Refer to the diagram attached. The 6-km segment and the 8-km segment are normal to each other. Together with the segment that joins the library and the house, the three segments now form a right triangle.

The two shorter segments are the two legs, and The longer segment that joins the library and the house is the hypotenuse.

The length of the hypotenuse can be found with the Pythagorean Theorem.

[tex]\begin{aligned}\text{Hypotenuse} &= \sqrt{(\text{Leg 1})^{2} + (\text{Leg 2})^{2}}\\&= \sqrt{6^{2} + 8^{2}}\\&= \sqrt{36 + 64} \\&= \sqrt{100}\\&= \rm 10\;km\end{aligned}[/tex].

The length of the round-trip will equal to the sum of the length of the three segments: [tex]\rm 6\;km + 8\;km + 10\;km = 24\;km[/tex].

AB id a diameter of a circle centered at o. C is a point on the circle such that angle BOC is 60 degrees.If the diameter of the circle is 5 inches the length of the chord ac expressed in inches is

Answers

Answer:

[tex]AC=4.3\ in[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

we know that

The triangle AOC is an isosceles triangle

OA=OC=5/2=2.5 in -----> the radius of the circle

∠AOC=180°-60°=120°

∠CAO=∠ACO=120°/2=60°

Applying the law of cosines find the length of the chord AC

[tex]AC^{2}=OA^{2}+OC^{2}-2(OA)(OC)cos(120\°)[/tex]

substitute

[tex]AC^{2}=2.5^{2}+2.5^{2}-2(2.5)(2.5)cos(120\°)[/tex]

[tex]AC^{2}=18.75[/tex]

[tex]AC=4.3\ in[/tex]

Given the two Fibonacci numbers below, which number would follow?


F(22) = 17,711 and F(23) = 28,657


A. 1.618

B. 46,368

C. 0.618

D. 10,946


I have been stuck on this for roughly 20 minutes now, Any help would be nice...

Answers

Answer:

  B.  46,368

Step-by-step explanation:

Each Fibonacci number is the sum of the previous two. The next one is the sum of the two that are given.

  F(24) = F(22) +F(23) = 17,711 +28,657 = 46,368

The clubhouse has a water tank from which hikers fill their water jugs before walking the trail. The tank is a 5-gallon cylindrical container with a height of 2 feet and a radius of 4 inches. Alex fills his 1-gallon jug from the clubhouse tank before going on a hike. If the 5-gallon tank was full, what was the height of the water in the tank after Alex filled the 1-gallon jug?(A) 1.6 inches(B) 4.8 inches(C) 19.2 inches(D) 964.6 inches

Answers

Answer: 19.2 inches would be the most reasonable answer, since the first two is too small, and the last answer would be too tall.

if there was 2 feet of water, it would be 24 inches full. taking 1 gallon out, wouldn't make the difference to make it go up or down much.

Answer:

c) 19.2 inches

Step-by-step explanation:

Height of water when full = 2 feet = 24 inches

Radius of cylinder = 4 inches

Volume of tank = 5 gallon

Gallon per inch height of tank = [tex]\frac{5}{24}[/tex]

Inch per gallon of height = [tex]\frac{24}{5}[/tex]

So, when 1 gallon is removed

[tex]24-1\times \frac{24}{5}=\frac{96}{5}=19.2\ inches[/tex]

∴ Height of the water in the tank after Alex filled the 1 gallon jug is 19.2 inches.

                                   or

Volume of cylinder after 1 gallon was removed

[tex]\pi r^2h=4\times 231\\\Rightarrow h=\frac{4\times 231}{\pi 4^2}\\\Rightarrow h=18.38\ inches[/tex]

∴Height of the water in the tank after Alex filled the 1 gallon jug is 18.38 inches

The different height arises due to the thickness of the rank which is not given.

The first method is more accurate

Divide the following polynomial by 3.c.
27x²y – 15xy

Answers

Answer:

[tex]9x^2y-5xy[/tex]

Step-by-step explanation:

Split it up like this to make it easier to work with:

[tex]\frac{27x^2y}{3}-\frac{15xy}{3}[/tex]

Since the only thing in the denominator of those fractions is a 3, we can only divide the 27 by 3, not the x or y terms.  Same thing with the second fraction.  27 divided by 3 is 9 and 15 divided by 3 is 5, so

[tex]9x^2y-5xy[/tex]

is the solution.  It is not completely simplified, but that isn't what you asked for, so this should suffice as the answer.

Simplify the expression 2(x + 7)(x2 – 3x – 6).

Answers

Answer:

2x^3+8x^2-54x-84

Step-by-step explanation:

Answer:

2(x + 7)(x² - 3x - 6) = 2x³ + 8x² - 54x - 84

Step-by-step explanation:

Simplification is a method used to reduce the complexity or the component parts of an algebraic equation which makes it simpler and easier to understand.

The given equation is: 2(x + 7)(x² - 3x - 6).

Simplifying the given algebraic equation:

⇒ 2 (x + 7) (x² - 3x - 6)

⇒ (2x + 14) (x² - 3x - 6)

⇒ 2x³ + 14x² - 6x² - 42x - 12x - 84

⇒ 2x³ + 8x² - 54x - 84

x^2=6x/(5-x)
What is the sum of the roots of the above equation?

Answers

Answer:

x = 3 or x = 2 or x = 0 thus: 5

Step-by-step explanation:

Solve for x over the real numbers:

x^2 = (6 x)/(5 - x)

Cross multiply:

x^2 (5 - x) = 6 x

Expand out terms of the left hand side:

5 x^2 - x^3 = 6 x

Subtract 6 x from both sides:

-x^3 + 5 x^2 - 6 x = 0

The left hand side factors into a product with four terms:

-x (x - 3) (x - 2) = 0

Multiply both sides by -1:

x (x - 3) (x - 2) = 0

Split into three equations:

x - 3 = 0 or x - 2 = 0 or x = 0

Add 3 to both sides:

x = 3 or x - 2 = 0 or x = 0

Add 2 to both sides:

Answer:  x = 3 or x = 2 or x = 0

PLEASE HELP ME FIND THE LENGTH

Answers

Answer:

Length of arc AB is,

= 2πr (angle between AB) /360

=2×3.14×90/360

=1.57 cm

For this case we have that by definition, the arc length of a circle is given by:

[tex]AL = \frac {x * 2 \pi * r} {360}[/tex]

Where:

x: Represents the angle between AB. According to the figure we have that x = 90 degrees.

[tex]r = 7.9 \ cm[/tex]

So:

[tex]AL = \frac {90 * 2 \pi * 7.9} {360}\\AL = \frac {90 * 2 * 3.14 * 7.9} {360}\\AL = \frac {4465,08} {360}\\AL = 12.403[/tex]

Answer:

[tex]12.4\ cm[/tex]

Use the Polynomial Identity below to help you create a list of 10 Pythagorean Triples:
(x²+y²)² = (x²-y²)² + (2xy)²
Hint #1: c² = a² + b²
Hint #2: pick 2 positive integers x and y, where x > y

Answers

Answer:

(3,4,5)

(6,8,10)

(5,12,13)

(8,15,17)

(12,16,20)

(7,24,25)

(10,24,26)

(20,21,29)

(16,30,34)

(9,40,41)

Just choose 2 numbers from {1,2,3,4,5,6,7,8,...} and make sure the one you input for x is larger.

Post the three in the comments and I will check them for you.

Step-by-step explanation:

We need to choose 2 positive integers for x and y where x>y.

Positive integers are {1,2,3,4,5,6,7,.....}.

I'm going to start with (x,y)=(2,1).

x=2 and y=1.

[tex](2^2+1^2)^2=(2^2-1^2)^2+(2\cdot2\cdot1)^2[/tex]

[tex](4+1)^2=(4-1)^2+(4)^2[/tex]

[tex](5)^2=(3)^2+(4)^2[/tex]

So one Pythagorean Triple is (3,4,5).

I'm going to choose (x,y)=(3,1).

x=3 and y=1.

[tex](3^2+1^2)^2=(3^2-1^2)^2+(2\cdot3\cdot1)^2[/tex]

[tex](9+1)^2=(9-1)^2+(6)^2[/tex]

[tex](10)^2=(8)^2+(6)^2[/tex]

So another Pythagorean Triple is (6,8,10).

I'm going to choose (x,y)=(3,2).

x=3 and y=2.

[tex](3^2+2^2)^2=(3^2-2^2)^2+(2\cdot3\cdot2)^2[/tex]

[tex](9+4)^2=(9-4)^2+(12)^2[/tex]

[tex](13)^2=(5)^2+(12)^2[/tex]

So another is (5,12,13).

I'm going to choose (x,y)=(4,1).

[tex](4^2+1^2)^2=(4^2-1^2)^2+(2\cdot4\cdot1)^2[/tex]

[tex](16+1)^2=(16-1)^2+(8)^2[/tex]

[tex](17)^2=(15)^2+(8)^2[/tex]

Another is (8,15,17).

I'm going to choose (x,y)=(4,2).

[tex](4^2+2^2)^2=(4^2-2^2)^2+(2\cdot4\cdot2)^2[/tex]

[tex](16+4)^2=(16-4)^2+(16)^2[/tex]

[tex](20)^2=(12)^2+(16)^2[/tex]

We have another which is (12,16,20).

I'm going to choose (x,y)=(4,3).

[tex](4^2+3^2)^2=(4^2-3^2)^2+(2\cdot4\cdot3)^2[/tex]

[tex](16+9)^2=(16-9)^2+(24)^2[/tex]

[tex](25)^2=(7)^2+(24)^2[/tex]

We have another is (7,24,25).

You are just choosing numbers from the positive integer set {1,2,3,4,... } and making sure the number you plug in for x is higher than the number for y.

I will do one more.

Let's choose (x,y)=(5,1).

[tex](5^2+1^2)^2=(5^2-1^2)^2+(2\cdot5\cdot1)^2[/tex]

[tex](25+1)^2=(25-1)^2+(10)^2[/tex]

[tex](26)^2=(24)^2+(10)^2[/tex]

So (10,24,26) is another.

Let (x,y)=(5,2).

[tex](5^2+2^2)^2=(5^2-2^2)^2+(2\cdot5\cdot2)^2[/tex]

[tex](25+4)^2=(25-4)^2+(20)^2[/tex]

[tex](29)^2=(21)^2+(20)^2[/tex]

So another Pythagorean Triple is (20,21,29).

Choose (x,y)=(5,3).

[tex](5^2+3^2)^2=(5^2-3^2)^2+(2\cdot5\cdot3)^2[/tex]

[tex](25+9)^2=(25-9)^2+(30)^2[/tex]

[tex](34)^2=(16)^2+(30)^2[/tex]

Another Pythagorean Triple is (16,30,34).

Let (x,y)=(5,4)

[tex](5^2+4^2)^2=(5^2-4^2)^2+(2\cdot5\cdot4)^2[/tex]

[tex](25+16)^2=(25-16)^2+(40)^2[/tex]

[tex](41)^2=(9)^2+(40)^2[/tex]

Another is (9,40,41).

do these measurements create a triangle? true or false?

Answers

Answer:

Question 9: False

Question 10: False

Step-by-step explanation:

The third side is always greater than the other two sides.

Question 9

a = 6, b = 6, c = 5

Since the third side is the smallest, it would not create a triangle.

Question 10

a = 7, b = 2, c = 5

Since the third side is the smallest, it would not create a triangle.

Answer:

Question 9: True

Question 10: False

Step-by-step explanation:

The Triangle Inequality Theorem states that the sum of any two sides of a triangle must be greater than the last side.

To test if the three lengths create a triangle you would have to test the three combinations if the two numbers are greater than the last number.

Question 9:

The three lengths 6, 6, 5 create a triangle.

First check the first two numbers.

6 + 6 = 1212 > 5, so this is valid.

Next check the first and last number.

6 + 5 = 1111 > 6, this is also valid.

Last check the second and last number.

6 + 5 = 1111 > 6, all three combinations are valid for creating a triangle.

The answer for question 9 is TRUE.

Question 10:

The three lengths 7, 2, 5 create a triangle.

Check the first two numbers.

7 + 2 = 99 > 5, this is valid.

Check the first and last number.

7 + 5 = 1212 > 2, this is also valid.

Finally, check the second and last number.

2 + 5 = 77 = 7, this is NOT valid because it MUST be greater than. Therefore these three lengths are not able to create a triangle.

The answer for question 10 is FALSE.

In a set of five consecutive integers, the smallest integer is more than $\frac23$ the largest. What is the smallest possible value of the sum of the five integers?

Answers

Answer:

 55

Step-by-step explanation:

Let x represent the middle integer. Then the smallest is x-2 and the largest is x+2. Your requirement is that ...

  (x-2)/(x+2) > 2/3

  3x -6 > 2x +4 . . . . cross multiply

  x > 10 . . . . . . . . . . .add 6-2x

The smallest integer satisfying this requirement is x=11. The sum of the 5 integers is 5x = 55.

The smallest sum is 55.

Answer:

55

Step-by-step explanation:

A certain car travels at a constant speed of 40 miles per hour. At this speed, the car can travel a distance of 25 miles for each gallon of fuel used. How many gallon sof fuel ar used when the car travels at this speed for 75 mins?

Answers

Answer:

2 gallons

Step-by-step explanation:

At this speed, the car uses 1 gallon of fuel for a distance of 25 miles.

We need the number of miles the car travels in 75 minutes to find the amount of fuel it uses.

75 minutes * (1 hour)/(60 minutes) = 1.25 hours

speed = distance/time

distance = speed * time

distance = 40 miles/hour * 1.25 hours = 50 miles

In 75 minutes, at 40 mph, the car travels 50 miles.

(1 gal)/(25 miles) = x/(50 miles)

x = 2 gal

Answer: 2 gallons

Final answer:

The car will use 2 gallons of fuel when traveling at a constant speed of 40 miles per hour for 75 minutes.

Explanation:

To find the number of gallons of fuel used when the car travels at a constant speed of 40 miles per hour for 75 minutes, we can use the formula:

Gallons of fuel used = (Distance traveled in miles) / (Miles per gallon)

Since the car travels at a constant speed of 40 miles per hour, it covers a distance of 40 miles in 1 hour. Therefore, in 75 minutes it will travel 40 miles * (75 minutes / 60 minutes per hour) = 50 miles.

Now, we can calculate the number of gallons of fuel used: Gallons of fuel used = 50 miles / 25 miles per gallon = 2 gallons.

Learn more about fuel usage here:

https://brainly.com/question/32182203

#SPJ2

A large aquarium contains only two kinds of fish, guppies and swordtails. If 3/4​​ of the number of guppies is equal to 2/3​​ of the number of swordtails, then what fraction of fish in this aquarium are guppies?

Answers

Answer:

[tex]\frac{8}{17}[/tex] of fish in this aquarium are guppies.

Step-by-step explanation:

Let x be the number of guppies and y be the number of swordtails in the aquarium,

According to the question,

[tex]\frac{3}{4}\text{ of } x=\frac{2}{3}\text{ of }y[/tex]

[tex]\frac{3x}{4}=\frac{2y}{3}[/tex]

By cross multiplication,

[tex]9x=8y[/tex]

[tex]\implies \frac{x}{y}=\frac{8}{9}[/tex]

Thus, the ratio of guppies and swordtail fishes is 8 : 9

Let guppies = 8x, swordtail = 9x

Where, x is any number,

Since, the aquarium contains only two kinds of fish, guppies and swordtails,

So, the total fishes = 8x + 9x = 17x

Hence, the fraction of fish in the aquarium are guppies = [tex]\frac{\text{Guppies}}{\text{Total fishes}}[/tex]

[tex]=\frac{8x}{17x}[/tex]

[tex]=\frac{8}{17}[/tex]

To find what fraction of fish in the aquarium are guppies, you express the given relationship between the number of guppies and swordtails algebraically and solve for the number of guppies relative to the total number of fish, concluding that 8/17 of the fish in the aquarium are guppies.

If 3/4 of the number of guppies is equal to 2/3 of the number of swordtails, we can express this relationship using variables. Let G represent the number of guppies and S represent the number of swordtails in the aquarium. The given relationship can be written as (3/4)G = (2/3)S.

To find the fraction of fish that are guppies, we need to express G in terms of S first. By manipulating the equation, we multiply both sides by (4/3) to get G = (4/3)*(2/3)S = (8/9)S. This equation shows that the number of guppies is (8/9) times the number of swordtails.

Now, to find the total number of fish (T), we add the number of guppies and swordtails: T = G + S. Substituting the value of G from the equation above, we get T = (8/9)S + S = (17/9)S. The fraction of the total that are guppies is then G/T = [(8/9)S]/[(17/9)S] which simplifies to 8/17. Therefore, 8/17 of the fish in the aquarium are guppies.

Other Questions
Use the formula for the present value of an ordinary annuity or the amortization formula to solve the following problem.PV=$15,000; i=0.03; PMT=$650; n=?n= (Round up to the nearest integer.)Use the formula for the present value of an ordinary annuity or the amortization formula to solve the following problem.PV=$9,000; PMT=$500; n=35; i=?i= (Type an integer or decimal rounded to three decimal places as needed.) How to solve question 20? Please help!! Identify the asymptotes of If your accelerator is stuck while driving, first ___.A. reach down and unstick itC.B. turn on your hazard lightsC. punch the accelerator to dislodge itD. kick the accelerator to dislodge it a doctor orders 400 mg of sumycin for a patient. sumycin, an antibiotic, is available in 250 mg capsules. how many capsules should be given to a patient? If D is the midpoint of segment AB and AB = 15, what is AD? One solution of 21x^2 + bx -4 = 0 is -4/3. Find b and the other solution. Simplify:a. (-18x2y)/(3x)b. (x-4) (x-1) - 4(x-3) (x+2) what is the definiton of setting? Find the complete factored form of the polynomial: 25mn^2 +5mn Calculate the molar solubility of Ag2 CrO4 in water. Use 1.10 x 10-12 as the solubility product constant of AgzCro47.42 x 10-7M1.05 x 10-6M6.50 x 105M1.03 x 10-4M Scientist: Cross-sections of stalactites - calcite formations deposited on cave ceilings by seeping water - can reveal annual variations in rainfall in particular areas over hundreds and thousands of years. We often found that when - according to these cross-sections - drought occurred in a particular area, it coincided with the collapse of an ancient society in that area. I hypothesize that drought reduced agricultural productivity in these areas, thereby leaving these societies without the resources needed to handle internal stresses and external threats.Which of the following, if true, would most weaken the support for the scientist's hypothesis?A. Many droughts indicated in the cross-sections of stalactites do not correspond with the collapse of a society in that area.B. Information from the cross-sections of stalactites alone cannot reveal the level of agricultural output in an area at a particular time.C. Most of the societies that collapsed during droughts did so when internal power struggles coincided with military raids from neighboring societies.D. Most of the societies that collapsed during droughts maintained large stockpiles of food and water at the time of their collapse.E. Information from stalactites also suggests that the collapse of some societies coincided with periods of abnormally high rainfall. One of the most widely used systems for classifying climate because it is easy to understand and data requirements are minimal is the: _________Thornthwaite classification systemKppen climate classification systemGenetic classification systemThe current rate at which Earth's temperature is increasing can be explained due to natural Earth processes.TrueFalseWhat PCC?pasadena city college?study abroad program is in the desert climate region?San Jose, Costa RicaLima, PeruGuadalajara, MexicoFlorence, ItalyOxford, England______________ is the study of the long-term state of the atmosphere.OceanographyClimatologyMeteorologyWeather StudiesThough a few scientists remain skeptical, there is a a growing consensus that the present day warming is real and ___________ are driving it.natural cycleshumans which underlined part is incorrect?After studying all the new material, the student was able to rise his test a. After studyingb. all the new c. was able d. rise When you are ending a piece of ensemble music, you should While they were shopping, 6-year-old Elliot came running around one of the store aisles and excitedly asked his mother if she would buy him a $299 Microsoft Xbox 360 game console to use with their television at home. When his mother immediately refused, Elliot looked very dejected but apologized for asking. A few moments later, Elliot asked, "Well, can I get a new basket for my bicycle?" Clever Elliot appears to be using the _____ technique to persuade his mother. 1 PointWhat is the best strategy for a group of students having a discussion to useto ensure that all in the group have a chance to share their opinions?OA. Not allow students who spoke the previous day to speak the nextdayOB. Draw straws for the chance to speak each day.OC. Assign a moderator to set time limits on speaking turns.D. Allow the student who has just spoken to choose the next speaker. 4/5 of a class is girls and there are 8 boys. How many total in class. Which type of blood vessel carries blood back to the heart?a. arteryb. arteriolec. veind. capillary In a certain state, 50% of adults indicated that sausage is their favorite pizza. Suppose a simple random sample of adults in the state of size 23 is obtained and the number of adults who indicated that sausage is their favorite pizza was 17. What are values of the parameters n, p, and x in the binomial probability experiment?