calculate the density of air(as a perfect gas) when the pressure
is1.01325*105 N/m2 and the temperature
is288.15 K.

Answers

Answer 1

Answer:

1.2253 kg/m3

Explanation:

from ideal gas equation we  know that

[tex]PV = n\timesRT[/tex]

[tex]\frac{n}{V} = \frac{P}{(RT)}[/tex]

where,

pressure P = 1.01325 x 10^5 N/m2 = 101325 Pascals  

gas constant R = 8.314 J/mol/K  

T = 288.15 K

[tex]\frac{n}{V} = \frac{101325}{(8.314*288.15K)}[/tex]

[tex]\frac{n}{V} = 42.2948967 Pa*mol/J[/tex]

we know that 1 Pa = 1 J/m3

so[tex]\frac{n}{V} = 42.2948967\  mol/m3[/tex]

as we know, Air consist of  21% oxygen and 79% nitrogen

therefore

Molar mass of air:

[tex]0.21 *(32 g/mol) + 0.79 *(28 g/mol) = 28.97 g/mol[/tex]

So  [tex](42.2948967\  mol/m3) \times 28.97\  g/mol[/tex]

= 1 225.27 g/m^3

= 1.22528316 kg/m^3 ~ 1.2253 kg/m3


Related Questions

The time factor for a doubly drained clay layer
undergoingconsolidation is 0.2
a. What is the degree of consolidation (Uz) at z/H=0.25,
0.5,and 0.75
b. If the final consolidation settlement is expected to be
1.0m, how much settlement has occurred when the time factor is 0.2
andwhen it is 0.7?

Answers

Answer with Explanation:

Assuming that the degree of consolidation is less than 60% the relation between time factor and the degree of consolidation is

[tex]T_v=\frac{\pi }{4}(\frac{U}{100})^2[/tex]

Solving for 'U' we get

[tex]\frac{\pi }{4}(\frac{U}{100})^2=0.2\\\\(\frac{U}{100})^2=\frac{4\times 0.2}{\pi }\\\\\therefore U=100\times \sqrt{\frac{4\times 0.2}{\pi }}=50.46%[/tex]

Since our assumption is correct thus we conclude that degree of consolidation is 50.46%

The consolidation at different level's is obtained from the attached graph corresponding to Tv = 0.2

i)[tex]\frac{z}{H}=0.25=U=0.71[/tex] = 71% consolidation

ii)[tex]\frac{z}{H}=0.5=U=0.45[/tex] = 45% consolidation

iii)[tex]\frac{z}{H}=0.75U=0.3[/tex] = 30% consolidation

Part b)

The degree of consolidation is given by

[tex]\frac{\Delta H}{H_f}=U\\\\\frac{\Delta H}{1.0}=0.5046\\\\\therefore \Delta H=50.46cm[/tex]

Thus a settlement of 50.46 centimeters has occurred

For time factor 0.7, U is given by

[tex]T_v=1.781-0.933log(100-U)\\\\0.7=1.781-0.933log(100-U)\\\\log(100-U)=\frac{1.780-.7}{0.933}=1.1586\\\\\therefore U=100-10^{1.1586}=85.59[/tex]

thus consolidation of 85.59 % has occured if time factor is 0.7

The degree of consolidation is given by

[tex]\frac{\Delta H}{H_f}=U\\\\\frac{\Delta H}{1.0}=0.8559\\\\\therefore \Delta H=85.59cm[/tex]

What is the significance of Saint Venant's principle?

Answers

Answer:

While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle.

Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.

A particle is moving along a straight line and has an
acceleration of kV^2 m/s^2, where V is the velocity of the
particle. At time t=0, the velocity of the particle = 4m/s, and the
time t=30s the velocity = 26m/s and displacement at time t = Dt
metres. Derive expressions for both velocity and displacement as a
function of time t.

Answers

Answer with Explanation:

By definition of acceleration  we have

[tex]a=\frac{dv}{dt}[/tex]

Given [tex]a=kv^{2}[/tex], using this value in the above equation we get

[tex]kv^2=\frac{dv}{dt}\\\\\frac{dv}{v^{1}}=kdt[/tex]

Upon integrating on both sides we get

[tex]\int \frac{dv}{v^2}=\int kdt\\\\-\frac{1}{v}=kt+c[/tex]

'c' is the constant of integration whose value can be found out by putting value of 't' = 0 and noting V =4 m/s

Thus [tex]c=-\frac{1}{4}[/tex]

the value of 'k' can be found by using the fact that at t= 30 seconds velocity = 26 m/s

[tex]\frac{-1}{26}=k\times 30-\frac{1}{4}\\\\\therefore k=\frac{\frac{-1}{26}+\frac{1}{4}}{30}\\\\k=7.05\times 10^{-3}[/tex]

Hence the velocity as a function of time is given by

[tex]v(t)=\frac{-1}{7.05\times 10^{-3}t-\frac{1}{4}}[/tex]

By definition of velocity  we have

[tex]v=\frac{dx}{dt}[/tex]

Making use of the obtained velocity function we get

[tex]\frac{dx}{dt}=\frac{-1}{kt-\frac{1}{4}}\\\\\int dx=\int \frac{-dt}{kt-\frac{1}{4}}\\\\x(t)=\frac{-1}{7.05\times 10^{-3}}\cdot ln(7.05\times 10^{-3}t-\frac{1}{4})+x_o[/tex]

here [tex]x_o[/tex] is the constant of integration

What does stall mean?

Answers

Answer:

Explanation:

In aeronautics stall is the separation of the boundary layer from the wings of plane. This causes loss of lift because the otherwise low pressure area above the wing become filled with turbulent whirls.

Stall occurs when the critical angle of attack of the wing is exceeded.

If the original length of a specimen is L0 = 10"" and new length of the specimen after applied load is L = 12.5"". The value of true strain is: a) 0.5 b) 0.25 c) 0.223 d) 0.4

Answers

Answer:

The correct answer is option 'b':0.25

Explanation:

By definition of strain we have

[tex]\epsilon =\frac{L_f-L_o}{L_o}[/tex]

where

[tex]\epsilon [/tex] is the strain

[tex]L_o[/tex] is the original length of specimen

[tex]L_f[/tex] is the elongated length of specimen

Applying the given values we get

[tex]\epsilon =\frac{12.5''-10''}{10''}=0.25[/tex]

Air enters a 200 mm diameter adiabatic nozzle at 195 deg C, 500 kPa and 100 m/s. It exits at 85 kPa. If the exit diameter is 158 mm, what are the temperature and velocity at the exit?

Answers

Answer:

[tex]v_2 = 160.23 m/s[/tex]

[tex]T_2 = 475.797 k[/tex]

Explanation:

given data:

Diameter =[tex] d_1 = 200mm[/tex]

[tex]t_1 =195 degree[/tex]

[tex]p_1 =500 kPa[/tex]

[tex]v_1 = 100m/s[/tex]

[tex]p_2 = 85kPa[/tex]

[tex]d_2 = 158mm[/tex]

from continuity equation

[tex]A_1v_1 = A_2v_2[/tex]

[tex]v_2 = \frac{\frac{\pi}{4}d_1^2 v_1^2}{\frac{\pi}{4}d_2^2}[/tex]

[tex]v_2 = \frac{d_2v_1}{d_2^2}[/tex]

[tex]v_2 = [\frac{d_1}{d_2}]^2 v_1[/tex]

      [tex]= [\frac{0.200}{0.158}]^2 \times 100[/tex]

[tex]v_2 = 160.23 m/s[/tex]

by energy flow equation

[tex]h_1 + \frac{v_1^2}{2} +gz_1 +q =h_2 + \frac{v_2^2}{2} +gz_2 +w[/tex]

[tex]z_1 =z_2[/tex] and q =0, w =0 for nozzle

therefore we have

[tex]h_1 -h_2 =\frac{v_1^2}{2} -\frac{v_2^2}{2} [/tex]

[tex]dh = \frac{1}{2} (v_1^2 -v_2^2)[/tex]

but we know dh = Cp dt

hence our equation become

[tex]Cp(T_2 -T_1) = \frac{1}{2} (v_1^2 -v_2^2)[/tex]

[tex]Cp (T_2 -T_1) = 7836.94[/tex]

[tex](T_2 -T_1) = \frac{7836.94}{1.005*10^3}[/tex]

[tex](T_2 -T_1) = 7.797 [/tex]

[tex]T_2 = 7.797 +468 = 475.797 k[/tex]

A bar of uniform cross section is 86.9 in longand weighs 89.1 lb. A weight of 79.0 lb is suspended from one end. The bar and weight combination is to be suspended from a cable attached at the balance point. How far (in) from the weight should the cable be attached, and what is the tension (lb) in the cable?

Answers

Answer:

y = 20.41 in

T= 168.1 lb

Explanation:

From diagram

Total force balance in vertical direction

T= 89.1 + 79 lb

 T= 168.1 lb

Now taking moment about point m

Mm= 0 Because system is in equilibrium position

 79 x 43.45 = T x y

Now by putting the value of T

79 x 43.45 = 168.1 x y

y = 20.41 in

So the cable attached at distance of 20.41 in from the mid point of bar.

Tension in the cable = 168.1 lb

If a pendulum is 10m long, (a) what is the natural frequency and the period of vibration on the earth, where the free-fall acceleration is 9.81 m/s^2 and (b) what is the natural frequency and the period of vibration on the moon, where the free-fall acceleration is 1.67 m/s^2?

Answers

Answer:

(a) Natural frequency = 0.99 rad/sec (b) 0.4086 rad/sec

Explanation:

We have given length of pendulum = 10 m

(a) Acceleration due to gravity [tex]=9.81m/sec^2[/tex]

Time period of pendulum is given by [tex]T=2\pi\sqrt{\frac{L}{g}}[/tex], L is length of pendulum and g is acceleration due to gravity

So [tex]T=2\pi\sqrt{\frac{L}{g}}=2\times 3.14\times \sqrt{\frac{10}{9.81}}=6.34sec[/tex]

Natural frequency is given by [tex]\omega =\frac{2\pi }{T}=\frac{2\times 3.14}{6.34}=0.99rad/sec[/tex]

(b) In this case acceleration due to gravity [tex]g=1.67m/sec^2[/tex]

So time period [tex]T=2\pi\sqrt{\frac{L}{g}}=2\times 3.14\times \sqrt{\frac{10}{1.67}}=15.3674sec\[/tex]

Natural frequency [tex]\omega =\frac{2\pi }{T}=\frac{2\times 3.14}{15.36}=0.4086rad/sec[/tex]

At the grocery store you place a pumpkin with a mass of 12.5 lb on the produce spring scale. The spring in the scale operates such that for each 5.7 lbf applied, the spring elongates one inch. If local acceleration of gravity is 32.2 ft/s2, what distance, in inches, did the spring elongate?

Answers

Answer:

x=2.19in

Explanation:

This is the equation that relates the force and displacement of a spring

F=Kx

m=mass=12.5lbx1slug/32.14lb=0.39slug

F=mg=0.39*32.2=12.52Lbf

then we calculate the spring count in lbf / ft

K=F/x

K=5.7lbf/1in=5.7lbf/in=68.4lbf/ft

Finally we calculate the displacement with the initial equation

X=F/k

x=12.52/68.4=0.18ft=2.19in

In this exercise we want to calculate how much the spring was elogate, for this we have to be:

the spring stayed x=2.19in elogante

organizing the information given in the statement we have that:

mass of 12.5 lb force each 5.7 lbf appliedacceleration of gravity is 32.2 ft/s

Recalling the basic equation of the spring we find that:

[tex]F=Kx[/tex]

Where:

F is the applied forceK is the spring constantX is how much the spring has been elongated

So calculating the force we have:

[tex]F=mg\\=0.39*32.2\\=12.52[/tex]

Putting the value of the force in the given formula:

[tex]K=F/x\\K=5.7/1\\=5.7\\X=F/k=12.52/68.4\\=0.18ft\\=2.19in[/tex]

See more about spring at brainly.com/question/4433395

Ductility (increases/decreases/does not change) with temperature.

Answers

Answer:

Increases

Explanation:

Ductility:

    Ductility is the property of material to go permanent deformation due to tensile load.In other words the ability of material to deform in wire by the help of tensile load.

When temperature is increase then ductility will also increases.And when temperature decreases then the ductility will also decreases.As we know that at very low temperature material become brittle and this is know as ductile brittle transition.

To compute the energy used by a motor, multiply the power that it draws by the time of operation. Con- sider a motor that draws 12.5 hp for 16 h/day, five days per week. Compute the energy used by the mo- tor for one year. Express the result in ft.lb and W.h

Answers

The energy used by the motor for one year is 102,313,596,240 ft.lb/year, expressed in both ft.lb and W.h.

1 horsepower (hp) is approximately equal to 745.7 watts (W).

So,[tex]12.5 hp * 745.7 W/hp[/tex]

= 9312.5 W.

The motor draws 9312.5 watts for 16 hours per day.

So, [tex]9312.5 W * 16 hours/day[/tex]

= 148,200 W.h/day.

Multiply the daily energy by the number of days per year:

The motor operates for 5 days per week, so in one year (considering 52 weeks), it operates for 5 days/week × 52 weeks/year = 260 days/year.

[tex]148,200 W.h/day *260 days/year[/tex]

= 38,532,000 W.h/year.

To express the result in ft.lb, we need to convert the energy from watt-hours to foot-pounds:

1 watt-hour (Wh) is approximately equal to 2655.22 foot-pounds (ft.lb).

So, [tex]38,532,000 W.h/year * 2655.22 ft.lb/W.h[/tex]

≈ 102,313,596,240 ft.lb/year.

The torque required to drive a 40 mm diameter power screw having double square threads with a pitch of 6 mm is 1.0 kN-m. The friction for the thread is 0.10. Is the condition self-locking? Show your calculation.

Answers

Answer:

This is self locking.

Explanation:

Given that

Diameter d= 40 mm

Pitch (P)= 6 mm

Torque T= 1 KN.m

Friction(μ) = 0.1

Thread is double square.

Condition for self locking

[tex]\mu >tan\theta[/tex]

[tex]tan\theta=\dfrac{L} {\pi d}[/tex]

L= n x P

N= number of start

Here given that double start so n=2

L=2 x 6 = 12 mm

[tex]tan\theta=\dfrac{L} {\pi d}[/tex]

[tex]tan\theta=\dfrac{12} {\pi \times 40}[/tex]

[tex]tan\theta=0.095[/tex]            (μ = 0.1)

[tex]\mu >tan\theta[/tex]

So from we can that this is self locking.

Describe a physical meaning of velocity and acceleration.

Answers

Answer and Explanation:

Velocity : Velocity gives us information about how much we can travel in a particular interval of time.

Velocity is a rate of change of distance if we have information about velocity and time we can easily calculate how much distance we travel in that particular time.

And if we have information about distance and time then we can find how much velocity we should have to travel that distance in given time  

Acceleration : Acceleration gives us information about how the velocity is changes with respect to time

If the velocity is increases with time then there is positive acceleration and if velocity is decreases with time then it is negative acceleration.

For a bronze alloy, the stress at which plastic deformation begins is 297 MPa and the modulus of elasticity is 113 GPa. (a) What is the maximum load that can be applied to a specimen having a cross-sectional area of 316 mm2 without plastic deformation? (b) If the original specimen length is 128 mm, what is the maximum length to which it may be stretched without causing plastic deformation?

Answers

Answer:

a) 93.852 kN

b) 128.043 mm

Explanation:

Stress is load over section:

σ = P / A

If plastic deformation begins with a stress of 297 MPa, the maximum load before plastic deformation will be:

P = σ * A

316 mm^2 = 3.16*10^-4

P = 297*10^6 * 3.16*10^-4 = 93852 N = 93.852 kN

The stiffness of the specimen is:

k = E * A / l

k = 113*10^9 * 3.16*10^-4 / 0.128 = 279 MN/m

Hooke's law:

x' = x0 * (1 + P/k)

x' = 0.128 * (1 + 93.852*10^3 / 279*10^6) = 0.128043 m = 128.043 mm

What is the difference between pound-mass and pound-force?

Answers

Answer:

Pound mass is the unit of mass and which is used in United states customary to describe the mass Slug is also a unit of mass .Pound mass is lbm. But on the other hand pound force is the unit of force.Pound force is lbf.

In SI unit ,the unit of mass is kilogram(kg) and the unit of force is Newton(N)

In CGS system the unit of mass is gram and unit of force is dyne.

Which is more detrimental to the tool life, a higher depth of cut or a higher cutting velocity? Why?

Answers

Answer:

Cutting velocity.

Explanation:

Velocity of cutting affects more as compare to the depth of cut to life of tool.

As we know that tool life equation

[tex]VT^n=C[/tex]

Where T is the tool life and  V is the tool cutting speed and C is the constant.

So from we can say that when cutting velocity  increase then tool life will decrease and vice versa.

The life of tool is more important during cutting action .The life of tool is less and then will reduce the production and leads to face difficulty .

A mass of 2 kg is hanging to a spring of 200 n/m spring constant vertically. Calculate the period of the period if the spring is set in simple harmonic motion.

Answers

Answer:

The period is 0.628s

Explanation:

As the system mass-spring is in simple harmonic motion, the period is given by the equation:

[tex]T=2\pi \sqrt{\frac{m}{k}}[/tex]

where m is the mass of 2kg and k is the spring constant [tex]200\frac{N}{m}[/tex]

Replacing the values in the equation, we have:

[tex]T=2\pi \sqrt{\frac{2Kg}{200\frac{N}{m}}}[/tex]

And finally we find the value of the period, that is:

[tex]T=0.628s[/tex]

Thermosets burn upon heating. a)-True b)- false?

Answers

Answer:

true

Explanation:

True, there are several types of polymers, thermoplastics, thermosets and elastomers.

Thermosets are characterized by having a reticulated structure, so they have low elasticity and cannot be stretched when heated.

Because of the above, thermosetting polymers burn when heated.

Find the error in the following preudocode.Constant Real GRAVITY = 9.81 Display "Rates of acceleration of an object in free fall:" Display "Earth: ", GRAVITY, " meters per second every second." Set GRAVITY = 1.63 Display "Moon: ", GRAVITY, " meters per second every second."

Answers

Answer:

It is attempting to change the value of a constant.

Explanation:

In this pseudocode program "GRAVITY" is declared as a constant value, therefore it cannot be changed during runtime. If you tried mo write this code in a real language and compile it you would get a compilation error because of that forbidden operation.

A closed system consisting of 4 lb of a gas undergoes a process during which the relation between pressure and volume is pVn 5 constant. The process begins with p1 5 15 lbf/in.2, 1 5 1.25 ft3/lb and ends with p2 5 53 lbf/in.2, 2 5 0.5 ft3/lb. Determine (a) the volume, in ft3, occupied by the gas at states 1 and 2 and (b) the value of n. (c) Sketch Process 1–2 on pressure–volume coordinates.

Answers

Answer:

V1=5ft3

V2=2ft3

n=1.377

Explanation:

PART A:

the volume of each state is obtained by multiplying the mass by the specific volume in each state

V=volume

v=especific volume

m=mass

V=mv

state 1

V1=m.v1

V1=4lb*1.25ft3/lb=5ft3

state 2

V2=m.v2

V2=4lb*0.5ft3/lb=   2ft3

PART B:

since the PV ^ n is constant we can equal the equations of state 1 and state 2

P1V1^n=P2V2^n

P1/P2=(V2/V1)^n

ln(P1/P2)=n . ln (V2/V1)

n=ln(P1/P2)/ ln (V2/V1)

n=ln(15/53)/ ln (2/5)

n=1.377

The high-pressure air system at OSU's Aerospace Research Center is fed by a set of two cylindrical tanks. Each tank has an outer height of 50 ft and an outer diameter of 4.6 ft. The tanks are made of 0.1 ft thick steel (steel = 499 lbm/ft?) and store air at a maximum pressure of 2500 psi at -10 °F. How much load must the support structure at the base of the tanks carry?

Answers

Answer:

179000 lb

Explanation:

The supports must be able to hold the weight of the tank and the contents. Since tanks are pressure tested with water, and the supports cannot fail during testing, we disregard the air and will consider the weight of water.

The specific weight of water is ρw = 62.4 lbf/ft^3

These tanks are thin walled because

D / t = 4.6 / 0.1 = 46 > 10

To calculate the volume of steel we can approximate it by multiplying the total surface area by the thickness:

A = 2 * π/4 * D^2 + π * D * h

The steel volume is:

V = A * t

The specific weight is

ρ = δ * g

ρs = 499 lbm/ft^3 * 1 lbf/lbm = 499 lbf/ft^3

The weight of the steel tank is:

Ws = ρs * V

Ws = ρs * A * t

Ws = ρs * (2 * π/4 * D^2 + π * D * h) * t

Ws = 499 * (π/2 * 4.6^2 + π * 4.6 * 50) * 0.1 = 37700 lb

The weight of water can be approximated with the volume of the tank:

Vw = π/4 * D^2 * h

Ww = ρw * π/4 * D^2 * h

Ww = 62.4 * π/4 * 4.6^2 * 50 = 51800 lb

Wt = Ws + Ww = 37700 + 51800 = 89500 lb

Assuming the support holds both tanks

2 * 89500 = 179000 lb

The support must be able to carry 179000 lb

Consider a space shuttle weighing 100 kN. It is travelling at 310 m/s for 30 minutes. At the same time, it descends 2200 m. Consider a drag of 12 kN on the shuttle. Calculate the work done by the shuttle engine.

Answers

Answer:

work done = 48.88 × [tex]10^{9}[/tex] J

Explanation:

given data

mass = 100 kN

velocity =  310 m/s

time = 30 min = 1800 s

drag force = 12 kN

descends = 2200 m

to find out

work done by the shuttle engine

solution

we know that work done here is

work done = accelerating work - drag work - descending work

put here all value

work done = ( mass ×velocity ×time  - force ×velocity ×time  - mass ×descends )  10³ J

work done = ( 100 × 310 × 1800  - 12×310 ×1800  - 100 × 2200 )  10³ J

work done = 48.88 × [tex]10^{9}[/tex] J

A piston cylinder contains air at 600 kPa, 290 K and a volume of 0.01 m3m3. A constant pressure process gives 18 kJ of work out. What is the final temperature? You may assume ideal gas.

Answers

Answer:

1160 K.

Explanation:

Given that

Initial

Pressure P =600 KPa

Temperature T =290 K

Volume V =0.01 [tex]m^3[/tex]

If we assume that air is s ideal gas the

P V = mRT

R=0.287 KJ/kg.k

now by putting the values in above equation

600 x 0.01 = m x 0.287 x 290

m=0.07 kg

The work out at constant pressure given as

[tex]w=P(V_2-V_1)[/tex]

[tex]18=600(V_2-0.01)[/tex]

[tex]V_2=0.04\ m^3[/tex]

At constant pressure

[tex]\dfrac{T_2}{T_1}=\dfrac{V_2}{V_1}[/tex]

[tex]\dfrac{T_2}{290}=\dfrac{0.04}{0.01}[/tex]

[tex]T_2=1160\ K[/tex]

So the final temperature is 1160 K.

A battery is an electromechanical device. a)- True b)- False

Answers

Answer:

b)False

Explanation:

A battery is a device which store the energy in the form of chemical energy.And this stored energy is used according to the requirement.So battery is not a electromechanical device.Because it does have any mechanical component like gear ,shaft flywheel etc.

A flywheel is known as mechanical battery because it stored mechanical energy and supply that energy when more energy is required.Generally fly wheel is used during punching operation.

An airplane flies horizontally at 80 m/s. Its propeller delivers 1300 N of thrust (forward force) to overcome aerodynamic drag (backward force). Using dimensional reasoning and unity conversion ratios, calculate the useful power delivered by the propeller in units of kW and horsepower.

Answers

Answer:

Power in kW is 104 kW

Power in horsepower is 139.41 hp

Solution:

As per the question:

Velocity of the airplane, [tex]v_{a} = 80 m/s[/tex]

Force exerted by the propeller, [tex]F_{p} = 1300 N[/tex]

Now,

The useful power that the propeller delivered, [tex]P_{p}[/tex]:

[tex]P_{p} = \frac{Energy}{time, t}[/tex]

Here, work done provides the useful energy

Also, Work done is the product of the displacement, 'x' of an object when acted upon by some external force.

Thus

[tex]P_{p} = \frac{F_{p}\times x}{time, t}[/tex]

[tex]P_{p} = \frac{F_{p}\times x}{time, t}[/tex]

[tex]P_{p} = F_{p}\times v_{a}[/tex]

Now, putting given values in it:

[tex]P_{p} = 1300\times 80 = 104000 W = 104 kW[/tex]

In horsepower:

1 hp = 746 W

Thus

[tex]P_{p} = \frac{104000}{746} = 139.41 hp[/tex]

A steel band blade, that was originally straight, passes
over8-in.-diameter pulleys when mounted on a band saw. Determine
themaximum stress in the blade, knowing that it is 0.018 in. thick
and0.625 in. wide. Use E = 29 x 106 psi.

Answers

Answer:

[tex]\sigma = 65.25\ ksi[/tex]

Explanation:

given data:

D = 8 inch

R =4 inch

thickness = 0.018 inch

width = 0.625 inch

[tex]E =29*10^6 psi[/tex]

from bending equation we know that

[tex]\frac{\sigma}{y} = \frac{M}{I} = \frac{E}{R}[/tex]

[tex]\sigma = \frac{Ey}{R}[/tex]

Where y represent distance from neutral axis

[tex]y = \frac{t}[2}[/tex]

[tex]y = \frac{0.018}{2}[/tex]

y = 0.009inch

[tex]\sigma = \frac{29*10^6*0.009}{4}[/tex]

[tex]\sigma = 65250\ psi[/tex]

[tex]\sigma = 65.25\ ksi[/tex]

Water enters a tank from two pipes, one with a flow rate of 0.3 kg/s and the other with a flow rate of 0.1 kg / s. The tank has a small hole through which water leaks out at a rate of 0.03 kg / s. If the tank initially contained 40 kg of water, how much will it have after 2 minutes?

Answers

Answer:

total amount of water after 2 min will be 84.4 kg/s

Explanation:

Given data:

one tank inflow = 0.1 kg/s

2nd tank inflow = 0.3 kg/s

3rd tank outflow = 0.03 kg/s

Total net inflow in tank is = 0.3 +0.1 =0.4 kg/s

From third point, outflow is 0.03 kg/s

Therefore, resultant in- flow = 0.4 - 0.03

Resultant inflow is  = 0.37 kg/s

Tank has initially 40 kg water

In 2 min ( 2*60 sec), total inflow in tank is 0.37*60*2 = 44.4 kg

So, total amount of water after 2 min will be = 40+44.4 = 84.4 kg

Calculate the efficiency of a Carnot Engine working between temperature of 1200°C and 200°C.

Answers

Answer:

efficiency = 0.678

Explanation:

First we have to change temperatures from °C to K (always in thermodynamics absolute temperature is used).

[tex]\text{hot body temperature,}T_H = 1200 \circC + 273.15 = 1473.15 K[/tex]

[tex] \text{cold body temperature,} T_C = 200 \circC + 273.15 = 473.15 K[/tex]

Efficiency [tex] \eta [/tex] of a carnot engine can be calculated only with hot body and cold body temperature by

[tex] \eta = 1 - \frac{T_C}{T_H}[/tex]

[tex] \eta = 1 - \frac{473.15 K}{1473.15 K}[/tex]

[tex] \eta = 0.678[/tex]

Derive the following conversion factors: (a) Convert a pressure of 1 psi to kPa (b) Convert a vol ume of 1 liter to gallons (c) Convert a viscosity of 1 lbf .s/ft^2 to N s/m^2

Answers

Answer:

a)6.8 KPa

b)0.264 gallon

c)47.84 Pa.s

Explanation:

We know that

1 lbf=  4.48 N

1 ft =0.30 m

a)

Given that

P= 1 psi

psi is called pound force per square inch.

We know that 1 psi = 6.8 KPa.

b)

Given that

Volume = 1 liter

We know that 1000 liter = 1 cubic meter.

1 liter =0.264 gallon.

c)

[tex]1\ \frac{lb.s}{ft^2}=47.84\ \frac{Pa.s}{ft^2}[/tex]

A rotating cup viscometer has an inner cylinder diameter of 2.00 in., and the gap between cups is 0.2 in. The inner cylinder length is 2.50 in. The viscometer is used to obtain viscosity data on a Newtonian liquid. When the inner cylinder rotates at 10 rev/min, the torque on the inner cylinder is measured to be 0.00011 in-lbf. Calculate the viscosity of the fluid. If the fluid density is 850 kg/m^3, calculate the kinematic viscosity

Answers

Answer:

The dynamic viscosity and kinematic viscosity are [tex]1.3374\times 10^{-6}[/tex] lb-s/in2 and [tex]1.4012\times 10^{-3}[/tex] in2/s.

Explanation:

Step1

Given:

Inner diameter is 2.00 in.

Gap between cups is 0.2 in.

Length of the cylinder is 2.5 in.

Rotation of cylinder is 10 rev/min.

Torque is 0.00011 in-lbf.

Density of the fluid is 850 kg/m3 or 0.00095444 slog/in³.

Step2

Calculation:

Tangential force is calculated as follows:

T= Fr

[tex]0.00011 = F\times(\frac{2}{2})[/tex]

F = 0.00011 lb.

Step3

Tangential velocity is calculated as follows:

[tex]V=\omega r[/tex]

[tex]V=(\frac{2\pi N}{60})r[/tex]

[tex]V=(\frac{2\pi \times10}{60})\times1[/tex]

V=1.0472 in/s.

Step4

Apply Newton’s law of viscosity for dynamic viscosity as follows:

[tex]F=\mu A\frac{V}{y}[/tex]

[tex]F=\mu (\pi dl)\frac{V}{y}[/tex]

[tex]0.00011=\mu (\pi\times2\times2.5)\frac{1.0472}{0.2}[/tex]

[tex]\mu =1.3374\times 10^{-6}[/tex]lb-s/in².

Step5  

Kinematic viscosity is calculated as follows:

[tex]\upsilon=\frac{\mu}{\rho}[/tex]

[tex]\upsilon=\frac{1.3374\times 10^{-6}}{0.00095444}[/tex]

[tex]\upsilon=1.4012\times 10^{-3}[/tex] in2/s.

Thus, the dynamic viscosity and kinematic viscosity are [tex]1.3374\times 10^{-6}[/tex] lb-s/in2 and [tex]1.4012\times 10^{-3}[/tex] in2/s.

Other Questions
Clavins home is located at the midpoint between Fast pizza and pizza now,Fast pizza is a quarter mile away from calvins home.How far away is pizza now from calvins home?How far are the two pizzerias? In the context of the Treaty of Nanjing, the East India Company discovered that _____ was a good product to trade with the Chinese because it was easy to ship, it produced high value to volume and weight ratios, and was addicted to customers.a)pepperb)betel nutc)rhubarbd)teae)opium The fastest server in women's tennis is Sabine Lisicki, who recorded a serve of 131 mi/h (211 km/h) in 2014. Suppose that the acceleration of the ball was constant during the contact with the racket. Part A If her racket pushed on the ball for a distance of 0.15 m, what was the acceleration of the ball during her serve? Not a cloud in the sky. _____________ going to be another warm day. By vector methods, find the cosine of the angle between the lines (x - 1)/(3) = (y - 0.5)/(2) = z and x = y = z Simplify these expressions.a. 13xyz + 9 + 2xyz + 3b. 6ab + (2ab) + 4 + 6 in a pea plant that is heterozygous for seed color whatproportionof gametes will carry the recessive allel?3/41/21/4none above. Midphalangeal hair (hair on top of the middle segment of the fingers) is a common phenotype caused by a dominant allele M. Homozygotes for the recessive allele (mm) lack hair on the middle segment of their fingers. Among 1000 families in which both parents had midphalangeal hair, 1853 children showed the trait while 209 children did not. Explain this result. A scale drawing of a square has a side length of 5 millimeters. The drawing has a scale of 1 mm : 5 km. Find the actual perimeter and area of the square. As Malik watches television, he sees something that serves as a retrieval cue for him to move some laundry from the washer to the dryer. Which example would be MOST likely to serve as an effective retrieval cue for Malik? -1.8-3.9=A. -2.1B.5.7C.2.1D.-5.7 which expression is the factored form of x^2-7x+10? Vanessa walks from her house to a bus stop that is 400 yards away. If Vanessa is 22 yards from her house, how far is she from the bus stop? yards Preview 400 22 = 400-22= 378. If Vanessa is 163.4 yards from her house, how far is she from the bus stop? yards Preview 400 163.4 = 400-163.4= 236.6. Let the variable x x represent Vanessa's varying distance from her house (in yards). As Vanessa walks from her house to the bus stop, the value of x x varies from to . How many values does the variable x x assume as Vanessa walks from her house to the bus stop? Preview Marissa is ordering from least to greatest. Here are her steps: Trees are being cut down for lumber in the Amazon. In addition, new farms and factories are beginning to replace the forests and villages. What is an effect of this human activity?A- more carbon dioxide can be absorbed by the Amazon rainforestB- new diseases will be brought to the rainforest and harm indigenous tribesC- the planets atmosphere will gradually begin to cool downD- less carbon dioxide is being absorbed by the Amazon rainforest Chris is a theory X manager who spends most of his time scrutinizing how his subordinates do their jobs. The employees often call their union representative to complain about him. Chris's behavior is an example of how ____ can cause conflict within an organization.A) organizational changeB) value and culture clashesC) poor communication skillsD) adversarial management Which of the following statements is true about mutations induced by radiation?a. xrays, cosmic rays, and UV rays are all classified as ionizing radiationb. ionizing radiation results in raising electrons to an atom's outer orbitals, a state referred to as excitation.c. in mammals, chronic irradiation is as effective in inducing mutations as acute irradiationd. UV radiation results in the formation of purine dimers and purine hydratese. xrays can result in gross changes of chromosome structure, such as large deletions, duplications and inversions. What is the de Broglie wavelength of an electron traveling at 1.62105 m/s ? I can't seem to figure out this problem -4q + 9 = 7q - 31 George W. Beadle and Edward L. Tatum refined the concept of the gene to state which of the following original ideas?a. one gene - one enzymeb. one gene - one metabolic blockc. one gene - one transcriptd. one gene one polypeptidee. one gene - one allele