Conversion of mass to moles A continuous feed to a separation unit is 1,000 kg/h of 45 wt% methanol and 55 wt% water, whose molecular weights are 32 and 18, respectively. Compute: (a) feed rate in lbmol/h, and (b) composition in mole fractions.

Answers

Answer 1

Answer:

Total feed rate = 98.3 lbmol/h

methanol mole fraction = 0.315

water mole fraction = 0.685

Explanation:

First of all, it is needed to calculate the feed mass of methanol and water in kg/h.

For methanol:

[tex]m_{methanol} = m\%wt_{methanol}/100 = (1000kg/h)(45\%)/100[/tex]

[tex]m_{methanol} = 450kg/h[/tex]

For water:

[tex]m_{water} = m\%wt_{water}/100 = (1000kg/h)(55\%)/100[/tex]

[tex]m_{water} = 550 kg/h[/tex]

Now, change from mass units (kg/h) to moles units (kmol/h and lbmol/h) using simple conversion factors:

For methanol:

[tex]n_{methanol} = (450\frac{kg}{h})(\frac{1 kmol}{32 kg} )[/tex]

[tex]n_{methanol} = 14.1kmol/h[/tex]

For water:

[tex]n_{water} = (550\frac{kg}{h})(\frac{1 kmol}{18 kg} )[/tex]

[tex]n_{water} = 30.6kmol/h[/tex]

Change units from kmol/h to lbmol/h

For methanol:

[tex]n_{methanol} = (14.1\frac{kmol}{h})(\frac{1 lbmol}{0.454 kmol} )[/tex]

[tex]n_{methanol} = 31.0 lbmol/h[/tex]

For water:

[tex]n_{water} = (30.6\frac{kg}{h})(\frac{1 lbmol}{0.454 kmol} )[/tex]

[tex]n_{water} = 67.3 lbmol/h[/tex]

Sum moles of methanol and water in lbmol/h to compute the total feed rate:

[tex]n = 31.0 lbmol/h + 67.3 lbmol/h[/tex]

[tex]n = 98.3 lbmol/h[/tex]

Divide both methanol and water moles feed rates by total feed rate:

For methanol:

[tex]X_{methanol} = \frac{31.0 lbmol/h}{98.3 lbmol/h}[/tex]

[tex]X_{methanol} =  0.315[/tex]

For water:

[tex][X_{water} =  \frac{67.3 lbmol/h}{98.3 lbmol/h}[/tex]

[tex]X_{water} =  0.685[/tex]

End


Related Questions

Discuss the advantages of using building information modeling (BIM).

Answers

Answer:

The advantage of using building information modeling (BIM) are as follows:

1.Model based cost estimation

2. Preconstruction project visualization

3.Safe construction site

4. Improve scheduling

5.Improve coordination and clash detection

6.Reduced mitigated risk and cost

7.Improve prefabrication

8.Better collaboration and communication

9. Strong facility management

10.Improve sequencing

What are the three ways resources are classified?

Answers

Answer:

On the basis of ownership, distribution, durabilities.

Explanation:

In 1933, the concept of resources was given Zimmerman as a resource signifies possibility and may b a means to an end. According to him resources satisfy human wants and needs, having two important functions of utility and ability. Based on durability, they are either Fund or exhaustible resources. These get destroyed after use. Flow or inexhaustible resource remains unchanged even after continuous use like reiver, sea, and land. Based on ownership, they are International means used by the global population. National resource means used by one nation in one country. And individual searches money or property resources etc. And based on availability they are Ubiquitous and localized .like sunshine and the air is available everywhere.

The trash cans distributed by the city of Mobile are approximately 4 feet tall and have a square cross section with a side of approximately 30 inches. Assuming that the trash can is rectangular, approximate its capacity: 4. a. in gallons b. in metric tons of water at 4°C

Answers

Explanation:

Length of trash cans = l = 4 feet

Breadth of trash cans =  b = 4 feet

Height of trash cans =  h = 30 inches = 2.5 feet

1 inches = 0.0833333 feet

Capacity of trash can = Volume of the rectangular trash can = V

V = l × b × h

[tex]V=4 feet\times 4 feet \times  2.5 feet= 40 feet^3[/tex]

a) [tex]1 feet^3=7.48052 gallons[/tex]

[tex]V=40 feet^3=40\times 7.48052 gallons=299.221 gallons[/tex]

b) Density of water at 4°C = 1 kg /L

1 metric tonne of water = 264.17 gallons of water

[tex]V=299.221 gallons=\frac{299.221}{264.17}[/tex] metric tonne of water

[tex]V=1.1327[/tex]  metric tonne of water

What is the pH of a solution that is 0.10 M formic acid and 0.0065 M formate (the conjugate base)? Ka of formic acid = 1.77 x 10-4

Answers

Answer:

pH = 2.56

Explanation:

The Henderson-Hasselbalch equation relates the pH to the Ka and ratio of the conjugate acid-base pair as follows:

pH = pKa + log([A⁻]/[HA]) = -log(Ka) + log([A⁻]/[HA])

Substituting in the value gives:

pH = -log(1.77 x 10⁻⁴) + log((0.0065M) / (0.10M))

pH = 2.56

Final answer:

The pH of a 0.10 M formic acid and 0.0065 M formate solution can be calculated using the Henderson-Hasselbalch equation and a given Ka for formic acid of 1.77 x 10-4. The resulting pH is approximately 3.04.

Explanation:

In order to find the pH of a solution consisting of a weak acid (formic acid, HCOOH) and its conjugate base (formate, HCOO-), you'd use the Henderson-Hasselbalch equation, which is pH = pKa + log([A-]/[HA]), where [A-] is the molarity of the conjugate base (here, formate, 0.0065 M) and [HA] is the molarity of the weak acid (here, formic acid, 0.10 M). The pKa is found by taking the negative logarithm of the Ka value, so pKa = -log(Ka) = -log(1.77 x 10-4) = 3.75.

Using these values in the Henderson-Hasselbalch equation: pH = 3.75 + log(0.0065/0.10) this results in a pH of approximately 3.04

Learn more about pH calculation here:

https://brainly.com/question/34432529

#SPJ6

Calculate ΔS°for the combustion of ammonia.

4NH3(g) + 3O2(g) → 2N2(g) + 6H2O(l)

Substance NH3(g) O2(g) N2(g) H2O(l)
S°(J/K·mol) 192 205.1 192 70
-135 J

-579 J

-387 J

579 J

Answers

Answer: The [tex]\Delta S^o[/tex] of the reaction is [tex]-579JK^{-1}[/tex]

Explanation:

Entropy change of the reaction is defined as the difference between the total entropy change of the products and the total entropy change of the reactants.

The equation representing entropy change of the reaction follows:

[tex]\Delta S_{rxn}=\sum [n\times \Delta S^o_{products}]-\sum [n\times \Delta S^o_{reactants}][/tex]

For the given chemical equation:

[tex]4NH_3(g)+3O_2(g)\rightarrow 2N_2(g)+6H_2O(l)[/tex]

We are given:

[tex]\Delta S^o_{NH_3}=192Jmol^{-1}K^{-1}\\\Delta S^o_{O_2}=205.1Jmol^{-1}K^{-1}\\\Delta S^o_{N_2}=192Jmol^{-1}K^{-1}\\\Delta S^o_{H_2O}=70Jmol^{-1}K^{-1}[/tex]

Putting values in above equation, we get:

[tex]\Delta S^o_{rxn}=[(6\times \Delta S^o_{H_2O})+(2\times \Delta S^o_{N_2})]-[(4\times \Delta S^o_{NH_3})+(3\times \Delta S^o_{O_2})][/tex]

[tex]\Delta S^o_{rxn}=[(6\times 70)+(2\times 192)]-[(4\times 192)+(3\times 205.1)]=-579JK^{-1}[/tex]

Hence, the [tex]\Delta S^o[/tex] of the reaction is [tex]-579JK^{-1}[/tex]

The peregrine falcon has been measured as Traveling up to 350 km/hr in a dive. if this falcon can fly to the moon at this speed, how many seconds would it take?

Answers

Answer:

4 × 10⁶ sec

Explanation:

The distance between the earth and the moon = 384,400 km

The speed of the peregrine falcon = 350 km/hr

Considering,

Distance = Speed × Time

So,

Time = Distance / Speed = 384,400 km / 350 km/hr = 1098.28571 hrs

Also,

1 hr = 3600 sec

So,

1098.28571 hrs = 3600 × 1098.28571 s ≅ 4 × 10⁶ sec

Thus time taken by peregrine falcon if falcon fly to the moon = 4 × 10⁶ sec

Final answer:

It would take the peregrine falcon approximately 3,953,044 seconds to fly to the moon at a speed of 350 km/hr.

Explanation:

If the peregrine falcon can travel up to 350 km/hr in a dive, let's calculate how long it would take for the falcon to fly to the moon at this speed. The average distance from Earth to the moon is approximately 384,400 km.

To find the time it would take, we can use the formula:

Time = Distance/Speed

So, Time = 384,400 km / 350 km/hr = 1098.29 hours.

Converting hours to seconds, we have:

Time = 1098.29 hours x 60 minutes x 60 seconds = 3,953,044 seconds.

Therefore, it would take the peregrine falcon approximately 3,953,044 seconds to fly to the moon at a speed of 350 km/hr.

In an exothermic reaction:

A. The forward reaction is slower than the reverse reaction
B. the reaction rate will speed up with time.
C. the collision energy of the reactants will be greater than that of the products
D. the forward reaction will have a lower activation energy thant the reverse reaction.
E. the activation energy will change as the reaction progresses.

Answers

Answer:

D. the forward reaction will have a lower activation energy than the reverse reaction.

Explanation:

An exothermic reaction is one which is accompanied by the release of heat energy. In this case the products have a lower energy than that of the reactants.

Activation energy is the minimum amount of energy required to initial or start a chemical reaction. In exothermic reactions, the reactants are at a higher energy (relative to the products) to begin with. Hence, they would require a lower activation energy to overcome the energy barrier in order to form the products.

The correct option is D. the forward reaction will have a lower activation energy than the reverse reaction.

In an exothermic reaction, energy is released as the reaction proceeds from reactants to products. This means that the products are at a lower energy state than the reactants. The activation energy for a reaction is the minimum amount of energy that the reactants must possess for the reaction to occur. Since energy is released during the reaction, the energy level of the products is lower than that of the reactants, and consequently, the activation energy for the reverse reaction (products going back to reactants) is higher than that for the forward reaction.

 Let's analyze each option:

A. The forward reaction is slower than the reverse reaction - This statement is not necessarily true for exothermic reactions. The rate of a reaction is determined by the activation energy and the concentration of reactants, among other factors.

 B. The reaction rate will speed up with time - This statement is not generally true. The rate of a reaction can change with time depending on various factors such as the concentration of reactants, temperature, and the presence of catalysts. However, for a simple exothermic reaction, the rate may slow down over time as the concentration of reactants decreases.

 C. The collision energy of the reactants will be greater than that of the products - This statement is true for an exothermic reaction because the reactants have more energy than the products, and the excess energy is released during the reaction.

 D. The forward reaction will have a lower activation energy than the reverse reaction - This statement is correct for an exothermic reaction. The products are at a lower energy state than the reactants, so the energy barrier for the reverse reaction is higher.

 E. The activation energy will change as the reaction progresses - This statement is not accurate in a simple sense. The activation energy is a characteristic of the reaction itself and does not change as the reaction progresses. However, the presence of intermediates or changes in reaction conditions can affect the observed activation energy.

Therefore, the correct answer is D, as it accurately describes the relationship between activation energies in an exothermic reaction.

caculate the kinetic energy in J of an electron moving at
6.00x 10 to the sixth power m/s.

Answers

Answer:

[tex]1.64x10^-^1^7 J[/tex]

Explanation:

Due to you know the velocity of the electron, the only thing that you need to do is used the Newtonian kinetic energy formula.  The kinetic energy is defined as the work needed by motion body of a given mass to accelerate from rest to its know velocity:

[tex]KE=1/2mv^2=[kg*(m/s)^2]=[J][/tex]

[tex]m_e_- =9.1093835x10^-^3^1 kg [/tex]

[tex]KE=9.11x10^-^3^1 kg*(6.00x10^6 m/s)^2=1.64x10^-^1^7 J[/tex]

2 of 20 Which intermolecular force or bond is primarily responsible for the solubility of CH3OH in water? lonic bonding Hydrogen bonding Covalent bonding Dipole-dipole force lon-dipole force Navigator F10 F11 F12 PSC

Answers

Answer:

Hydrogen bonding

Explanation:

As a rule of thumb, "likes dissolve like", meaning polar solutes dissolve in polar solvents and nonpolar solutes in nonpolar solvents. In this case, water is polar (dipolar moment = 1.85 Debye) dissolves methanol which is also polar (dipolar moment = 1.69 Debye). Besides being dipoles, both molecules have atoms of Hydrogen with a covalent bond to more electronegative atoms of Oxygen. When this happens, stronger dipole-dipole interactions appear known as Hydrogen bonding. There is an electrostatic attraction between H (positive charge density) and O (negative charge density).

A sample of coal has the following analysis (wt %). Moisture 1.1%, Fixed Carbon 74%, Volatile Matter 17.9%, Carbon 63.7%, Hydrogen 3.3%, Nitrogen 1.7%, Sulfur 1.7%, Oxygen 10.9% and the rest is ash. Determine the Fixed Carbon on a dry and mineral matter free basis.

b. Determine the coal rank of the above analysis. Its one of these

Medium Volatile

Low Volatile

Semianthracite

Anthracite

Answers

Answer:

Coal is a traditionally used source of energy, there are main four types of ranks for coal. Here the rank of a coal means to a natural process called Coalification, which takes place during a plant is buried and changes to a harder, and denser material and become even more rich in carbon contents.

Anthracite is know to have the highest ranked coal, it contains highest percent of fixed carbon and lowest percent of volatile material.

Investigators decide to analyze the purity of a preparation of antibody molecules using SDS polyacrylamide-gel electrophoresis (SDS-PAGE). On Lane 1 of the gel, they load a sample of the antibody. On Lane 2, they load an antibody sample that has been treated with a reducing agent called mercaptoethanol, which breaks disulfide linkages. Following electrophoresis, they see distinct bands representing polypeptides with molecular weights of 50 kD and 25 kD in Lane 2 and only one band weighing 150 kD in Lane 1. What can the investigators conclude about their antibody based on the results of this experiment

Answers

Answer:

Their antibody is composed by subunits that have molecular weights of 50 kD and 25 kD, and each of these subunits has one Cys residue at least.

Explanation:

Their antibody is composed by subunits that are conected by an S-S bond that takes place in their Cys residue. When the antibody is treated with a reducing agent, these S-S bond are reduced to S-H, thus the subunits are no longer connected to each other.

The original antibody weights 150 kD, as seen in Lane 1. And the combination of these subunits are seen in Lane 2: this means there is not only one subunit of 50 kD and one of 25 kD. Rather, these subunits are repeated in the antibody, in a way such that their combined weight add ups to 150 kD (for instance 2 subunits of 50 kD and 2 subunits of 25 kD).

Final answer:

Based on SDS-PAGE analysis, investigators can conclude that the antibody under study is a multimeric protein made of polypeptide chains with molecular weights of 50 kD and 25 kD, held together by disulfide bonds that were reduced by mercaptoethanol.

Explanation:

Investigators utilized SDS-PAGE to analyze the purity of an antibody preparation. Upon electrophoresis, Lane 1, which contained untreated antibody sample, showed a single band at 150 kD. However, Lane 2, with antibody treated with mercaptoethanol, exhibited two distinct bands at molecular weights of 50 kD and 25 kD. The presence of these two bands in Lane 2, which was absent in Lane 1, indicates that the antibody molecule was originally composed of multiple polypeptide chains held together by disulfide bonds. Mercaptoethanol reduced these disulfide bonds, allowing the constituent polypeptide chains to be separated under electrophoretic conditions and revealing the true subunit composition of the antibody. Therefore, the investigators can conclude that the antibody is a multimeric protein, likely composed of two 50 kD chains and at least one 25 kD chain that were originally connected by disulfide bonds.

A chemistry student needs 50.0 g of methyl acetate for an experiment. By consulting the CRC Handbook of Chemistry and Physics, the student discovers that the density of methyl acetate is 0.934 g.cm . Calculate the volume of methyl acetate the student should pour out. Round your answer to 3 significant digits. x s ?

Answers

Final answer:

To obtain 50.0 g of methyl acetate, the student should measure out 53.5 cm³, using the density of methyl acetate which is 0.934 g/cm³.

Explanation:

To calculate the volume of methyl acetate the student should pour out using its density, the formula density = mass/volume can be rearranged to volume = mass/density. Given that the density of methyl acetate is 0.934 g/cm³, and the student needs 50.0 g of methyl acetate, the volume can be calculated as follows:

volume = mass/density

volume = 50.0 g / 0.934 g/cm³

volume = 53.533 g/cm³

The student should measure out 53.5 cm³ of methyl acetate to obtain 50.0 g, rounding to 3 significant digits.

A woolly rhinocerous skeleton (Coelodonta antiquitatis) found in Poland contains 1.30% of the C-14 found in living animals. How long ago did the organism die?

Answers

Answer:

The organism died 35900 years ago

Explanation:

Half life C-14 is 5730 years.For decay of radioactive nuclides: [tex]\frac{N}{N_{0}}=(\frac{1}{2})^{\frac{t}{t_{\frac{1}{2}}}}[/tex][tex]\frac{N}{N_{0}}[/tex] is the fraction of radioactive nuclide remain present after t time and [tex]t_{\frac{1}{2}}[/tex] is the half-life of radioactive nuclideHere [tex]\frac{N}{N_{0}}[/tex] is 0.013 and [tex]t_{\frac{1}{2}}[/tex] is 5730 yeras

Plug-in all the values in the above equation:

[tex]0.013=(\frac{1}{2})^{\frac{t}{5730years}}[/tex]

So, t = 35900 years

Hence the organism died 35900 years ago

Proposes a dimensionless quantity that combines volume flow rate Q, density p viscosity u of the fluid, and depth h.

Answers

Answer:

[tex](\rho*Q)/(\mu*h)[/tex]

Explanation:

First, we need to establish the unit of each variable:  

[tex]Q (flow rate)=[m^3/s][/tex][tex]\rho(density)=[kg/m^3][/tex][tex]h(depth)=[m][/tex] [tex]\mu( viscosity )=[kg/m*s][/tex]

To eliminate [tex]m^3[/tex] we need to multiply Q by [tex]\rho[/tex]. Then to eliminate kg we divide [tex]\rho[/tex] by [tex]\mu[/tex]. Finally, multiply [tex]\mu[/tex] by h we can let the constant dimensionless.

A chemist prepares a solution of zinc oxalate by measuring out of zinc oxalate into a volumetric flask and filling the flask to the mark with water. Calculate the concentration in of the chemist's zinc oxalate solution. Round your answer to significant digits. 0.0075 umol 450 mL

Answers

Final answer:

The concentration of a 0.0075 umol of zinc oxalate in a 450 mL solution is 1.67 x [tex]10^{-8[/tex] mol/L or 0.0000000167 M.

Explanation:

To calculate the concentration of the zinc oxalate solution, we first convert the given quantity of zinc oxalate from umol to mol.

Converting 0.0075 umol to mol gives us 0.0075 x  [tex]10^{-6[/tex]  mol, which is 7.5 x [tex]10^{-9[/tex] mol.

Molarity is defined as the number of moles of solute per liter of solution.

So, we also need to convert 450 mL to liters, giving us 0.45L.

The concentration (C) is then calculated by dividing the number of moles (n) by the volume (V) in liters.

So, the molarity of the zinc oxalate solution can be calculated as follows: C = n/V = 7.5 x  [tex]10^{-9[/tex]  mol / 0.45L which equals 1.67 x  [tex]10^{-8[/tex]  mol/L, or 0.0000000167 M.

Learn more about Concentration Calculation here:

https://brainly.com/question/17329736

#SPJ11

A solution is prepared by condensing 4.00 L of a gas,
measuredat 270C and 748 mmHg pressure into 58.0g
ofbenzene. Calculate the freezing point of this solution?

Answers

Answer:

-2.3 ºC

Explanation:

Kf (benzene) = 5.12 ° C kg mol – 1

1st - We calculate the moles of condensed gas using the ideal gas equation:

n = PV / (RT)

P = 748/760 = 0.984 atm

T = 270 + 273.15 = 543.15 K

V = 4 L

R = 0.082 atm.L / mol.K

n = (0.984atm * 4L) / (0.082atm.L / K.mol * 543.15K) = 0.088 mol

Then, you calculate the molality of the solution:

m = n / kg solvent

m = 0.088 mol / 0.058 kg = 1.52mol / kg

Then you calculate the decrease in freezing point (DT)

DT = m * Kf

DT = 1.52 * 5.12 = 7.8 ° C

Knowing that the freezing point of pure benzene is 5.5 ºC, we calculate the freezing point of the solution:

T = 5.5 - 7.8 = -2.3 ºC

What is the mass of a 3.34L sample if chlorine gas
collectedover water if the volume was determined at 37C and
98.7kPa?

Answers

Answer: The mass of chlorine gas is 4.54 grams.

Explanation:

To calculate the mass of the gas, we use the equation given by ideal gas equation:

[tex]PV=nRT[/tex]

Or,

[tex]PV=\frac{m}{M}RT[/tex]

where,

P = pressure of the gas = 98.7 kPa

V = Volume of gas = 3.34 L

m = given mass of chlorine gas = ?

M = Molar mass of chlorine gas = 35.45 g/mol

R = Gas constant = [tex]8.31\text{ L kPa }mol^{-1}K^{-1}[/tex]

T = Temperature of the gas = [tex]37^oC=[37+273]=310K[/tex]

Putting values in above equation, we get:

[tex]98.7kPa\times 3.34L=\frac{m}{35.45g/mol}\times 8.31\text{ L kPa }mol^{-1}K^{-1}\times 310K\\\\m=4.54g[/tex]

Hence, the mass of chlorine gas is 4.54 grams.

Be sure to answer all parts. Determine the overall orders of the reactions to which the following rate laws apply: (a) rate = k[NO2]2 (b) rate = k zero order first order 1.5 order second order 2.5 order third order zero order first order 1.5 order second order 2.5 order third ord

Answers

Answer :

(a) The rate of reaction is, second order reaction.

(b) The rate of reaction is, zero order reaction.

Explanation :

Rate of reaction : It is defined as the rate of change in concentration of reactant or product with respect to time.

Order of reaction : It is defined as the sum of the exponents or powers to which the molar concentration in the rate law equation are raised to express the observed rate of reaction.

The order of reaction depends on the power of reactant concentration.

(a) The given rate expression is,

[tex]Rate=k[NO_2]^2[/tex]

From this expression we conclude that the power of concentration of reactant [tex]NO_2[/tex] is 2.  

That means it is a second order reaction.

(b) The given rate expression is,

[tex]Rate=k[/tex]

From this expression we conclude that the rate of reaction is equal to rate constant.

That means it is a zero order reaction.

4.00 grams of an unknown monoprotic acid is titrated with 0.75 M NaOH. It takes 88.81 mL of NaOH to completely neutralize the acid. What is the molecular weight of the acid?

Answers

Answer:

The molecular weight of the acid is 60.05 g/mol

Explanation:

Let's state the balanced chemical equation to represent the neutralization reaction:

NaOH + HAc → NaAc + H2O

where HAc is the representation of the monoprotic acid. As we can see, the relationship between the base and the acid is 1:1, that is 1 mole of NaOH reacts with 1 mole of the monoprotic acid HAc. So, let's calculate the moles of NaOH that where present in the 88.81 mL aliquot used to neutralize the acid:

1000 mL ---- 0.75 moles of NaOH

88.81 mL --- x = (88.81 mL × 0.75 moles)/1000 mL = 0.0666075 moles NaOH

As we stated before, 1 mole of NaOH will react with 1 mole of HAc, so 0.0666075 moles of NaOH will reacted with 0.0666075 moles of the acid. Having said that, because we already know the mass of the acid, we are able to determine the molecular weight of it:

0.0666075 moles of HAc ---- 4.00 g

1 mole of HAc ---- x = (1 mole × 4.00 g)/0.0666075 moles = 60.05 g/mole

The vapor pressure of substance X is 100. mm Hg at 1080.°C. The vapor pressure of substance X increases to 600. mm Hg at 1220.°C. Determine the molar heat of vaporization of substance X using the derived form of the Clausius-Clapeyron equation given below. (Include the sign of the value in your answer.) ____ kJ/mol

Answers

Final answer:

The molar heat of vaporization of substance X can be determined using the Clausius-Clapeyron equation. The molar heat of vaporization of substance X is -61.78 kJ/mol.

Explanation:

The molar heat of vaporization of substance X can be determined using the Clausius-Clapeyron equation. The equation is given by:

ln(P₂/P₁) = -(ΔHvap/R)((1/T₂) - (1/T₁))

We can solve for ΔHvap by substituting the values given: P₁ = 100 mm Hg, T₁ = 1080 °C (or 1353 K), P₂ = 600 mm Hg, and T₂ = 1220 °C (or 1493 K).

ln(600/100) = -(ΔHvap/8.314)((1/1493) - (1/1353))

Solving for ΔHvap gives us a value of -61.78 kJ/mol. Therefore, the molar heat of vaporization of substance X is -61.78 kJ/mol.

What is the kinetic energy acquired by the electron in hydrogen atom, if it absorbs a light radiation of energy 1.08x10^1-7 J (A) 2.18x10- (B) 7.84x10- (C) 8.62x10-13 (D) 5.34x10-5

Answers

Final answer:

The kinetic energy acquired by the electron in a hydrogen atom when it absorbs a light radiation can be calculated using E = hf, where E is the energy of the radiation and f is the frequency of the radiation.

Explanation:

When an electron in a hydrogen atom absorbs a light radiation, it gains kinetic energy. To calculate the energy gained, we can use the equation E = hf, where E is the energy of the radiation, h is Planck's constant (6.626 x 10^-34 J·s), and f is the frequency of the radiation. In this case, the energy of the radiation is given as 1.08 x 10^-7 J.

Since the electron absorbs the radiation, we know that the energy gained will be equal to the energy of the radiation. Therefore, the kinetic energy acquired by the electron in the hydrogen atom is 1.08 x 10^-7 J.

Explain why the properties of a polymer below the glass transition temperature are different from the same properties in the same polymer above the glass transition temperature.

Answers

Explanation:

At low temperatures (below the glass transition temperature) crystalline polymers are rigid like glass. This happens because all the polymer chains are perfectly arranged, all the polymer is in the crystalline form. On the other hand, when the temperature raises, upper the glass transition temperature, some polymer chains start to get loose and form some amorphous regions in between the crystalline regions of the polymer. This condition makes the polymer more flexible.

In a gas grill, 29 lbs propane C3H8 are
burned with just enough air for complete combustion at a party. How
many lbs of combustion products are formed? Round your answer to
the nearest whole number.

Answers

Answer : The mass of combustion products formed are 134 lbs.

Explanation :

The balanced chemical reaction will be:

[tex]C_3H_8+5O_2\rightarrow 3CO_2+4H_2O[/tex]

Given :

Mass of [tex]C_3H_8[/tex] = 29 lbs = 13154.2 g

conversion used : 1 lbs = 453.592 g

Molar mass of [tex]C_3H_8[/tex] = 44 g/mole

First we have to calculate the moles of [tex]C_3H_8[/tex].

[tex]\text{ Moles of }C_3H_8=\frac{\text{ Mass of }C_3H_8}{\text{ Molar mass of }C_3H_8}=\frac{13154.2g}{44g/mole}=298.9moles[/tex]

Now we have to calculate the moles of [tex]CO_2[/tex] and [tex]H_2O[/tex].

From the balanced chemical reaction we conclude that,

As, 1 mole of [tex]C_3H_8[/tex] react to give 3 moles of [tex]CO_2[/tex]

So, 298.9 mole of [tex]C_3H_8[/tex] react to give [tex]298.9\times 3=896.7[/tex] moles of [tex]CO_2[/tex]

and,

As, 1 mole of [tex]C_3H_8[/tex] react to give 4 moles of [tex]H_2O[/tex]

So, 298.9 mole of [tex]C_3H_8[/tex] react to give [tex]298.9\times 4=1195.6[/tex] moles of [tex]H_2O[/tex]

Now we have to calculate the mass of [tex]CO_2[/tex] and [tex]H_2O[/tex].

Molar mass of [tex]CO_2[/tex] = 44 g/mole

Molar mass of [tex]H_2O[/tex] = 18 g/mole

[tex]\text{Mass of }CO_2=\text{Moles of }CO_2\times \text{Molar mass }CO_2[/tex]

[tex]\text{Mass of }CO_2=896.7mole\times 44g/mole=39454.8g=86.98lbs[/tex]

and,

[tex]\text{Mass of }H_2O=\text{Moles of }H_2O\times \text{Molar mass }H_2O[/tex]

[tex]\text{Mass of }H_2O=1195.6mole\times 18g/mole=21520.8g=47.44lbs[/tex]

The total mass of products = Mass of [tex]CO_2[/tex] + Mass of [tex]H_2O[/tex]

The total mass of products = 86.98 + 47.44 = 134.42 ≈ 134 lbs

Therefore, the mass of combustion products formed are 134 lbs.

2Fe3+(aq) + Zn(s) ⇌ 2Fe2+(aq) + Zn2+(aq) What is the equation for the reaction quotient of the following reaction?

Answers

Answer:

[tex]Q=\frac {[Fe^{2+}]^2[Zn^{2+}]}{[Fe^{3+}]^2}[/tex]

Explanation:

The reaction quotient of an equilibrium reaction measures relative amounts of the products and the reactants present during the course of the reaction at  particular point in the time.

It is the ratio of the concentration of the products and the reactants each raised to their stoichiometric coefficients. The conecntration of the liquid and the gaseous species does not change and thus is not written in the expression.

Thus, for the reaction:

[tex]2Fe^{3+}_{(aq)}+Zn_{(s)}\rightleftharpoons 2Fe^{2+}_{(aq)}+Zn^{2+}_{(aq)}[/tex]

The expression is:

[tex]Q=\frac {[Fe^{2+}]^2[Zn^{2+}]}{[Fe^{3+}]^2}[/tex]

What information is provided by showing a molecule's stereochemistry?

Answers

Answer:

3-D shape of molecule and adjacent carbon atoms and their orientation.

Explanation:

Stereochemistry involves study of relative spatial positioning or arrangement of atoms which form structure of the molecules.

Stereochemistry studies focuses on the stereoisomers, which are the species which have same molecular formula but the sequence of the bonded atoms is different in the 3-D space of the atoms.

Thus,

Molecule's stereochemistry tells the 3-D shape of molecule and adjacent carbon atoms and their orientation.

Final answer:

Stereochemistry provides information about the three-dimensional structure of a molecule, including the arrangement of atoms and their spatial orientation.

Explanation:

Stereochemistry is the study of the relative arrangement of atoms in molecules and their manipulation. It provides information about the three-dimensional structure of a molecule, including the arrangement of atoms and the spatial orientation of these atoms. By showing a molecule's stereochemistry, we can understand its shape, bonding patterns, and how it interacts with other molecules.

A molecule's stereochemistry can be represented using various models, such as ball-and-stick models, wedge-and-dash representations, or space-filling models. These models help visualize the three-dimensional structure of a molecule and show the arrangement of atoms in space.

A 1004.0g sample of calcium carbonate that is 95.0% pure
gives225L of CO2 at STP when reacted with an excess
ofhydrochloric acid. What is the density (in g/L) of the
carbondioxide?

Answers

Answer:

The density of carbon dioxide is 1,86 g/L

Explanation:

The global reaction is:

2 HCl (aq)+ CaCO₃ (s) → CaCl₂(aq)+ H₂O(l)+ CO₂(g)

To obtain density it is necessary to obtain calcium carbonate moles -with molar mass of CaCo₃ = 100,09 g/mol- that are the same than CO₂ moles. Then, this moles must be converted to grams -CO₂ weights 44,01 g/mol- and, with the given liters (225 L) will be possible to know density, thus:

1004,0g × 95,0% = 953,8 g of CaCO₃

953,8 g of CaCO₃ ×[tex]\frac{1 mol}{100,09 g}[/tex] =

9,53 CaCO₃ moles ≡ CO₂ moles

9,53 CO₂ moles ×[tex]\frac{44,01 g}{1 mol}[/tex] = 419,4 g of CO₂

Thus, density of Carbon dioxide is:

[tex]\frac{419,4 g}{225 L}[/tex] = 1,86 g/L

I hope it helps!

Final answer:

To find the density of carbon dioxide, first calculate the mass of calcium carbonate used. Next, use the molar mass of CaCO3 to calculate the number of moles. Finally, calculate the density of CO2 using the mass and volume.

Explanation:

To find the density of carbon dioxide, we need to calculate the mass of carbon dioxide produced. From the given information, we know that a 1004.0g sample of calcium carbonate that is 95.0% pure gives 2.25L of CO2 at STP when reacted with an excess of hydrochloric acid. First, we calculate the mass of calcium carbonate used:

Mass of CaCO3 = 1004.0g * 0.95 = 954.8g

Next, we use the molar mass of CaCO3 (100.09 g/mol) to calculate the number of moles:

Moles of CaCO3 = 954.8g / 100.09 g/mol = 9.537 mol

According to the balanced chemical equation:

CaCO3 + 2HCl -> CaCl2 + CO2 + H2O

1 mole of CaCO3 produces 1 mole of CO2. Therefore, the number of moles of CO2 produced is also 9.537 mol.

Finally, we can calculate the density of CO2:

Density = Mass / Volume

Density = 9.537 mol * 44.01 g/mol / 2.25 L = 188.70 g/L

Five different substances are given to you to be dissolved in water. Which substances are most likely to undergo dissolution in water? Check all that apply. View Available Hint(s) Check all that apply. lithium iodide, LiI heptane, C7H16 octane, C8H18 sodium fluoride, NaF potassium iodide, KI

Answers

Answer:

Lithium iodide, sodium fluoride and potassium iodide are more likely to undergo dissolution in water.

Explanation:

Water is a polar substance, which means that it will be a good solvent for other polar substances and salts.

LiI, NaF and KI are all salts that easily dissociate in water to produce ions. The ions will be surrounded by water molecules (solvatation) due to electrostatic interactions.

Heptane and octane are both non-polar substances that have no significant charges to interact with water molecules. Therefore, this substances will not dissolve in water.

Final answer:

Lithium iodide, sodium fluoride, and potassium iodide are ionic compounds that are most likely to dissolve in water, a polar solvent. Nonpolar substances like heptane and octane are less likely to dissolve in water.

Explanation:

When considering the solubility of substances in water, we must account for the polarity of both the solute and the solvent. Water is a polar solvent, which means it can easily dissolve other polar compounds and ionic compounds due to its ability to form ion-dipole interactions. Considering the substances provided, lithium iodide (LiI), sodium fluoride (NaF), and potassium iodide (KI) are ionic compounds and are most likely to undergo dissolution in water.

On the other hand, heptane ([tex]C_{7} H_{16}[/tex]) and octane ([tex]C_{8} H_{18}[/tex]) are hydrocarbons, which are nonpolar substances. Nonpolar substances do not dissolve well in polar solvents like water, thus making these substances less likely to dissolve in water. Instead, they would be more soluble in nonpolar solvents such as hexane or other hydrocarbons.

Which response gives the products of hydrolysis
ofNH4Cl?
A. NH4+ + HCl
B. NH3 + OH- + HCl
C. NH3 + H+
D. NH4OH + HCl
E. No hydrolysis occurs.

Answers

Answer : The correct option is, (C) NH₃ + H⁺

Explanation:

Hydrolysis : It is defined as the chemical reaction in which the breakdown of compound takes place due to reaction with water.

As per question:

First ammonium chloride completely dissociates into ion.

[tex]NH_4Cl(aq)\rightarrow NH_4^+(aq)+Cl^-(aq)[/tex]

Now ammonium ion react with water to give ammonia and hydronium or hydrogen ion.

The balanced hydrolysis reaction will be:

[tex]NH_4^++H_2O\rightarrow NH_3+H_3O^+[/tex]

Hence, the correct option is, (C) NH₃ + H⁺

Final answer:

The correct response to the products of hydrolysis of NH4Cl is  'NH3 + H+', because, during hydrolysis, NH4Cl separates into NH4+ and Cl- ions, with NH4+ reacting with water to form ammonia (NH3) and hydronium ions (H3O+). So the correct option is  C.

Explanation:

The question asks which response gives the products of hydrolysis of NH4Cl. During hydrolysis, water is involved in breaking down a compound. In the case of NH4Cl, when it is dissolved in water, it separates into NH4+ ions and Cl− ions. The Chloride ion (Cl−) does not hydrolyze as it's the conjugate base of a strong acid (HCl) and has no significant basicity. On the other hand, the Ammonium ion (NH4+) is the conjugate acid of a weak base (NH3), and it will hydrolyze in water. The NH4+ accepts a hydroxide ion (OH−) from water, forming NH3 and H3O+ (hydronium ion). Therefore, the hydrolysis of NH4Cl will result in ammonia (NH3) and hydronium ions (H3O+).

Option C is the correct response: NH3 + H+. When NH4Cl hydrolyzes, it forms ammonia (NH3) and hydronium ions (H3O+), not hydrochloric acid (HCl). The correct formula of the products reflects the ammonia and hydronium ions formed.

Drag the following in order, starting with the largest particle (can be seen) on the top and ending with the smallest particle (cannot be seen) on the bottom.

atoms
four carbon atoms
nucleus of an atom
electron

Answers

Answer:

Explanation:

four carbon atoms ------ atoms ------------nucleus of an atom------------electron

Atoms are the smallest indivisible particle in any substances. But atoms are also made up of other tiny particles which are subatomic in sizes. These particles are protons, neutrons and electrons.

Protons and neutrons are called the nucleons of an atoms. They are massive particles found in the nucleus of an atom. The nucleus is a very small area but very dense.

Electrons are negatively charged subatomic particles. The bulk of the volume of the atom is occupied by electrons orbiting the nucleus.

Together, the electrons and the nucleons makes up the subatomic particles in an atom.

Magnesium has 12 protons. What charge do you expect it to have when it ionizes? Why?

Answers

Answer: This element has +2 charge on it.

Explanation:

An ion is formed when an atom looses or gains electrons.

When an atom looses electrons, it leads to the formation of positive ion known as cation.When an atom gains electrons, it leads to the formation of negative ion known as anion.

Magnesium is the 12th element of the periodic table having electronic configuration of [tex]1s^22s^22p^63s^2[/tex]

This element will loose 2 electrons to attain stable electronic configuration and leads to the formation of a cation having formula [tex]Mg^{2+}[/tex]

Hence, this element has +2 charge on it.

Other Questions
The two major divisions of the nervous system are the __________a. sympathetic and parasympathetic b. mCNS and PNS c. sensory and motor d. voluntary and involuntary using the slope intercept form graph the equation y = -5/2 +3 The electrical resistance of dry skin is 100 k, but can be lowered to 20 if electrode contact area is large and conducting gel is used on the skin. If Vmax of the defibrillatror 500 V and lasts 0.01 s, what is the maximum possible current delivered to the heart during defibrillation? 8.25. In a '70% off' sale, a hat was 33.60.Work out the original price. Will Mark brainliest, PLEASE Help! A quality control engineer is interested in the mean length of sheet insulation being cut automatically by machine. It is known that the standard deviation in the cutting length that this machine produces is 0.20 feet. A sample of 75 cut sheets yields a mean length of 12.25 feet. This sample will be used to obtain a confidence interval for the mean length cut by machine. Referring to Scenario 1, the Z value to use in obtaining the 95% confidence interval is approximately . A. 2.58.B.1.96.C. 1.75. D. 1.645. A company issued 6%, 10-year bonds with a face amount of $90 million. The market yield for bonds of similar risk and maturity is 7%. Interest is paid semiannually. At what price did the bonds sell? (FV of $1, PV of $1, FVA of $1, PVA of $1, FVAD of $1 and PVAD of $1) (Use appropriate factor(s) from the tables provided. Enter your answers in whole dollars. Round final answers to the nearest whole dollar.) Chloroform flows through a 4.26 inch inside-diameter pipe at the rate of 3.60 gallons per minute. What is the average velocity of chloroform in the pipe? Number ft/s The specific gravity of chloroform is 1.49. What is the mass flow rate of the liquid for the conditions described above? Please help me with this question A body is dropped from a height h from the state of rest. It covers a distance of 9h/25 in the last second. What is the height from which the body falls?(in meters)A. 12.5B. 1.25C. 125D. Zero Emma, the marketing manager, is constantly seeking information about her competition while looking online or speaking to people. Emma is playing the ________ role. Which of the following have quantized values? Explain your selections. a. the pitch of a note played on a slide trombone b. the pitch of a note played on a flute c. the wavelengths of light produced by the heating elements in a toaster d. the wind speed at the top of Mt. Everest what is |95.7|? A. 0 B. -95.7 C. 95.7 D. -95.7 or 95.7 A research project is designed to evaluate a new experimental type of fetal surgery to correct diaphragmatic hernia in the fetus (a potentially life-threatening condition for the baby) prior to delivery. This research is directed toward the fetus as subject to meet the health needs of the fetus. The pregnant woman is otherwise healthy. The investigator must obtain consent from whom? Mutation is a random and non-adaptive process. This was first proven by:a. Lysenko and Lamarck, using the removal of mouse tails as an environmental stress.b. Joshua and Esther Lederberg, using the removal of mouse tails as an environmental stress.c. Lysenko and Lamarck, using replica plated E. coli and streptomycin as an environmental stress.d. Joshua and Esther Lederberg, using replica-plated E. coli and streptomycin as an environmental stresse. Mutation is not a random, non-adaptive process What problem did returning African Americans soldiers face after world war 1 Please help me with this problem.......... How is the circulatory system controlled (i.e. hormonally, neurally)? -1 + 14x = 12x + 17 Whats the answer ? what is x The llama trotted up the slope.Choose 1 answer:(a)Simple(B)Progressive She said, "What a nice book it is!". Change into indirect speech