d) neither one-to-one nor onto. 15. Determine whether each of these functions is a bijection from R to R. a) f(x)=2x+1 b) f(x)=x2+1 c) f(x) r3 d) f(x) (x2 +1)/(r2 +2) a function f(x)-ex from the set of real

Answers

Answer 1

Answer:

The only bijection is f(x)=2x+1.

I took r to be a constant.

Step-by-step explanation:

Bijections are both onto and one-to-one.

Onto means every element of the codomain gets hit.  Here the codomain is the set of real numbers.  So you want every y to get hit.

One-to-one means you don't want any y to get hit more than once.

f(x)=2x+1 is a linear function.  It is diagonal line so every element of the codomain will get hit and hit only once so this function is onto and one-to-one.

f(x)=x^2+1 is a quadratic function.  It is parabola so not every element of our codomain will get not get hit and of those that do get hit they get hit more than once.  So this is neither onto or one-to-one.

f(x)=r^3 is a constant function.  It is a horizontal line so not every y will get hit so it isn't onto.  The same y is being hit multiple times so it isn't one-to-one.

f(x)=(x^2+1)/(r^2+2) is a quadratic. It is a parabola. Quadratic functions are not onto or one-to-one.


Related Questions

Suppose you have $1,950 in your savings account at the end of a certain period of time. You invested $1,700 at a 6.88% simple annual interest rate. How long, in years, did you invest your money? State your result to the nearest hundredth of a year.

Answers

Answer:

He invest for 2 years.

Step-by-step explanation:

Given : Suppose you have $1,950 in your savings account at the end of a certain period of time. You invested $1,700 at a 6.88% simple annual interest rate.

To find : How long, in years, did you invest your money?

Solution :

Applying simple interest formula,

[tex]A=P(1+r)^t[/tex]

Where, A is the amount A=$1950

P is the principal P=$1700

r is the interest rate r=6.88%=0.0688

t is the time

Substitute the values in the formula,

[tex]1950=1700(1+0.0688)^t[/tex]

[tex]\frac{1950}{1700}=(1.0688)^t[/tex]

[tex]1.147=(1.0688)^t[/tex]

Taking log both side,

[tex]\log(1.147)=\log ((1.0688)^t)[/tex]

Applying logarithmic formula, [tex]\log a^x=x\log a[/tex]

[tex]\log(1.147)=t\log (1.0688)[/tex]

[tex]t=\frac{\log(1.147)}{\log (1.0688)}[/tex]

[tex]t=2.06[/tex]

Approximately, He invest for 2 years.

Examine the intersection of these lines:

∠B and ∠C are complementary angles.
∠E and ∠F are complementary angles.

Which of the following other pairs of angles are complementary? Select all that apply.

∠A and ∠C

∠B and ∠F

∠C and ∠D

∠F and ∠E

∠D and ∠F​

Answers

Answer:

∠B and ∠F∠F and ∠E . . . already listed in the problem statement, so may not be considered an "other pair"

Step-by-step explanation:

∠C and ∠F are vertical angles, so are congruent. Then any angle complementary to one of those will also be complementary to the other.

Likewise, ∠B and ∠E are vertical angles and congruent. Any angle complementary to one of them will also be complementary to the other. Here, ∠E and ∠F are listed as complementary, so we know ∠B and ∠F will be also.

Answer:2 and 4

Step-by-step explanation:

^B and ^F

^F and ^E

Let U=(4, 5, 6, 7, 8, 9, 10, 11), A = (s, 7, 9), B following. (Enter your answers as a comma-separated list.) {4, 5, 8, 11), and C = (4, 6, 10). Find the (A U B) n (Bn C')

Answers

Answer:  (A U B) n (B n C') = {5, 8, 11}.

Step-by-step explanation:  We are given the following sets :

U = {4, 5, 6, 7, 8, 9, 10, 11},

A = {5, 7, 9},

B = {4, 5, 8, 11}

and

C = {4, 6, 10}.

We are to find the following :

(A U B) n (B n C')

We know that for any two sets A and B,

A ∪ B contains all the elements present in set A or set B or both,

A ∩ B contains all the elements present in both A and B,

A - B contains all those elements which are present in A but not B

and

A' contains all the elements present in the universal set U but not A.

We will be suing the following rule of set of theory :

A ∩ B' = A - B.

Therefore, we have

[tex](A\cup B)\cap(B\cap C')\\\\=(A\cup B)\cap (B-C)\\\\=(\{5,7,9\}\cup\{4,5,8,11\})\cap (\{4,5,8,11\}-\{4,6,10\})\\\\=\{4,5,7,8,9,11\}\cap\{5,8,11\}\\\\=\{5,8,11\}.[/tex]

Thus,  (A U B) n (B n C') = {5, 8, 11}.

Final answer:

To solve the set operation (A U B) n (B n C'), we first find the union of A and B, then the complement of C, and the intersection of B and C'. The final step is to intersect the results of (A U B) and (B n C'), which gives us {4, 5, 8, 11}.

Explanation:

The question involves operations on sets, specifically union, intersection, and complement. We have a universal set U and subsets A, B, and C. The objective is to find the result of (A U B) n (B n C'), which involves set union (U), set intersection (n), and the complement of a set (').

First, let's find the union of sets A and B: A U B = {s, 7, 9, 4, 5, 8, 11}.

Next, we need to find the complement of set C, which is C' = {4, 5, 7, 8, 9, 11} as these are the elements of U that are not in C.

Then, identify the intersection of sets B and C': B n C' = {4, 5, 8, 11}, because these elements are common to both B and C'.

Finally, we find the intersection of the two results: (A U B) n (B n C') = {4, 5, 8, 11}.

Seed costs for a farmer are ​$60 per acre for corn and $80 per acre for soybeans. How many acres of each crop should the farmer plant if she wants to spend no more than $4800 on​ seed? Express your answer as a linear inequality with appropriate nonnegative restrictions and draw its graph.

Let x be the number of acres planted with corn and let y be the number of acres planted with soybeans. Choose the correct inequality below.

A. 60x+80y>=4800, x>=0, y>=0

B. 60x+80y<=4800, x>=0, y>=0

C. 60x+80y>4800, x>=0, y>=0

D. 60x+80y<4800, x>=0, y>=0

Answers

Answer:

B

Step-by-step explanation:

Let x = acres of corn and

     y = acres of soybean

If the cost of corn is 60 per acre, we represent that as 60x.

If the cost of soybean is 80 per acre, we represent that as 80y.  

The addition of these 2 grains cannot go over 4800; that means that it can be 4800 on the dot, but it cannot be more.  So "less than or equal to" is our sign.  Putting that all together:

60x + 80y ≤ 4800

if x^2-y^2 = 56 and x-y= 4 then what is the average of x and y
a) 3 b) 7 c) 2 d) 6 e) 4

Answers

Answer:

7

Step-by-step explanation:

[tex]x^2-y^2[/tex] is a difference of squares.

When factoring a difference of squares, you can use this formula [tex]u^2-v^2=(u-v)(u+v)[/tex].

So [tex]x^2-y^2[/tex] can be factored as [tex](x-y)(x+y)[/tex].

So back to the problem:

[tex]x^2-y^2=56[/tex]

Rewriting with a factored left hand side:

[tex](x-y)(x+y)=56[/tex]

We are given x-y=4 so rewriting again with this substitution:

[tex]4(x+y)=56[/tex]

Dividing both sides by 4:

[tex](x+y)=14[/tex]

So we have x+y equals 14.

We are asked to find the average of x and y which is (x+y)/2.

So since x+y=14 , then (x+y)/2=14/2=7.

Sqrt x-3+5=x ?? Help

Answers

7 is a solution
4 is extraneous
The work is attached below

A motorboat takes 5 hours to travel 150km going upstream. The return trip takes 3 hours going downstream. What is the rate of the boat in still water and what is the rate of the current?

Answers

Answer:

=10km/h

Step-by-step explanation:

Let motor boat speed be represented by x and current y

The speed upstream = Motor boats speed - rate of current

=x-y

The net speed down stream = Motor boats speed + rate of current

=x+y

Let us find the speed upstream =distance/ time taken

=150km/5hrs

=30km/h

Speed down stream= 150km/3h

=50 km/h

The problem forms simultaneous equations.

x-y=30

x+y=50

Using elimination method we solve the equations.

Add the two equations to eliminate y.

2x=80

x=40

Current, y= 50-x

=10km/h

Answer:

1) [tex]40\ \frac{km}{h}[/tex]

2) [tex]10\ \frac{km}{h}[/tex]

Step-by-step explanation:

 Let' call "b" the speed of the motorboat and "c" the speed of the current.

We know that:

[tex]V=\frac{d}{t}[/tex]

Where "V" is the speed, "d" is distance and "t" is time.

Then:

[tex]d=V*t[/tex]

We know that distance traveled upstream is 150 km and the time is 5 hours. Then, we set up the folllowing equation:

 [tex]5(b-c)=150[/tex]  (Remember that in the trip upstream the speed of the river is opposite to the motorboat)

For the return trip:

 [tex]3(b+c)=150[/tex]  

 By solving the system of equations, we get:

- Make both equations equal to each other and solve for "c".

[tex]5(b-c)=3(b+c)\\\\5b-5c=3b+3c\\\\5b-3b=3c+5c\\\\2b=8c\\\\c=\frac{b}{4}[/tex]

- Substitute "c" into the any original equation and solve for "b":

[tex]5(b-\frac{b}{4})=150\\\\\frac{3}{4}b=30\\\\b=40\ \frac{km}{h}[/tex]

- Substitute "b" into [tex]c=\frac{b}{4}[/tex]:

[tex]c=\frac{40}{4}\\\\c=10\ \frac{km}{h}[/tex]

the letters in the word ARIZONA are arranged randomly. write your answers in decimal form. round to the nearest thousandth as needed

what is the probability that the first letter is A

what is the probability that the first letter is z

what is the probability that the first letter is a vowel

what is the probability that the first letter is H

Answers

Final answer:

The probability of the first letter being 'A' or 'Z' in the word ARIZONA is 0.143, the probability of it being a vowel is 0.429, and for the letter 'H', which is not present in the word, the probability is 0.

Explanation:

The probability that the first letter is 'A' in a random arrangement of the letters in the word ARIZONA is simply the number of 'A's divided by the total number of letters. Since there is one 'A' out of seven letters, the probability is 1/7, which in decimal form is approximately 0.143, rounded to the nearest thousandth.

Similarly, for the letter 'Z', since there's one 'Z' in the word ARIZONA, the probability is also 1/7, which is about 0.143 when rounded to the nearest thousandth.

The probability that the first letter is a vowel (A, I, or O in ARIZONA) involves adding the probabilities of each individual vowel being the first letter. There are three vowels out of seven letters, so the probability is 3/7, which is approximately 0.429, rounded to the nearest thousandth.

Since the letter 'H' is not in the word ARIZONA, the probability that the first letter is 'H' is 0.

If you enter the formula =A2*(1+$A$1) in cell B2 and then copy cell B2 to C2, the numerical result in cell
C2 is:

xid-10711901_1

a.200

b. 121

c. 109

d. 110

Answers

It’s is b 121 . Gang gang

An internal study by the Technology Services department at Lahey Electronics revealed company employees receive an average of "2.7" non-work-related e-mails per hour. Assume the arrival of these e-mails is approximated by the Poisson distribution. a. What is the probability Linda Lahey, company president, received exactly 3 non-work-related e-mails between 4 P.M. and 5 P.M. yesterday

Answers

Answer: 0.2205

Step-by-step explanation:

Given : Technology Services department at Lahey Electronics revealed company employees receive an average of "2.7" non-work-related e-mails per hour.

i.e. [tex]\lambda = 2.7[/tex]

If the arrival of these e-mails is approximated by the Poisson distribution.

Then , the required probability is given by :-

[tex]P(X=x)=\dfrac{\lambda^xe^{-\lambda}}{x!}\\\\P(X=3)=\dfrac{(2.7)^3e^{-2.7}}{3!}\\\\=0.22046768454\approx0.2205[/tex]

Hence, the probability Linda Lahey, company president, received exactly 3 non-work-related e-mails between 4 P.M. and 5 P.M. yesterday =0.2205

To determine the probability that Linda Lahey received exactly 3 non-work-related e-mails in one hour based on a Poisson distribution with an average rate of 2.7 e-mails per hour, we apply the Poisson formula. This calculation offers a precise way to understand the likelihood of such an event occurring within a set timeframe.

Given that, on average, company employees receive 2.7 non-work-related e-mails per hour, we can use the Poisson formula to calculate this probability.

To find the probability of receiving exactly k events in a fixed interval of time, we use the formula:
P(X = k) = (λ^k * e^-λ) / k!
where λ is the average rate (2.7 emails per hour in this case), k is the number of events (3 emails), and e is the base of the natural logarithm (approximately 2.71828).

Plugging in the values, we calculate the probability as follows:
P(X = 3) = (2.7^3 * e^-2.7) / 3!
This calculation gives us the specific probability that Linda Lahey received exactly 3 non-work-related e-mails in one hour.

A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between 50.0 and 52.0 minutes. Find the probability that a given class period runs between 51.25 and 51.5 minutes.

Answers

Answer: 0.125

Step-by-step explanation:

Given: A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed in interval (50,52).

∴ The probability density function of X will be :-

[tex]f(x)=\dfrac{1}{b-a}=\dfrac{1}{52-50}=\dfrac{1}{2}[/tex]

The required probability will be:-

[tex]P(51.25<x<51.5)=\int^{51.5}_{51.25}f(x)\ dx\\\\=\dfrac{1}{2}\int^{51.5}_{51.25}\ dx\\\\=\dfrac{1}{2}[x]^{51.5}_{51.25}\\\\=\dfrac{1}{2}(51.5-51.25)=\dfrac{0.25}{2}=0.125[/tex]

Hence, the probability that a given class period runs between 51.25 and 51.5 minutes =0.125

21 y=a(x-2)2 +b y =5 in the system of equations above, for which of the following values of a and b does the system have no solution? A) a= 1 and b=-4 B) a 2 and b=5 C) a=-1 and b 6 Da-2 and b 4

Answers

Answer:

The correct option is D. a = -2 and b = 4.

Step-by-step explanation:

Consider the provided equation:

[tex]y=a(x-2)^2+b\ \text{and}\ y=5[/tex]

The vertex form of a quadratic is:

[tex]y= a(x-h)^2+k[/tex]

Where, (h,k) is the vertex and the quadratic opens up if 'a' is positive and opens down if 'a' is negative.

Now consider the provided option A. a = 1 and b = -4.

Since the value of a is positive the graph opens up and having vertex (2,-4). Thus graph will intersect the line y = 5.

Refer the figure 1:

Now consider the option B. a = 2 and b = 5.

Since the value of a is positive the graph opens up and having vertex (2,5). Thus graph will intersect the line y = 5.

Refer the figure 2:

Now consider the option C. a = -1 and b = 6.

Since the value of a is negative the graph opens down and having vertex (2,6). Thus graph will intersect the line y = 5.

Refer the figure 3:

Now consider the option D. a = -2 and b = 4.

Since the value of a is negative the graph opens down and having vertex (2,4). Thus graph will not intersect the line y = 5.

Refer the figure 4:

Hence, the correct option is D. a = -2 and b = 4.

Write the sum of five consecutive even numbers if the middle one is 4n The sum is (Simplify your answer)

Answers

Answer: The sum of five consecutive even numbers for this sequence is 20n.

Step-by-step explanation:

Since we have given that

Number of consecutive even numbers = 5

Middle value = 4n

Since there are 5 consecutive even numbers:

4n-4,4n-2,4n,4n+2,4n+4

So, Sum of five consecutive even numbers would be

[tex]4n-4+4n-2+4n+4n+2+4n+4\\\\=20n[/tex]

Hence, the sum of five consecutive even numbers for this sequence is 20n.

You can afford monthly deposits of $270 into an account that pays 4.8% compounded monthly. How long will it be until you have $8,200 to buy a​ boat?

Answers

Answer:

  29 months

Step-by-step explanation:

My TVM solver says that balance will be reached after about 29 monthly payments.

Final answer:

This question pertains to compound interest. You are depositing $270 monthly into an account with a monthly compound interest rate of 4.8%. By using the compound interest formula with logarithmic adjustments for monthly deposits, you can determine how long it will take you to save $8200.

Explanation:

The subject of the question is how long it would take to save up $8,200 for a boat by making $270 monthly deposits into an account that has a monthly compound interest rate of 4.8%. This is a question of compound interest. The formula for compound interest is A = P (1 + r/n)^(nt), where A is the total amount of money accumulated after n years, including interest, P is the principal amount (the initial amount of money), r is the annual interest rate (in decimal form), n is the number of times that interest is compounded per year, and t is the time the money is invested for, in years.

In this case, we require to find 't' when we have A = $8200 , P = $270 (deposited every month), r = 4.8% (in decimal form, it becomes 0.048) and n = 12 (compounded monthly). However, as $270 is getting compounded every month, a slightly adjusted formula to calculate the number of months, t is required which is t = [log(A/P)] /[n * log(1 + r/n)]. By substituting A = $8200 and P = $270 and other values to this formula, we can find the time needed. This would require logarithmic math which is done usually in high school math courses or higher.

Learn more about Compound interest here:

https://brainly.com/question/14295570

#SPJ3

1. Tom thought of a natural number, multiplied all its digits and after that he multiplied the result by the initial number. Is it possible to get 1716 as a result?

2. What is the largest prime factor of the factorial 49! ?

3. The GCD(a, b) = 18, LCM(a, b) = 108. If a=36, findb.

Answers

Answer:

1. No

2. 7

3. b=54

Step-by-step explanation:

1. We can answer this by assuming a number.

Let our number be 23

Multiplying its digits = 6

Multiplying the result with initial number = 6 * 23 = 138

So it is not possible to get 1716 as a result by thinking of a natural number and applying the operation mentioned in the question.

2. What is the largest prime factor of the factorial 49! ?

First of all we have to define prime factors:

Prime factors are the prime numbers that can be multiplied together to equal the original number.

The factors of 49 are: 1, 7, 49

7 is the largest prime factor of 49

3. The GCD(a, b) = 18, LCM(a, b) = 108. If a=36, findb.

We will use the relationship:

[tex]GCD * LCM = a*b\\18*108=36b\\1944=36b\\b= \frac{1944}{36} \\b=54[/tex]

..

The population of a town grows at a rate proportional to the population present at time t. The initial population of 500 increases by 25% in 10 years. What will be the population in 20 years? (Round your answer to the nearest person.) persons How fast is the population growing at t20 (Round your answer to two decimal places.) persons/yr

Answers

Answer:

The population would be 781.

The population is growing with the rate of 12.50 persons/yr.

Step-by-step explanation:

Since, the formula for calculating the population, increasing with a rate per period,

[tex]A=P(1+r)^{n}[/tex]

Where, P is the initial population,

r is the rate per period,

n is the number of period,

t is the total years,

Here, P = 500, r = 25 % = 0.25, n = 2 ( the number of '10 year period' of in 20 years is 2 )

Hence, the population in 20 years would be,

[tex]A=500(1+0.25)^2=500(1.25)^2=781.25\approx 781[/tex]

Now, the rate of increasing per 10 year is 25 %,

⇒ The rate of increasing per year is 2.5 %,

Thus, the growing people per year = 2.5 % of 500 = 0.025 × 500 = 12.50

Hence, the population is growing at 12.50 person per year.

Find an equation for the line in the form ax + by c. where a. b. and c are integers with no factor common to all three and a 20. Through (1. -6), perpendicular to x + y = 2 The equation of the line is (Type an equation)

Answers

Answer:

The standard form of required line is x-y=7.

Step-by-step explanation:

The standard form of a line is

[tex]ax+by=c[/tex]

Where, a,b,c are integers with no factor common to all three and a≥0.

The give equation of line is

[tex]x+y=2[/tex]

Here a=1 and b=1.

The slope of a standard line is

[tex]m=\frac{-a}{b}[/tex]

[tex]m_1=\frac{-1}{1}=-1[/tex]

The product of slops of two perpendicular lines is -1.

[tex]m_1\cdot m_2=-1[/tex]

[tex](-1)\cdot m_2=-1[/tex]

[tex]m_2=1[/tex]

The slope of required line is 1.

The point slope form of a line is

[tex]y-y_1=m(x-x_1)[/tex]

Where, m is slope.

The slope of required line is 1 and it passes through the point (1,-6). So, the equation of required line is

[tex]y-(-6)=1(x-1)[/tex]

[tex]y+6=x-1[/tex]

Add 1 on each side.

[tex]y+7=x[/tex]

Subtract y from both the sides.

[tex]7=x-y[/tex]

Therefore the standard form of required line is x-y=7.

Suppose that administrators of a large school district wish to estimate the proportion of children in the district enrolling in kindergarten who attended preschool. They took a simple random sample of children in the district who are enrolling in kindergarten. Out of 75 children sampled, 51 had attended preschool. Construct a large-sample 99% z ‑confidence interval for p, the proportion of all children enrolled in kindergarten who attended preschool. Give the limits of the confidence interval as decimals, precise to at least three decimal places.

Answers

Answer: (0.541, 0.819)

Step-by-step explanation:

The confidence interval for proportion is given by :-

[tex]p\pm z_{\alpha/2}\sqrt{\dfrac{p(1-p)}{n}}[/tex]

Given : The proportion of children attended the school = [tex]p=\dfrac{51}{75}=0.68[/tex]

Significance level : [tex]\alpha=1-0.99=0.01[/tex]

Critical value : [tex]z_{\alpha/2}=z_{0.005}=\pm2.576[/tex]

Now, the 99% z ‑confidence interval for proportion will be :-

[tex]0.68\pm (2.576)\sqrt{\dfrac{0.68(1-0.68)}{75}}\approx0.68\pm 0.139\\\\=(0.68-0.139,0.68+0.139)=(0.541,\ 0.819)[/tex]

Hence, the 99% z ‑confidence interval for p, the proportion of all children enrolled in kindergarten who attended preschool = (0.541, 0.819)

In The Godfather which brother is sent to Las Vegas? Sony b. Tom a C. Fredo d. Paulie

Answers

Answer:

The correct option is C. Fredo

Step-by-step explanation:

In a Mario Puzo's fictional novel named The Godfather, Frederico Corleone or Fredo is a fictional character. In the novel, Fredo's father is killed by the assasins. Witnissing his father being shot, Fredo goes into a shock.

To protect and aid Fredo's recovery, his elder brother Sonny, sends him to Las Vegas.

Therefore, Fredo is sent to Las Vegas

Find an explicit solution (solved for y) of the given initial-value problem in terms of an integral function. dy/dx + 3y = e^x^5, y(2) = 5.

Answers

Answer:

Step-by-step explanation:

Using linear differential equation method:

\frac{\mathrm{d} y}{\mathrm{d} x}+3y=e^5^x

I.F.= [tex]e^{\int {Q} \, dx }[/tex]

I.F.=[tex]e^{\int {3} \, dx }[/tex]

I.F.=[tex]e^{3x}[/tex]

y(x)=[tex]\frac{1}{e^{3x}}[\int {e^{5x}} \, dx+c][/tex]

y(x)=[tex]\frac{e^{2x}}{5}+e^{-3x}\times c[/tex]

substituting x=2

c=[tex]\frac{25-e^4}{5e^{-6}}[/tex]

Now

y=[tex]\frac{e^{2x}}{5}+e^{-3x}\times \frac{25-e^4}{5e^{-6}}[/tex]

Find a polynomial f(x) of degree 3 that has the following zeros.
9, 0, -5

Leave your answer in factored form.

Answers

Answer:

[tex]f (x) = x (x + 5) (x-9)[/tex]

Step-by-step explanation:

The zeros of the polynomial are all the values of x for which the function [tex]f (x) = 0[/tex]

In this case we know that the zeros are:

[tex]x = 9,\  x-9 =0[/tex]

[tex]x = 0[/tex]

[tex]x = -5[/tex], [tex]x + 5 = 0[/tex]

Now we can write the polynomial as a product of its factors

[tex]f (x) = x (x + 5) (x-9)[/tex]

Note that the polynomial is of degree 3 because the greatest exponent of the variable x that results from multiplying the factors of f (x) is 3

Final answer:

The polynomial f(x) of degree 3 that has the zeros 9, 0, and -5 can be found by setting up and multiplying the factors (x-9), (x-0), and (x+5). The resulting polynomial f(x) is therefore x(x - 9)(x + 5).

Explanation:

To find a polynomial f(x) of degree 3 that has the given zeros, you use the fact that the zeros (or roots) of a polynomial are the values that make the polynomial equal to zero. In this case, the zeros are 9, 0, and -5. Consequently, the factors of the polynomial are (x-9), (x-0), and (x+5).

Now multiply these factors together to get the polynomial. The result is:

f(x) = x(x - 9)(x + 5).

This is the polynomial of degree 3 with the given zeros.

Learn more about Polynomial here:

https://brainly.com/question/20121808

#SPJ3

Four hundred eighty dollars are available to fence in a rectangular garden. The fencing for the north and south sides of the garden costs $10 per foot and the fencing for the east and west sides costs $20 per foot. Find the dimensions of the largest possible garden.

Answers

Answer:

[tex]6ft[/tex] length on the east and west sides

[tex]12ft[/tex] length on the north and south sides

Step-by-step explanation:

Using x for the length of the east side (and is equal to the length  of the west side) and y for the length of the north side (and is equal to the length  of the south side), the equation that gives the total price equalized to 480 is:

[tex]20x+20x+10y+10y=480[/tex]

[tex]40x+20y=480[/tex]

Solving for y

[tex]y=\frac{-40x+480}{20}[/tex]

[tex]y=-2x+24[/tex]

The area of the garden is [tex]A=xy[/tex], to find the largest, substitute y in the formula of the area

[tex]A=x(-2x+24)=-2x^2+24x[/tex]

For the optimization, find the largest area, is needed the critical point. To find this point, derive A and equalize the derivative to zero:

[tex]A'=-4x+24=0[/tex]

Solve for x:

[tex]-4x=-24[/tex]

[tex]x=\frac{-24}{-4}[/tex]

[tex]x=6[/tex]

To see if x=6 is a maximum or a minimum, derive A' and substitute with x=6

[tex]A''=-4[/tex]

In this case, the second derivative of A doesn't depend on x, and it has a negative value, meaning the value found is a maximum. Using x=6 to find y

[tex]y=-2x+24[/tex]

[tex]y=-2(6)+24[/tex]

[tex]y=12[/tex]

The area is:

[tex]A=xy=6*12=72 ft^2[/tex]

​ Assume the trait for brown eyes is completely dominant to blue eyes and this trait is controlled by a single gene. If 400 people in a population of 10,000 have blue eyes, how many people would be expected to be heterozygous for this trait? (Hint: Use the Hardy-Weinberg formula.)

Answers

Answer:

3200 people

Step-by-step explanation:

p = The frequency of the dominant gene

q = The frequency of the recessive gene

[tex]q^2=\frac{400}{10000}\\\Rightarrow q^2=0.04\\\Rightarrow q=0.2[/tex]

p+q = 1

⇒p = 1-q

⇒p = 1-0.2

⇒p = 0.8

Hardy-Weinberg formula

p² + 2pq + q² = 1

Now for heterozygous trait

2pq = 2×0.8×0.2 = 0.32

Multiplying with the population

0.32×10000 = 3200

∴ 3200 people would be expected to be heterozygous for this trait.

Final answer:

According to the Hardy-Weinberg formula, the expected number of people heterozygous for the eye color trait can be calculated as 768 in a population of 10,000. This calculation takes into account the dominance of the brown eye color trait and the frequency of blue-eyed individuals.

Explanation:

In this scenario, we are considering a single gene controlling the trait for eye color, with brown eyes being completely dominant to blue eyes.

Using the Hardy-Weinberg formula, we can calculate the expected frequency of each genotype in the population. The formula is: p^2 + 2pq + q^2 = 1.

We are given that 400 people have blue eyes in a population of 10,000. Therefore, the frequency of the recessive allele (q) can be calculated as the square root of the frequency of the blue-eyed individuals, which is 400/10,000 = 0.04.

Since brown eyes are completely dominant, the frequency of the dominant allele (p) can be calculated as 1 - q, which is 1 - 0.04 = 0.96.

Now we can calculate the expected number of heterozygous individuals (2pq): 2 * 0.96 * 0.04 * 10,000 = 768.

Therefore, we would expect 768 people to be heterozygous for the eye color trait in this population.

Learn more about Hardy-Weinberg formula here:

https://brainly.com/question/34695712

#SPJ3

g Water use in the summer is normally distributed with a mean of 310.4 million gallons per day and a standard deviation of 40 million gallons per day. City reservoirs have a combined storage capacity of 350 million gallons. The probability that a day requires more water than is stored in city reservoirs is P(X > 350)= 1 - P (Z < b). What is the value of b? Please report your answer in 3 decimal places.

Answers

Answer: The value of b = 0.99

The probability that a day requires more water than is stored in city reservoirs is 0.161.

Step-by-step explanation:

Given : Water use in the summer is normally distributed with

[tex]\mu=310.4\text{ million gallons per day}[/tex]

Standard deviation : [tex]\sigma=40 \text{ million gallons per day}[/tex]

Let x be the combined storage capacity requires by the reservoir on a random day.

Z-score : [tex]\dfrac{x-\mu}{\sigma}[/tex]

[tex]z=\dfrac{350-310.4}{40}=0.99[/tex]

The probability that a day requires more water than is stored in city reservoirs is  :

[tex]P(x>350)=P(z>0.99)=1-P(z<0.99)\\\\=1-0.8389129=0.1610871\approx0.161[/tex]    

Hence, the probability that a day requires more water than is stored in city reservoirs is 0.161

A scientist has two solutions, which she has labeled Solution A and Solution B. Each contains salt. She knows that Solution A is 40% salt and Solution B is 65% salt. She wants to obtain 110 ounces of a mixture that is 55% salt. How many ounces of each solution should she use?

Answers

Final answer:

The scientist can determine the amount of Solution A and Solution B required by setting up and solving a system of two linear equations representing the total solution volume and the total salt amount.

Explanation:

Lets let the amount of Solution A the scientist will use be x and the amount of Solution B she will also use be y. We know that x + y = 110 ounces because her final mix should be 110 ounces. Also, we know that 0.4x + 0.65y = 0.55*(x+y) = 60.5 because the amount of salt from Solution A and Solution B should add up to the amount of salt in the final mixture. Solving this system of linear equations to obtain the values for x and y, gives the required amounts of Solution A and Solution B needed.

Learn more about Linear Equations here:

https://brainly.com/question/32634451

#SPJ3

A diver starts out at 480 feet below the surface (or −480 feet). She then swims upward 248 feet. Use a signed number to represent the diver's current depth.

Answers

Final answer:

The diver's current depth can be represented using signed numbers by subtracting the upward distance swum from the initial depth.

Explanation:

To represent the diver's current depth, we need to subtract the distance the diver has swum upward from the initial depth. The diver starts at -480 feet below the surface and swims upward 248 feet. Using signed numbers, we can represent the diver's current depth as -480 + 248 = -232 feet below the surface.

Learn more about Representing diver's current depth here:

https://brainly.com/question/29151160

#SPJ3

1. A six person committee composed of Alice, Ben, Connie, Dolph, Egbert, and Francisco is to select a chairperson, secretary, and treasurer. How many different officer selections are there if both Dolph and Francisco must hold office?

Answers

Answer:

The number of combinations are made when one person taken at a time out of four person=4.

Step-by-step explanation:

We are given that a six person committee composed of Alice,Ben,Connie, Dolph,Egbert, and Francisco.

We have to select three persons out of six persons one is chairperson,secretary and treasurer.

We have to find the number of combinations of different officer are made when two persons Dolph and Francisco must hold office.

Now, if two persons Dolph and Francisco must hold the office then we have to select only one member out of 4 persons.

Therefore ,using combination formula

[tex]\binom{n}{r}[/tex]=[tex]\frac{n!}{r!(n-r)!}[/tex]

We have n=4 and r=1 then

The number of combination of different officer are made =[tex]\binom{4}{1}[/tex]

The number of combination of different officer are made=[tex]\frac{4!}{1!(4-1)!}[/tex]

The number of combination of different officer are made=[tex]\frac{4\times 3!}{3!}[/tex]

The number of combination of different officer are made=4

Hence, the number of combinations are made when one person taken at a time out of four person=4.

Answer: 4

Due in 1 hours, 24 minutes. Due Fri 06/28/2019 11:59 p A survey team is trying to estimate the height of a mountain above a level plain. From one point on the plain, they observe that the angle of elevation to the top of the mountain is 24°. From a point 1000 feet closer to the mountain along the plain, they find that the angle of elevation is 26 How high (in feet) is the mountain? Preview

Answers

Answer:

Height of the mountain is 5108.80 feet.

Step-by-step explanation:

From the figure attached, h is the height of a mountain AB.

At a point C angle of elevation of the mountain is 24°

Now survey team gets closer to the mountain by 1000 feet then angle of elevation is 26°.

Now from ΔABC,

tan24 = [tex]\frac{h}{x+1000}[/tex]

0.445 = [tex]\frac{h}{x+1000}[/tex]

h = 0.445(x + 1000)------(1)

From ΔABD,

tan26 = [tex]\frac{h}{x}[/tex]

0.4877 = [tex]\frac{h}{x}[/tex]

h = 0.4877x -----(2)

Now we equation 1 and equation 2

0.4452(x + 1000) = 0.4877x

0.4877x - 0.4452x = 1000(0.4452)

0.0425x = 445.20

x = [tex]\frac{445.20}{0.0425}[/tex]

x = 10475.29 feet

Now we plug in the value of x in equation 2.

h = (10475.29)×(0.4877)

h = 5108.80 feet

Therefore, height of the mountain is 5108.80 feet

What is the probability of obtaining seven tails in a row when flipping a coin?
The probability of obtaining seven trails in a row when flipping a coin is?

Answers

Step-by-step explanation:

The probability of getting tails each time is 1/2.  Seven times in a row, the probability is:

P = (1/2)^7

P = 0.0078125

the probability of obtaining seven tails in a row when flipping a coin is approximately 0.78%.

The probability of obtaining seven tails in a row when flipping a coin can be calculated using the principle of independent events in probability. Each flip of the coin is an independent event with two possible outcomes: heads or tails.

Probability can be calculated by using the formula:

[tex]P = \frac{number\ of\ desired\ outcomes}{total\ outcomes}[/tex]

here the desired outcome is 1 as we only need tails so we can say that:

[tex]P(tails) = \frac{1}{2} = 0.5[/tex]

To find the probability of obtaining seven tails in a row, you need to multiply the probability of getting tails on each individual flip:

[tex]Probability (7\ tails\ in\ a\ row) = 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5\\\\Probability (7\ tails\ in\ a\ row) = (0.5)^7 \approx 0.0078125[/tex]

Therefore, the probability of obtaining seven tails in a row when flipping a coin is approximately 0.78%.

Find all solutions to the equation.

cos^2x + 2 cos x + 1 = 0

Answers

[tex]\bf cos^2(x)+2cos(x)+1=0\implies \stackrel{\textit{let's notice, this is simply }ax^2+bx+c=0}{[cos(x)]^2+2cos(x)+1=0} \\[2em] [cos(x)+1][cos(x)+1]=0 \\\\[-0.35em] ~\dotfill\\\\ cos(x)+1=0\implies cos(x)=-1\implies x=cos^{-1}(-1)\implies \stackrel{\textit{for the range }[0,2\pi ]}{x=\pi } \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{all solutions}}{x=\pi +2\pi n~~,~~ n \in \mathbb{Z}}~\hfill[/tex]

Other Questions
Which polygon is a base of the triangular prism? Why is it important to recognise that peoples perception of pain is different? You can use_____ to evaluate whether or not your subjects have enough points for comparison and contrast. Given an int variable n that has been initialized to a positive value and, in addition, int variables k and total that have already been declared, use a for loop to compute the sum of the cubes of the first n whole numbers, and store this value in total. Thus if n equals 4, your code should put 1*1*1 + 2*2*2 + 3*3*3 + 4*4*4 into total. Use no variables other than n, k, and total. Which similarity postulate or theorem can be used to verify that the twotriangles shown below are similar? Augie purchased one new asset during the year (five-year property) on November 10, 2019, at a cost of $660,000. She would like to use the 179 election and will also take additional first-year depreciation. The income from the business before the cost recovery deduction and the 179 deduction was $600,000. Determine the maximum cost recovery deduction available on this asset for 2019. An effect of the steamboats popularity was that Dollar Shave Club is an ecommerce start-up that delivers razors to its subscribers by mail. By doing this, Dollar Shave Club is using a(n) _____ to disrupt an existing market.A. innovation ecosystem B. architectural innovation C. business model innovation D. incremental innovation Violet was carrying around the steps to solve square root of 3x plus 1 = 4. On her way through the Math Factory, Violet dropped them and they mixed with other steps. Put the correct steps in order to solve square root of 3x plus 1 = 4.A. Subtract 1 from both sidesB. Subtract 4 from both sidesC. Square root both sidesD. Square both sidesE. Divide by 3 from both sidesF. Divide by 4 from both sides 3. A nail salon has looked up the melting and boiling point of alcohol (ethyl). This means there's enough energy to change the state of matter. This change where a switches states is known as the A. freezing point. B. critical temperature. C. fusion point. D. condensation point. What does the pulmonary vein do? A.Brings blood from the liver to the heart B.Brings blood from the heart to the liver C.Brings blood from the heart to the lungs D.Brings blood from the lungs to the heart A force of 32.5N stretches a spring of 0.500cm. What force will stretch a similar spring 1.60 cm? An arctic weather balloon is filled with 20.9L of helium gas inside a prep shed. The temperature inside the shed is 13 degree C. The balloon is then taken outside, where the temperature is -9 degree C. Calculate the new volume of the balloon. You may assume the pressure on the balloon stays constant at exactly 1 atm. Round your answer to significant digits. Quadrilateral ABCD is similiar to quadrilateral EFGH. The lengths of the three longest sides in quadrilateral ABCD are 20 feet, 18 feet, and 14 feet long. If the two shortest sides of quadrilateral EFGH are 6 feet long and 5 feet long, how long is the 4th side on quadrilateral ABCD el botones A) ____________ lleva las maletas. la habitacin individual B) Uso ___________ para subir a mi piso. la llave C) Antes de (before) ir al hotel, tengo que hacer _____________. el ascensor D) Pongo mi cepillo de dientes y el champ en ________________. el viajero o la viajera E) ______________ tiene una cama. el cuarto de bao F) Nadamos en ______________. el cheque G) Uso ___________ para entrar en mi habitacin. la tarjeta de crdito H) Mastercard es _______________. la piscina I) Una persona que viaja es ____________. las reservaciones J) Tengo que firmar _________________. the slope of the line below is -5/-7. write a point slope equation of the line using coordinates of the labeled point HELPPP ME WITH SICENCE PLZZZZZZThe group of symbols and numbers that shows the types and numbers of atoms that make up a compound is a _________________. A goal of the march on washington for jobs and freedom was to An electron is released from rest in a uniform electric field. The electron accelerates, travelling 5.50 m in 4.00 s after it is released. What is the magnitude of the electric field in N/C? The spleen filters lymph, whereas lymph nodes filter blood.a. True b. False