Define drag and lift forces.

Answers

Answer 1

Explanation:

Drag is the force which is generated parallel and also in opposition to direction of the travel for the object which is moving through the fluid.

Lift is the force which is generated perpendicular to direction of the travel for the object moving through the fluid.

Both of the two forces which are the lift and the drag force act through center of the pressure of object.


Related Questions

If a pendulum is 10m long, (a) what is the natural frequency and the period of vibration on the earth, where the free-fall acceleration is 9.81 m/s^2 and (b) what is the natural frequency and the period of vibration on the moon, where the free-fall acceleration is 1.67 m/s^2?

Answers

Answer:

(a) Natural frequency = 0.99 rad/sec (b) 0.4086 rad/sec

Explanation:

We have given length of pendulum = 10 m

(a) Acceleration due to gravity [tex]=9.81m/sec^2[/tex]

Time period of pendulum is given by [tex]T=2\pi\sqrt{\frac{L}{g}}[/tex], L is length of pendulum and g is acceleration due to gravity

So [tex]T=2\pi\sqrt{\frac{L}{g}}=2\times 3.14\times \sqrt{\frac{10}{9.81}}=6.34sec[/tex]

Natural frequency is given by [tex]\omega =\frac{2\pi }{T}=\frac{2\times 3.14}{6.34}=0.99rad/sec[/tex]

(b) In this case acceleration due to gravity [tex]g=1.67m/sec^2[/tex]

So time period [tex]T=2\pi\sqrt{\frac{L}{g}}=2\times 3.14\times \sqrt{\frac{10}{1.67}}=15.3674sec\[/tex]

Natural frequency [tex]\omega =\frac{2\pi }{T}=\frac{2\times 3.14}{15.36}=0.4086rad/sec[/tex]

Explain what is the young's modulus?

Answers

Answer and Explanation:

Young's modulus  is a mechanical property that estimates the solidness of a strong material. If we have information about stress and strain the we can easily found the young's modulus.

Young's modulus gives us information that how hard or how easy to bend a solid material

Young's modulus is given by [tex]young's\ modulus=\frac{stress}{strain}[/tex]

Stress = [tex]\frac{force}{area}[/tex] and strain is [tex]=\frac{chane\ in\ length}{actual\ length}=\frac{\Delta L}{L}[/tex]

A rotating cup viscometer has an inner cylinder diameter of 2.00 in., and the gap between cups is 0.2 in. The inner cylinder length is 2.50 in. The viscometer is used to obtain viscosity data on a Newtonian liquid. When the inner cylinder rotates at 10 rev/min, the torque on the inner cylinder is measured to be 0.00011 in-lbf. Calculate the viscosity of the fluid. If the fluid density is 850 kg/m^3, calculate the kinematic viscosity

Answers

Answer:

The dynamic viscosity and kinematic viscosity are [tex]1.3374\times 10^{-6}[/tex] lb-s/in2 and [tex]1.4012\times 10^{-3}[/tex] in2/s.

Explanation:

Step1

Given:

Inner diameter is 2.00 in.

Gap between cups is 0.2 in.

Length of the cylinder is 2.5 in.

Rotation of cylinder is 10 rev/min.

Torque is 0.00011 in-lbf.

Density of the fluid is 850 kg/m3 or 0.00095444 slog/in³.

Step2

Calculation:

Tangential force is calculated as follows:

T= Fr

[tex]0.00011 = F\times(\frac{2}{2})[/tex]

F = 0.00011 lb.

Step3

Tangential velocity is calculated as follows:

[tex]V=\omega r[/tex]

[tex]V=(\frac{2\pi N}{60})r[/tex]

[tex]V=(\frac{2\pi \times10}{60})\times1[/tex]

V=1.0472 in/s.

Step4

Apply Newton’s law of viscosity for dynamic viscosity as follows:

[tex]F=\mu A\frac{V}{y}[/tex]

[tex]F=\mu (\pi dl)\frac{V}{y}[/tex]

[tex]0.00011=\mu (\pi\times2\times2.5)\frac{1.0472}{0.2}[/tex]

[tex]\mu =1.3374\times 10^{-6}[/tex]lb-s/in².

Step5  

Kinematic viscosity is calculated as follows:

[tex]\upsilon=\frac{\mu}{\rho}[/tex]

[tex]\upsilon=\frac{1.3374\times 10^{-6}}{0.00095444}[/tex]

[tex]\upsilon=1.4012\times 10^{-3}[/tex] in2/s.

Thus, the dynamic viscosity and kinematic viscosity are [tex]1.3374\times 10^{-6}[/tex] lb-s/in2 and [tex]1.4012\times 10^{-3}[/tex] in2/s.

For a bronze alloy, the stress at which plastic deformation begins is 297 MPa and the modulus of elasticity is 113 GPa. (a) What is the maximum load that can be applied to a specimen having a cross-sectional area of 316 mm2 without plastic deformation? (b) If the original specimen length is 128 mm, what is the maximum length to which it may be stretched without causing plastic deformation?

Answers

Answer:

a) 93.852 kN

b) 128.043 mm

Explanation:

Stress is load over section:

σ = P / A

If plastic deformation begins with a stress of 297 MPa, the maximum load before plastic deformation will be:

P = σ * A

316 mm^2 = 3.16*10^-4

P = 297*10^6 * 3.16*10^-4 = 93852 N = 93.852 kN

The stiffness of the specimen is:

k = E * A / l

k = 113*10^9 * 3.16*10^-4 / 0.128 = 279 MN/m

Hooke's law:

x' = x0 * (1 + P/k)

x' = 0.128 * (1 + 93.852*10^3 / 279*10^6) = 0.128043 m = 128.043 mm

Find the error in the following preudocode.Constant Real GRAVITY = 9.81 Display "Rates of acceleration of an object in free fall:" Display "Earth: ", GRAVITY, " meters per second every second." Set GRAVITY = 1.63 Display "Moon: ", GRAVITY, " meters per second every second."

Answers

Answer:

It is attempting to change the value of a constant.

Explanation:

In this pseudocode program "GRAVITY" is declared as a constant value, therefore it cannot be changed during runtime. If you tried mo write this code in a real language and compile it you would get a compilation error because of that forbidden operation.

What are two advantages of forging when compared to machining a part from a billet?

Answers

Answer:

Less material waste and time.

Explanation:

Two advantages of forging vs machining would be that with forging there is much less waste of material. With machining you remove a large amount of material turning into not so valuable chips.

There is also a time factor, as machining can be very time intensive. This depends on the speed of the machining, newer machines tend to be very fast, and forging requires a lengthy heating, but for large parts the machining can be excessively long.

A series R-L circuit is given. Circuit is connected to an AC voltage generator. a) Derive equations for magnitude and phase of current and voltages on resistor and inductor in the phasor domain. Assume that the resistance of the resistor is R, inductance of the inductor is L, magnitude of the source voltage is Vm and phase of the source voltage is θ. Note that you don’t have numbers in this step, so to find the magnitude and phase for current I and voltages VR and VL you must first derive both numerator and denominator in polar form using variables R, omega, L, Vm, Vphase (do not use numbers). The solutions should look like equations in slide 24/27! b) In this step, assume that R

Answers

Answer:

The equations for magnitude and phase of current and voltages on resistor and inductor are:

[tex]I=\frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)[/tex]

[tex]V_R=I\cdot Z_R=\frac{V_m \cdot R}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)[/tex]

[tex]V_L=I\cdot Z_L=\frac{V_m \cdot (\omega L)}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)+90^{\circ}[/tex]

Explanation:

The first step is to find the impedances of the resistance (R) and the inductor (L).

The impedance of the resistor is:

Rectangular form: [tex]Z_R=R[/tex]Polar form: [tex]Z_R=R\angle 0^{\circ}[/tex]

The impedance of the inductor is:

Rectangular form: [tex]Z_L=j\omega L[/tex]Polar form: [tex]Z_L=\omega L \angle 90^{\circ}[/tex]

Where [tex]\omega [/tex] is the angular frequency of the source, and the angle is [tex]90^{\circ} [/tex] because a pure imaginary number is on the imaginary axis (y-axis).

The next step is to find the current expression. It is the same for the resistor and inductor because they are in series. The total impedance equals the sum of each one.

[tex]I=\frac{V}{Z_R+Z_L}[/tex]

It is said that [tex]V=V_m\angle \theta[/tex], so, the current would be:

[tex]I=\frac{V_m\angle \theta }{R+j\omega L}[/tex]

The numerator must be converted to polar form by calculating the magnitude and the angle:

The magnitude is [tex]\sqrt{R^2+(\omega L)^2}[/tex]The angle is [tex]tan^{-1}(\omega L / R)[/tex]

The current expression would be as follows:

[tex]I=\frac{V_m\angle \theta }{\sqrt{R^2+(\omega L)^2}\, \angle tan^{-1}(\omega L / R)}[/tex]

When dividing, the angles are subtracted from each other.

The final current expression is:

[tex]I=\frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)[/tex]

The last step is calculating the voltage on the resistor [tex]V_R[/tex] and the voltage on the inductor [tex]V_L[/tex]. In this step the polar form of the impedances could be used. Remember that [tex]V=I\cdot Z[/tex].

(Also remember that when multiplying, the angles are added from each other)

Voltage on the resistor [tex]V_R[/tex]

[tex]V_R=I\cdot Z_R=\bigg( \frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)\bigg) \cdot (R\angle 0^{\circ})[/tex]

The final resistor voltage expression is:

[tex]V_R=I\cdot Z_R=\frac{V_m \cdot R}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)[/tex]

Voltage on the inductor [tex]V_L[/tex]

[tex]V_L=I\cdot Z_L=\bigg( \frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)\bigg) \cdot (\omega L \angle 90^{\circ})[/tex]

The final inductor voltage expression is:

[tex]V_L=I\cdot Z_L=\frac{V_m \cdot (\omega L)}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)+90^{\circ}[/tex]

Summary: the final equations for magnitude and phase of current and voltages on resistor and inductor are:

[tex]I=\frac{V_m}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)[/tex]

[tex]V_R=I\cdot Z_R=\frac{V_m \cdot R}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)[/tex]

[tex]V_L=I\cdot Z_L=\frac{V_m \cdot (\omega L)}{\sqrt{R^2+(\omega L)^2}}\angle \theta - tan^{-1}(\omega L / R)+90^{\circ}[/tex]

A battery is an electromechanical device. a)- True b)- False

Answers

Answer:

b)False

Explanation:

A battery is a device which store the energy in the form of chemical energy.And this stored energy is used according to the requirement.So battery is not a electromechanical device.Because it does have any mechanical component like gear ,shaft flywheel etc.

A flywheel is known as mechanical battery because it stored mechanical energy and supply that energy when more energy is required.Generally fly wheel is used during punching operation.

Ammonia at 20 C with a quality of 50% and a total mass of 2 kg is in a rigid tank with an outlet valve at the bottom. How much saturated liquid can be removed from the tank in an isothermal process until there remains no more liquid?

Answers

Answer:

16.38L

Explanation:

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties.

Quality is defined as the ratio between the amount of steam and liquid when a fluid is in a state of saturation, this means that since the quality is 50%, 1kg is liquid and 1kg is steam.

then to solve this problem we find the specific volume for ammonia in a saturated liquid state at 20C, and multiply it by mass (1kg)

v(amonia at 20C)=0.001638m^3/kg

m=(0.01638)(1)=0.01638m^3=16.38L

A light bulb is switched on and within a few minutes its temperature becomes constant. Is it at equilibrium or steady state.

Answers

Answer:

The temperature attains equilibrium with the surroundings.  

Explanation:

When the light bulb is lighted we know that it's temperature will go on increasing as the filament of the bulb has to  constantly dissipates energy during the time in which it is on. Now this energy is dissipated as heat as we know it, this heat energy is absorbed by the material of the bulb which is usually made up of glass, increasing it's temperature. Now we know that any object with temperature above absolute zero has to dissipate energy in form of radiations.

Thus we conclude that the bulb absorbs as well as dissipates it's absorbed thermal energy. we know that this rate is dependent on the temperature of the bulb thus it the temperature of the bulb does not change we can infer that an equilibrium has been reached in the above 2 processes i.e the rate of energy absorption equals the rate of energy dissipation.

Steady state is the condition when the condition does not change with time no matter whatever the surrounding conditions are.

If the original length of a specimen is L0 = 10"" and new length of the specimen after applied load is L = 12.5"". The value of true strain is: a) 0.5 b) 0.25 c) 0.223 d) 0.4

Answers

Answer:

The correct answer is option 'b':0.25

Explanation:

By definition of strain we have

[tex]\epsilon =\frac{L_f-L_o}{L_o}[/tex]

where

[tex]\epsilon [/tex] is the strain

[tex]L_o[/tex] is the original length of specimen

[tex]L_f[/tex] is the elongated length of specimen

Applying the given values we get

[tex]\epsilon =\frac{12.5''-10''}{10''}=0.25[/tex]

Air enters a 200 mm diameter adiabatic nozzle at 195 deg C, 500 kPa and 100 m/s. It exits at 85 kPa. If the exit diameter is 158 mm, what are the temperature and velocity at the exit?

Answers

Answer:

[tex]v_2 = 160.23 m/s[/tex]

[tex]T_2 = 475.797 k[/tex]

Explanation:

given data:

Diameter =[tex] d_1 = 200mm[/tex]

[tex]t_1 =195 degree[/tex]

[tex]p_1 =500 kPa[/tex]

[tex]v_1 = 100m/s[/tex]

[tex]p_2 = 85kPa[/tex]

[tex]d_2 = 158mm[/tex]

from continuity equation

[tex]A_1v_1 = A_2v_2[/tex]

[tex]v_2 = \frac{\frac{\pi}{4}d_1^2 v_1^2}{\frac{\pi}{4}d_2^2}[/tex]

[tex]v_2 = \frac{d_2v_1}{d_2^2}[/tex]

[tex]v_2 = [\frac{d_1}{d_2}]^2 v_1[/tex]

      [tex]= [\frac{0.200}{0.158}]^2 \times 100[/tex]

[tex]v_2 = 160.23 m/s[/tex]

by energy flow equation

[tex]h_1 + \frac{v_1^2}{2} +gz_1 +q =h_2 + \frac{v_2^2}{2} +gz_2 +w[/tex]

[tex]z_1 =z_2[/tex] and q =0, w =0 for nozzle

therefore we have

[tex]h_1 -h_2 =\frac{v_1^2}{2} -\frac{v_2^2}{2} [/tex]

[tex]dh = \frac{1}{2} (v_1^2 -v_2^2)[/tex]

but we know dh = Cp dt

hence our equation become

[tex]Cp(T_2 -T_1) = \frac{1}{2} (v_1^2 -v_2^2)[/tex]

[tex]Cp (T_2 -T_1) = 7836.94[/tex]

[tex](T_2 -T_1) = \frac{7836.94}{1.005*10^3}[/tex]

[tex](T_2 -T_1) = 7.797 [/tex]

[tex]T_2 = 7.797 +468 = 475.797 k[/tex]

The rate of flow of water in a pump installation is 60.6 kg/s. The intake static gage is 1.22 m below the pump centreline and reads 68.95 kPa gage;the discharge static gage is 0.61 m below the pump centre line and reads 344.75 kPagage. The gages are located close to the pump as much as possible. The area of the intake and discharge pipes are; 0.093 m2 and 0.069 m2 respectively. The pump efficiency is 74%. Take density of water equals 1000 kg/m3. What is the hydraulic power in kW

Answers

Answer:

Pump power is 23.09 kW

Explanation:

Data

gravitational constant, [tex] g = 9.81 m/s^2 [/tex]

mass flow, [tex] \dot{m} = 60.6 kg/s [/tex]

flow density, [tex] \rho = 1000 kg/m^3 [/tex]

pump efficiency, [tex] \eta = 0.74 [/tex]

output gage pressure, [tex] p_o = 344.75 kPa [/tex]

input gage pressure, [tex] p_i = 68.95 kPa [/tex]

output pipe area, [tex] A_o = 0.069 m^2 [/tex]

input pipe area, [tex] A_i = 0.093 m^2 [/tex]

output height, [tex] z_o = 1.22 m - 0.61 m = 0.61 m [/tex] (considering that pump is at the maximum height, i.e., 1.22 m)

input height, [tex] z_i = 0 m [/tex]

pump hydraulic power,[tex] P = ? kW [/tex]

First of all, volumetric flow (Q) must be computed

[tex] Q = \frac{\dot{m}}{\rho}[/tex]

[tex] Q = \frac{60.6 kg/s}{1000 kg/m^3} [/tex]

[tex] Q = 0.0606 m^3/s[/tex]

Then, velocity (v) must be computed for both input and output

[tex] v_o = \frac{Q}{A_o}[/tex]

[tex] v_o = \frac{0.0606 m^3/s}{0.069 m^2}[/tex]

[tex] v_o = 0.88 m/s [/tex]

[tex] v_i = \frac{Q}{A_i}[/tex]

[tex] v_i = \frac{0.0606 m^3/s}{0.093 m^2}[/tex]

[tex] v_i = 0.65 m/s [/tex]

Now, total head (H) can be calculated

[tex] H = (z_o - z_i) + \frac{v_o^2 - v_i^2}{2 \, g} + \frac{p_o - p_i}{\rho \, g} [/tex]

[tex] H = (0.61 m - 0 m) + \frac{{0.88 m/s}^2 - {0.65 m/s}^2}{2 \, 9.81 m/s^2} + \frac{(344.75 Pa-68.95 Pa)\times 10^3}{1000 kg/m^3 \, 9.81 m/s^2} [/tex]

[tex] H = 28.74m [/tex]

Finally, pump power is computed as

[tex] P = \frac{Q \, \rho \, g \, H}{\eta}[/tex]

[tex] P = \frac{0.0606 m^3/s \, 1000 kg/m^3 \, 9.81 m/s^2 \, 28.74m}{0.74}[/tex]

[tex] P = 23.09 kW [/tex]

The hydraulic power in kW is mathematically given as

P = 23.09 kW

What is the hydraulic power?

Generally the equation for the volumetric flow (Q)  is mathematically given as

Q=m/p

Therefore

Q=60/1000

Q=0.0606

Generally the equation for the velocity (v)    is mathematically given as

v=Q/A

Hence for input

[tex]v_i = \frac{Q}{A_i}\\\\v_i = \frac{0.0606 }{0.093 }[/tex]

v_i = 0.65 m/s

For input

[tex]v_o = \frac{Q}{A_o}\\\\v_o = \frac{0.0606 }{0.069}[/tex]

v_o = 0.88 m/s

Therefore, Total head (H)

[tex]H = (z_o - z_i) + \frac{v_o^2 - v_i^2}{2 \, g} + \frac{p_o - p_i}{\mu g}[/tex]

[tex]H = (0.61 0 ) + \frac{{0.88 }^2 - {0.65 }^}{2 *9.81 } + \frac{(344.75 Pa-68.95 Pa)*10^3}{1000* 9.81}[/tex]

H = 28.74m

Generally the equation for the pump power P  is mathematically given as

[tex]P = \frac{Q * \rho*g*H}{\eta}[/tex]

[tex]P = \frac{0.0606 * 100*9.81*28.74}{0.74}[/tex]

P = 23.09 kW

For more information on Power

https://brainly.com/question/10203153

An airplane flies horizontally at 80 m/s. Its propeller delivers 1300 N of thrust (forward force) to overcome aerodynamic drag (backward force). Using dimensional reasoning and unity conversion ratios, calculate the useful power delivered by the propeller in units of kW and horsepower.

Answers

Answer:

Power in kW is 104 kW

Power in horsepower is 139.41 hp

Solution:

As per the question:

Velocity of the airplane, [tex]v_{a} = 80 m/s[/tex]

Force exerted by the propeller, [tex]F_{p} = 1300 N[/tex]

Now,

The useful power that the propeller delivered, [tex]P_{p}[/tex]:

[tex]P_{p} = \frac{Energy}{time, t}[/tex]

Here, work done provides the useful energy

Also, Work done is the product of the displacement, 'x' of an object when acted upon by some external force.

Thus

[tex]P_{p} = \frac{F_{p}\times x}{time, t}[/tex]

[tex]P_{p} = \frac{F_{p}\times x}{time, t}[/tex]

[tex]P_{p} = F_{p}\times v_{a}[/tex]

Now, putting given values in it:

[tex]P_{p} = 1300\times 80 = 104000 W = 104 kW[/tex]

In horsepower:

1 hp = 746 W

Thus

[tex]P_{p} = \frac{104000}{746} = 139.41 hp[/tex]

For turbulent now the friction factor is function of (Reynolds number —surface roughness -both the Reynolds number and the surface roughness) of the pipe.

Answers

Answer:

Both Reynolds and surface roughness

Explanation:

For turbulent flow friction factor is a function of both Reynolds and surface roughness of the pipe.But on the other hand for laminar flow friction factor is a function of only Reynolds number.

Friction factor for turbulent flow:

1.   For smooth pipe

[tex]f=0.0032+\dfrac{0.221}{Re^{0.237}}[/tex]

[tex]5\times 10^4<Re<4\times 10^7[/tex]

2.   For rough pipe

[tex]\dfrac{1}{\sqrt f}=2\ log_{10}\frac{R}{K}+1.74[/tex]

Where R/K is relative roughness

Friction factor for laminar flow:

[tex]f=\dfrac{64}{Re}[/tex]

A bar of uniform cross section is 86.9 in longand weighs 89.1 lb. A weight of 79.0 lb is suspended from one end. The bar and weight combination is to be suspended from a cable attached at the balance point. How far (in) from the weight should the cable be attached, and what is the tension (lb) in the cable?

Answers

Answer:

y = 20.41 in

T= 168.1 lb

Explanation:

From diagram

Total force balance in vertical direction

T= 89.1 + 79 lb

 T= 168.1 lb

Now taking moment about point m

Mm= 0 Because system is in equilibrium position

 79 x 43.45 = T x y

Now by putting the value of T

79 x 43.45 = 168.1 x y

y = 20.41 in

So the cable attached at distance of 20.41 in from the mid point of bar.

Tension in the cable = 168.1 lb

Ductility (increases/decreases/does not change) with temperature.

Answers

Answer:

Increases

Explanation:

Ductility:

    Ductility is the property of material to go permanent deformation due to tensile load.In other words the ability of material to deform in wire by the help of tensile load.

When temperature is increase then ductility will also increases.And when temperature decreases then the ductility will also decreases.As we know that at very low temperature material become brittle and this is know as ductile brittle transition.

The high-pressure air system at OSU's Aerospace Research Center is fed by a set of two cylindrical tanks. Each tank has an outer height of 50 ft and an outer diameter of 4.6 ft. The tanks are made of 0.1 ft thick steel (steel = 499 lbm/ft?) and store air at a maximum pressure of 2500 psi at -10 °F. How much load must the support structure at the base of the tanks carry?

Answers

Answer:

179000 lb

Explanation:

The supports must be able to hold the weight of the tank and the contents. Since tanks are pressure tested with water, and the supports cannot fail during testing, we disregard the air and will consider the weight of water.

The specific weight of water is ρw = 62.4 lbf/ft^3

These tanks are thin walled because

D / t = 4.6 / 0.1 = 46 > 10

To calculate the volume of steel we can approximate it by multiplying the total surface area by the thickness:

A = 2 * π/4 * D^2 + π * D * h

The steel volume is:

V = A * t

The specific weight is

ρ = δ * g

ρs = 499 lbm/ft^3 * 1 lbf/lbm = 499 lbf/ft^3

The weight of the steel tank is:

Ws = ρs * V

Ws = ρs * A * t

Ws = ρs * (2 * π/4 * D^2 + π * D * h) * t

Ws = 499 * (π/2 * 4.6^2 + π * 4.6 * 50) * 0.1 = 37700 lb

The weight of water can be approximated with the volume of the tank:

Vw = π/4 * D^2 * h

Ww = ρw * π/4 * D^2 * h

Ww = 62.4 * π/4 * 4.6^2 * 50 = 51800 lb

Wt = Ws + Ww = 37700 + 51800 = 89500 lb

Assuming the support holds both tanks

2 * 89500 = 179000 lb

The support must be able to carry 179000 lb

Which is more detrimental to the tool life, a higher depth of cut or a higher cutting velocity? Why?

Answers

Answer:

Cutting velocity.

Explanation:

Velocity of cutting affects more as compare to the depth of cut to life of tool.

As we know that tool life equation

[tex]VT^n=C[/tex]

Where T is the tool life and  V is the tool cutting speed and C is the constant.

So from we can say that when cutting velocity  increase then tool life will decrease and vice versa.

The life of tool is more important during cutting action .The life of tool is less and then will reduce the production and leads to face difficulty .

Derive the following conversion factors: (a) Convert a pressure of 1 psi to kPa (b) Convert a vol ume of 1 liter to gallons (c) Convert a viscosity of 1 lbf .s/ft^2 to N s/m^2

Answers

Answer:

a)6.8 KPa

b)0.264 gallon

c)47.84 Pa.s

Explanation:

We know that

1 lbf=  4.48 N

1 ft =0.30 m

a)

Given that

P= 1 psi

psi is called pound force per square inch.

We know that 1 psi = 6.8 KPa.

b)

Given that

Volume = 1 liter

We know that 1000 liter = 1 cubic meter.

1 liter =0.264 gallon.

c)

[tex]1\ \frac{lb.s}{ft^2}=47.84\ \frac{Pa.s}{ft^2}[/tex]

(a) Determine the dose (in mg/kg-day) for a bioaccumulative chemical with BCF = 103 that is found in water at a concentration of 0.1 mg/L. Calculate your dose for a 50 kg adult female who drinks 2 L lake water per day and consumes 30 g fish per day that is caught from the lake. Ans. 0.064 mg/kg-d (b) What percent of the total dose is from exposure to the water, and what percent is from exposure to the fish?

Answers

Answer:

0.064 mg/kg/day

6.25% from water, 93.75% from fish

Explanation:

Density of water is 1 kg/L, so the concentration of the chemical in the water is 0.1 mg/kg.

The BCF = 10³, so the concentration of the chemical in the fish is:

10³ = x / (0.1 mg/kg)

x = 100 mg/kg

For 2 L of water and 30 g of fish:

2 kg × 0.1 mg/kg = 0.2 mg

0.030 kg × 100 mg/kg = 3 mg

The total daily intake is 3.2 mg.  Divided by the woman's mass of 50 kg, the dosage is:

(3.2 mg/day) / (50 kg) = 0.064 mg/kg/day

b) The percent from the water is:

0.2 mg / 3.2 mg = 6.25%

And the percent from the fish is:

3 mg / 3.2 mg = 93.75%

The initial internal energy of a mug of coffee is known to be 168 Btu. The initial coffee temperature is approximately 200 F. The room temperature is 70 F. Time passes and the final amount of internal energy in the coffee is 68 Btu. How much heat flowed from the coffee to the room?

Answers

Answer:

100Btu

Explanation:

According to the First law of thermodynamics:

ΔQ = W + ΔU

Where,  

ΔQ is the heat change

W is the amount of work done

ΔU  is change in internal energy

Since, there is no work done on the system as heat is just passing from coffee mug to surroundings, So, W = 0

Thus,

Net heat change = change in internal energy.

Change in internal energy = [tex]U_f-U_i=(68-168)\ Btu=-100\ Btu[/tex]

Thus,

ΔQ = -100 Btu  (negative sign indicates release of heat)

So,  

Heat flown to the room = 100Btu

What is the difference between pound-mass and pound-force?

Answers

Answer:

Pound mass is the unit of mass and which is used in United states customary to describe the mass Slug is also a unit of mass .Pound mass is lbm. But on the other hand pound force is the unit of force.Pound force is lbf.

In SI unit ,the unit of mass is kilogram(kg) and the unit of force is Newton(N)

In CGS system the unit of mass is gram and unit of force is dyne.

A steel band blade, that was originally straight, passes
over8-in.-diameter pulleys when mounted on a band saw. Determine
themaximum stress in the blade, knowing that it is 0.018 in. thick
and0.625 in. wide. Use E = 29 x 106 psi.

Answers

Answer:

[tex]\sigma = 65.25\ ksi[/tex]

Explanation:

given data:

D = 8 inch

R =4 inch

thickness = 0.018 inch

width = 0.625 inch

[tex]E =29*10^6 psi[/tex]

from bending equation we know that

[tex]\frac{\sigma}{y} = \frac{M}{I} = \frac{E}{R}[/tex]

[tex]\sigma = \frac{Ey}{R}[/tex]

Where y represent distance from neutral axis

[tex]y = \frac{t}[2}[/tex]

[tex]y = \frac{0.018}{2}[/tex]

y = 0.009inch

[tex]\sigma = \frac{29*10^6*0.009}{4}[/tex]

[tex]\sigma = 65250\ psi[/tex]

[tex]\sigma = 65.25\ ksi[/tex]

A piston cylinder contains air at 600 kPa, 290 K and a volume of 0.01 m3m3. A constant pressure process gives 18 kJ of work out. What is the final temperature? You may assume ideal gas.

Answers

Answer:

1160 K.

Explanation:

Given that

Initial

Pressure P =600 KPa

Temperature T =290 K

Volume V =0.01 [tex]m^3[/tex]

If we assume that air is s ideal gas the

P V = mRT

R=0.287 KJ/kg.k

now by putting the values in above equation

600 x 0.01 = m x 0.287 x 290

m=0.07 kg

The work out at constant pressure given as

[tex]w=P(V_2-V_1)[/tex]

[tex]18=600(V_2-0.01)[/tex]

[tex]V_2=0.04\ m^3[/tex]

At constant pressure

[tex]\dfrac{T_2}{T_1}=\dfrac{V_2}{V_1}[/tex]

[tex]\dfrac{T_2}{290}=\dfrac{0.04}{0.01}[/tex]

[tex]T_2=1160\ K[/tex]

So the final temperature is 1160 K.

What is the significance of Saint Venant's principle?

Answers

Answer:

While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle.

Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.

Calculate the efficiency of a Carnot Engine working between temperature of 1200°C and 200°C.

Answers

Answer:

efficiency = 0.678

Explanation:

First we have to change temperatures from °C to K (always in thermodynamics absolute temperature is used).

[tex]\text{hot body temperature,}T_H = 1200 \circC + 273.15 = 1473.15 K[/tex]

[tex] \text{cold body temperature,} T_C = 200 \circC + 273.15 = 473.15 K[/tex]

Efficiency [tex] \eta [/tex] of a carnot engine can be calculated only with hot body and cold body temperature by

[tex] \eta = 1 - \frac{T_C}{T_H}[/tex]

[tex] \eta = 1 - \frac{473.15 K}{1473.15 K}[/tex]

[tex] \eta = 0.678[/tex]

The time factor for a doubly drained clay layer
undergoingconsolidation is 0.2
a. What is the degree of consolidation (Uz) at z/H=0.25,
0.5,and 0.75
b. If the final consolidation settlement is expected to be
1.0m, how much settlement has occurred when the time factor is 0.2
andwhen it is 0.7?

Answers

Answer with Explanation:

Assuming that the degree of consolidation is less than 60% the relation between time factor and the degree of consolidation is

[tex]T_v=\frac{\pi }{4}(\frac{U}{100})^2[/tex]

Solving for 'U' we get

[tex]\frac{\pi }{4}(\frac{U}{100})^2=0.2\\\\(\frac{U}{100})^2=\frac{4\times 0.2}{\pi }\\\\\therefore U=100\times \sqrt{\frac{4\times 0.2}{\pi }}=50.46%[/tex]

Since our assumption is correct thus we conclude that degree of consolidation is 50.46%

The consolidation at different level's is obtained from the attached graph corresponding to Tv = 0.2

i)[tex]\frac{z}{H}=0.25=U=0.71[/tex] = 71% consolidation

ii)[tex]\frac{z}{H}=0.5=U=0.45[/tex] = 45% consolidation

iii)[tex]\frac{z}{H}=0.75U=0.3[/tex] = 30% consolidation

Part b)

The degree of consolidation is given by

[tex]\frac{\Delta H}{H_f}=U\\\\\frac{\Delta H}{1.0}=0.5046\\\\\therefore \Delta H=50.46cm[/tex]

Thus a settlement of 50.46 centimeters has occurred

For time factor 0.7, U is given by

[tex]T_v=1.781-0.933log(100-U)\\\\0.7=1.781-0.933log(100-U)\\\\log(100-U)=\frac{1.780-.7}{0.933}=1.1586\\\\\therefore U=100-10^{1.1586}=85.59[/tex]

thus consolidation of 85.59 % has occured if time factor is 0.7

The degree of consolidation is given by

[tex]\frac{\Delta H}{H_f}=U\\\\\frac{\Delta H}{1.0}=0.8559\\\\\therefore \Delta H=85.59cm[/tex]

Determine if the following errors are systematic or random. Justify your response. (a) Effect of temperature on the circuitry of an electronic measurement device. (b) Effect of parallax on the reading of a needle-type analog voltmeter. (c) Effect of using an incorrect value of emissivity in the readings of an infrared thermometer.

Answers

Answer:

a) temperature: random error

b) parallax: systematic error

c) using incorrect value: systematic error

Explanation:

Systematic errors are associated with faulty calibration or reading of the equipments used and they could be avoided refining your method.

A closed system consisting of 4 lb of a gas undergoes a process during which the relation between pressure and volume is pVn 5 constant. The process begins with p1 5 15 lbf/in.2, 1 5 1.25 ft3/lb and ends with p2 5 53 lbf/in.2, 2 5 0.5 ft3/lb. Determine (a) the volume, in ft3, occupied by the gas at states 1 and 2 and (b) the value of n. (c) Sketch Process 1–2 on pressure–volume coordinates.

Answers

Answer:

V1=5ft3

V2=2ft3

n=1.377

Explanation:

PART A:

the volume of each state is obtained by multiplying the mass by the specific volume in each state

V=volume

v=especific volume

m=mass

V=mv

state 1

V1=m.v1

V1=4lb*1.25ft3/lb=5ft3

state 2

V2=m.v2

V2=4lb*0.5ft3/lb=   2ft3

PART B:

since the PV ^ n is constant we can equal the equations of state 1 and state 2

P1V1^n=P2V2^n

P1/P2=(V2/V1)^n

ln(P1/P2)=n . ln (V2/V1)

n=ln(P1/P2)/ ln (V2/V1)

n=ln(15/53)/ ln (2/5)

n=1.377

Other Questions
The SRT partnership agreement specifies that partnership net income be allocated as follows: Partner S Partner R Partner T Salary allowance $20,000 $25,000 $15,000 Interest on average capital balance 10% 10% 10% Remainder 30% 30% 40% Average capital balances for the current year were $60,000 for S, $50,000 for R, and $40,000 for T. Refer to the information given. Assuming a current year net income of $45,000, what amount should be allocated to each partner? Partner S Partner R Partner T A. $17,000 $21,000 $7,000 B. ($9,000) ($9,000) ($12,000) C. $13,500 $13,500 $18,000 D. $22,500 $22,500 $0 Solve -8-3(w+13)=4(w+11)-7w The nebular theory is the most widely accepted view of the origin of our solar system. Which of the following is a short description of the nebular theory?A) Thermonuclear fusion created the rotating rings of debris in our solar system.B) Hydrogen and helium were formed from expansion approximately 13.7 billion years ago to create our solar system.C) High heat and pressure led to the formation of magma bodies, which cooled, condensed, and formed the objects in our solar system.D) A large cloud of space gas and dust condensed and contracted to form a rotating disk with a star formed at the center. Repeated collisions caused bodies to coalesce, leading to the current configuration of our solar system.E) Radiation of energy from a catastrophic explosion created a disk-shaped mass of gas and dust. 5. Briefly outline the Union's strategy for fighting the Civil War in the West. 500 mL of a solution contains 1000 mg of CaCl2. Molecular weight of CaCl2 is 110 g/mol. Specific gravity of the solution is 0. CaCl2 = Ca++ + 2Cl-a) Express the concentration of the solution in % w/vb) Express the concentration in ratio strengthc) Express the concentration in molarity (M)d) Express the concentration in molality (m)e) How many equivalents of calcium chloride would be in 1.5 L of the solution? Isabelle decides to shave a 1 x 2-inch patch of her hair and the same-sized patch of herdog's hair. She then measures the growth every day for three weeks.i 7) What question is Isabelle trying to answer? Which of the following sets of ordered pairs represents a function?A. {(-8,-14), (-7,-12), (-6,-10), (-5,-8)}B. {(-4,-14), (-9,-12), (-6,-10), (-9,-8)}C. {(8,-2), (9,-1), (10,2), (8,-10)}D. {(-8,-6), (-5,-3), (-2,0), (-2,3)} Approximately 3 out of every 25 Americans live in California. About 3 out of every 50 Americans live in NeYork, and about 2 out of every 25 Americans live in Texas.a.Which state has the largest population? What was Gall's view of future relations between the Plains Indians and the settlers ? You want to test pentapeptides (short peptides with only five amino acids) for their ability to bind to and inhibit a particular receptor. To do this, you set out to synthesize all possible pentapeptides and test each individually. Assuming youll use just the 20 common amino acids, how many different pentapeptides will you have to test for receptor binding You drop a ball from a window on an upper floor of a building and it is caught by a friend on the ground when the ball is moving with speed vf. You now repeat the drop, but you have a friend on the street below throw another ball upward at speed vf exactly at the same time that you drop your ball from the window. The two balls are initially separated by 41.1 m. (a) At what time do they pass each other? s (b) At what location do they pass each other relative to the window? Read the sentence from "The Magic Prison." He spent hours each day before first one mirror and then another; and he did not notice that the windows were growing narrower and the mirrors wider. How does this sentence affect the story? A. It foreshadows the palace becoming a prison later in the text. B. It demonstrates the prince's inner conflict at that moment in the story. C. It introduces the prince's character at the beginning of the plot. D. It symbolizes selfishness and vanity at the story's turning point. Bill invests $2,977 in a retirement accountwith a fixed annual interest rate of 6%compounded quarterly. What willthe account balance be after 13 years? An explorer is caught in a whiteout (in which the snowfall is so thick that the ground cannot be distinguished from the sky) while returning to base camp. He was supposed to travel due north for 5.3 km, but when the snow clears, he discovers that he actually traveled 8.3 km at 50 north of due east. (a) How far and (b) in what direction (south of due west) must he now travel to reach base camp? Which of the following shows the correct order from coldest to hottest average annual temperature?A: Taiga-tundra-Rain forest-Temperature ForestB:Rain forest-Temperature Forest-Taiga-TundraC: Temperature forest-Taiga-Tundra-Rain forestD:Tundra-Taiga-temperature forest-Rain forest he economy is in long-run equilibrium when there is a correctly anticipated increase in aggregate demand. In new Keynesian theory, the price level will rise __________ in the short run than it is predicted to rise in new classical theory. Water's high heat of vaporization allows it to cool us off when we sweat.TrueFalse ___________ biome contains a nutrient-rich environment created by falling leaves and trapped organic materials from the large trees, and it provides the ecosystem service of filtering pollutants from water. One way to lower NOx emissions in diesel engines is to add water to the fuel. Since water is not mixable with diesel fuel, it has to been emulsified by a surfactant. Explain how it works and why. When point charges q = +8.4 uC and q2 = +5.6 uC are brought near each other, each experiences a repulsive force of magnitude 0.66 N. Determine the distance between the charges.ns