Define the isentropic efficiency for each of the following 3. a. i. Adiabatic turbine ii. Adiabatic compressor iii. Adiabatic nozzle

Answers

Answer 1

Answer:

a)[tex]\eta_{st}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]

b)[tex]\eta_{sc}=\dfrac{\Delta h_{ideal}}{\Delta _{actual}}[/tex]

c)[tex]\eta_{sn}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]

Explanation:

a)

Adiabatic turbine

Adiabatic turbine means turbine can not reject or take heat from surrounding.

Isentropic efficiency of turbine can be define as the ratio of actual work out put to the Ideal or isentropic work out put.Ideal means when turbine will give maximum work and there is no any friction losses we can say when process is isentropic.

Isentropic efficiency of turbine=(Actual work output)/(Ideal work output)

[tex]\eta_{st}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]

b)

Adiabatic compressor

Isentropic efficiency of compressor can be define as the ratio of ideal or isentropic work in put to the actual work  in put.

Isentropic efficiency of turbine=(Ideal work input)/(actual work input)

[tex]\eta_{sc}=\dfrac{\Delta h_{ideal}}{\Delta _{actual}}[/tex]

c)Adiabatic nozzle

We know that nozzle is device which used to accelerate the fluid.

Basically it covert pressure energy to kinetic energy.

Isentropic efficiency of nozzle can be define as the ratio of actual enthalpy drop put to the Ideal or isentropic enthalpy drop.

[tex]\eta_{sn}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]


Related Questions

Horizontal wind turbines have same design for offshore and on shore wind farms. a)-True b)- False

Answers

Answer: False

Explanation: Horizontal axis wind turbines are usually used for generation of the electric power on the off-shore. The generation of horizontal-axis wind turbine works well when it is installed away from the shore because it supports large sized wind turbines so that they can generate high amount of electricity.They are usually not preferred for the on-shore wind farms because they can have small sized wind turbines only.Therefore the statement given is false.

What are the qualities required for a refrigerant? What is meant by the term "flash chamber?"

Answers

Answer:

A good quality refrigerant should be eco friendly.

Explanation:

A refrigerant is a substance that can extract and transfer heat from body to another body or medium.

The desirable qualities required for a refrigerant are :

1. A refrigerant should not deplete ozone layer.

2. A good quality refrigerant should have a low boiling point.

3. It should also have a low melting point.

4. Thermal conductivity of the refrigerant should be high for fast heat transfer.

5. It should have low specific heat.

6. It should have high latent heat.

7. It should have low vapour density.

8. Refrigerant should have high critical pressure and temperature.

9. It should have high enthalpy of vapourization for maximum heat absorption.

10. Refrigerants should not be toxic in nature and non flammable.

11. It should have high coefficient of performance for the working temperature range.

12. It should be easily available and cheap.

Flash Chamber :

A flash chamber in the refrigeration system is also know as the mixing chamber. It is normally used in multistage refrigeration system and is placed in between the expansion valve and the evaporator.

The flash chamber sends only the liquid refrigerant to the evaporator by seperating the liquid from the vapour refrigerant in order to increase the efficiency.

In vibration analysis, can damping always be disregarded?

Answers

In vibration analysis, damping cannot always be disregarded. This is especially the case when the system is excited near the resonance frequency.

How are fluids distributed and transported in a fluid power system?

Answers

Answer and explanation :

Fluid distribution is a new technique to produce and to transmit power from one place to other its play a major role in power distribution it is a process of using fluid (any type of fluid as oil or water ) under pressure to generate to control or to transmit  

fluid power system is divided into two types

Hydraulic fluid power systempneumatic fluid power system

Thermosetting polymers are polymers that becomes soft and pliable when heated. ( True , False )

Answers

False is the answer to the question

Answer:

Thermosetting polymers are polymers that becomes soft and pliable when heated is false

Which of the following is/are not a cutting tool material (mark all that apply)? a. High-speed steel b. Brass c. Coated carbide d. Diamond

Answers

Answer:

The correct option is : b. Brass

Explanation:

The cutting tool materials are materials that are used to make cutting tools. The cutting tools serve a very important roles in the machinery such as milling cutters. The materials used for making the cutting tools must be tougher and harder than the material that is being cut, at all temperatures.

Some of the cutting tool materials are tool steels (carbon tool steel and high speed steel), cemented carbides and super hard materials such as diamond.

Therefore, brass is not used for making cutting tool.

What is a truss? What separates a truss from a frame and other forms of rigid bodies?

Answers

Answer:

The application of force is the main difference between truss and frame.

Explanation:

Truss:

Truss is a collection of beams,which use to handle the tensile and   compression loads . That collection of beams creates rigid structure.

The load on the truss will be acting always at the  at the hinge. Truss is     widely used in the construction areas.                

Frame:

       Like truss, it is also a combination of beams and used to handle the loads. The main difference between truss and frame is the application of load. In the frame load can apply at the any point of the member of frame along  with hinge.

Truss are connected by pin joint and can not transfer moment ,on the other hand frames are connected by rigid joint like welding so frame can transfer moment.

Truss and frame both forms a rigid structure and is used in the construction areas.  

               

Consider a fully developed flow in a circular pipe (negligible entrance effects), how does the convective heat transfer coefficient vary along the flow direction? a) Gradually decrease b) Gradually increase c) Remain constant d) There is not enough information to determine

Answers

Answer: A)  Gradually decrease

Explanation:

  The convection value of heat transfer rate are gradually decreasing with the flow of the heat. Flow in a circular pipe, flow direction does not change in the velocity path. The average of the coefficient of heat transfer and the number of pipes are needed and the effects are get neglected so that is why the flow are fully developed.

To select the center of a line what option must be selected? A. Ortho B. Dynamic input C. Object snap

Answers

Answer:

The correct answer is c. object snap  

Explanation:

In Autocad, the object snap is defined as a drawing aid that is used together with other different commands to help to draw accurately.  It also allows snapping onto a specific object location when there is a picking point. and thus, it helps to select the center of a line.

In an adiabatic process, the temperature of the system remains constant. a)- True b)- False

Answers

Answer:

A. True

Explanation:

A 4.4 HP electric motor spins a shaft at 2329 rpm. Find: The torque load carried by the shaft is closest to: Select one: a)-27.06 ft*lb b. 19.24 ft*lb ? c)-31.17 ftlb d) 119.07 ftlb e)-9.92 ft*lb

Answers

Answer:

Load carried by shaft=9.92 ft-lb

Explanation:

Given:    Power P=4.4  HP

                    P=3281.08 W

Power:  Rate of change of work with respect to time is called power.

We know that P=[tex]Torque\times speed[/tex]

     [tex]\omega=\frac{2\pi N}{60}[/tex] rad/sec

So that P=[tex]\dfrac{2\pi NT}{60}[/tex]

So   3281.08=[tex]\dfrac{2\pi \times 2329\times T}{60}[/tex]

      T=13.45 N-m         (1 N-m=0.737 ft-lb)

 So T=9.92 ft-lb.

Load carried by shaft=9.92 ft-lb

A Carnot cooler operates with COP = 11, whose ambient temperature is 300K. Determine the temperature at which the refrigerator absorbs heat.

Answers

Answer:

275 Kelvin

Explanation:

Coefficient of Performance=11

[tex]T_H=\text {Absolute Temperature of high temperature reservoir=300 K}[/tex]

[tex]T_L=\text {Absolute Temperature of low temperature reservoir}[/tex]

[tex]\text {Coefficient of performance for carnot cooler}\\=\frac {T_L}{T_H-T_L}\\\Rightarrow 11=\frac{T_L}{300-T_L}\\\Rightarrow 11(300-T_L)=T_L\\\Rightarrow 3300-11T_L=T_L\\\Rightarrow 3300=T_L+11T_L\\\Rightarrow 3300=12T_L\\\Rightarrow T_L=\frac {3300}{12}\\\Rightarrow T_L=275\ K\\\Therefore \text{Temperature at which the refrigerator absorbs heat=275 Kelvin}[/tex]

Fluid enters a device at 4 m/s and leaves it at 2 m/s. If there is no change in the PE of tihe flow, and there is no heat and (non-flow) work across boundaries of the device, what is the increase in specific enthalpyof the fluid (hg-hi) in kJ/kg? Assume steady state operation of the device.

Answers

Answer:

[tex]h_2-h_1=6\times 10^{-3}\frac{KJ}{Kg}[/tex]

Explanation:

Now from first law for open system

[tex]h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+w[/tex]

Here given  Q=0 ,w=0

So [tex]h_1+\dfrac{V_1^2}{2}=h_2+\dfrac{V_2^2}{2}[/tex]

[tex]V_1=4 m/s,V_2=2 m/s[/tex]

[tex]h_1+\dfrac{4^2}{2000}=h_2+\dfrac{2^2}{2000}[/tex]

[tex]h_2-h_1=6\times 10^{-3}[/tex]

So increase in specific enthalpy

[tex]h_2-h_1=6\times 10^{-3}\frac{KJ}{Kg}[/tex]

Give two advantages of a four-high rolling mill opposed to a two-high rolling mill for the same output diameter.

Answers

Answer:

Four- high rolling mill                              Two-high rolling mill

1.Small roll radius.That is why required  1.High roll radius.That is  required low power.           .                    why required high power.

2.  Low roll separating force.                   2.High roll separating

                                                                        force

A belt drive was designed to transmit the power of P=7.5 kW with the velocity v=10m/s. The tensile load of the tight side is twice of that of loose side, F1= 2F2. Please calculate the F1, Fe, and Fo.

Answers

Answer:

F₁ = 1500 N

F₂ = 750 N

[tex]F_{e}[/tex] = 500 N

Explanation:

Given :

Power transmission, P = 7.5 kW

                                      = 7.5 x 1000 W

                                      = 7500 W

Belt velocity, V = 10 m/s

F₁ = 2 F₂

Now we know from power transmission equation

P = ( F₁ - F₂ ) x V

7500 = ( F₁ - F₂ ) x 10

750 =  F₁ - F₂

750 = 2 F₂ - F₂      ( ∵F₁ = 2 F₂ )

∴F₂  = 750 N

Now F₁ = 2 F₂

        F₁ = 2 x F₂

        F₁ = 2 x 750

        F₁ = 1500 N   ,   this is the maximum force.

Therefore we know,

[tex]F_{max}[/tex] = 3 x [tex]F_{e}[/tex]

where [tex]F_{e}[/tex] is centrifugal force

 [tex]F_{e}[/tex] = [tex]F_{max}[/tex] / 3

                          = 1500 / 3

                         = 500 N

Determine the constant speed at which the cable at A must be drawn in by the motor in order to hoist the load 6 m in 1.5s

Answers

Final answer:

To hoist a load 6 meters in 1.5 seconds, the cable must be drawn in by the motor at a constant speed of 4 meters per second.

Explanation:

The question asks to determine the constant speed at which a cable must be drawn in by a motor to hoist a load to a certain height within a given time frame. This can be solved by understanding the basic concepts of distance, speed, and time.

To find the constant speed, we use the formula:
Speed = Distance / Time. In this case, the distance is 6 meters (the height the load needs to be hoisted) and the time is 1.5 seconds.

Plugging the numbers into the formula gives:
Speed = 6m / 1.5s = 4 m/s.

Therefore, the cable must be drawn in by the motor at a constant speed of 4 meters per second to hoist the load 6 meters in 1.5 seconds.

The manufacturing department of a factory is the only department that needs to be practicing Lean Manufacturing philosophy. a)- True b)- False

Answers

B) False - there are more departments that need to practice Lean Manufacturing philosophy

A negative normal strain can be considered to increase or decrease volume depending on the coordinate system used. a)True b)- False

Answers

Answer:

The given statement "A negative normal strain can be considered to increase or decrease volume depending on coordinate system used" is

b) False

Explanation:

Normal strain refers to the strain due to normal stress which is when the applied stress is perpendicular to the surface.

Negative normal strain results in compression or contraction further leading to a decrease in volume while a positive normal strain results in elongation thus giving rise to an increase in volume.

The uniform wall thickness that is usually targeted for plastic injection molded parts is roughly: A. 0.5 mm B. 3 mm C. 7 mm D. 12 + mm

Answers

Answer:

B. 3 m

Explanation: For plastic injection moulded the thickness is generally between 2 mm to 3 mm

the wall is not too thick because during cooling process there should be defects so thickness of wall is no too high and there is also a problem if we use thicker wall that we need more material for moulding process so the thickness should be in between 2 to 3 mm which is in option B so option B will be the correct option

What is refrigeration capacity and what is meant by a "ton" of refrigeration?

Answers

Answer:

1 ton refrigeration =3.517 kJ/s = 3.517 kW

Explanation:

Refrigeration capacity is defined at the  measure of the effective cooling capacity of a refrigerator which is  expressed in Btu per hour or in tons.

1 ton capacity is a unit of air conditioning and refrigeration which  measure the capacity of air conditioning and refrigeration unit.

One ton  is equal to removal of 3025kcal heat per hour

1 ton refrigeration = 200 Btu/min = 3.517 kJ/s = 3.517 kW = 4.713 HP

Discuss the importance of dust and fluff removal from spinning mills and how it is realised in air conditioning plants

Answers

Answer:

Removal of dust and fluff from spinning mill is important as it has adverse and detrimental effects on the health of the workers in these industries. Tiny and microscopic particles of various substances present in the surrounding air is transferred from one place to another and these causes various respiratory diseases and pose health hazards for the workers and make work environment unhealthy and hazardous thus affecting the over all efficiency and productivity.

Cotton dust , the major pollutant, when breathed in affetcs the lungs badly and workers experience symptoms such as respiratory problems, coughing, tightness in chest, etc.  Thus to ensure proper health of the workers spinning mills have been provided with powerful air conditioning to ensure purity of air, to maintain proper moisture levels and to ensure dust and fluff removal.

The dust and fluff laiden air is humidified, purified and then recirculated. Optimization of number of air changes/hour to clean air stream and prevent any health risk of the workers.

Air is compressed by a compressor from v1 = 1.0 m3/kg to v2 = 0.71 m3/kg in a reversible, isothermal process. The air temperature is maintained constant at 25 oC during this process as a result of heat transfer to the surroundings. Air moves through the compressor at a rate of m = 1 kg/s. a)- Determine the entropy change of the air per kg of air. b)- What is the power required by the compressor? c)- What is the rate at which entropy leave the compressor?

Answers

Answer:

(a)[tex]s_2-s_1[/tex]= -0.098 KJ/kg-K

(b)P= 29.8 KW

(c) [tex]S_{gen}[/tex]= -0.098 KW/K  

Explanation:

[tex]V_1=1m^3/kg,V_2=0.71m^3/kg,[/tex] mass flow rate= 1 kg/s.

T=25°C

Air treating as ideal gas

(a)

We know that entropy change for ideal gas between two states

 [tex]s_2-s_1=mC_v\ln \frac{T_2}{T_1}+mR\ln \frac{V_2}{V_1}[/tex]

Given that this is isothermal process so

 [tex]s_2-s_1=mR\ln \frac{V_2}{V_1}[/tex]

[tex]s_2-s_1=1\times 0.287\ln \frac{0.71}{1}[/tex]

[tex]s_2-s_1[/tex]= -0.098 KJ/kg-K

(b)

Power required

[tex]P=\dot{m}T\Delta S[/tex]

[tex]P=1\times (273+25)(s_2-s_1)[/tex]

[tex]P=1\times (273+25)(-0.098)[/tex]

P= -29.8 KW        (Negative sign means it is compression process.)

(c)

Rate of entropy generation [tex]S_{gen}[/tex]

[tex]S_{gen}=\dot{m}T\Delta S[/tex]  

[tex]S_{gen}[/tex]=1(-0.098)

 [tex]S_{gen}[/tex]= -0.098 KW/K  

What are the major limitations of melt spinning method? a)-good for limited alloys and limited shapes b)-good for limited shapes, high cost c)-good for limited thickness and limited shapes d)-high cost, high energy consumption

Answers

Answer:d

Explanation:

Melt spinning is the economical process to manufacture synthetic fiber.

Major limitations of Melt spinning is

only suitable for thermoplastic fiberHigh heat inputRequire periodic maintenance of machinePrecise control of temperature is must.  

Although it is very efficient method as it does not create any environment Pollution

Air enters a compressor at 100 kPa, 10°C, and 220 m/s through an inlet area of 2 m2. The air exits at 2 MPa and 240°C through an area of 0.5 m2. Including the change in kinetic energy, determine the power consumed by this compressor, in kW.

Answers

Answer:

Power consume by compressor=113,726.87 KW

Explanation:

Given:[tex]P_{1}=100KPa ,V_{1}=200 m/s,T_{1}=283 K, A_{1} =2m^2[/tex]

 [tex]P_{2}=2000KPa ,T_{2}=513 K,A_{2}=0.5m^2[/tex]

Actually compressor is an open system, so here we will use first law of thermodynamics for open system .

We know that first law of thermodynamics for steady flow

[tex]h_{1}+\frac{V_{1} ^{2} }{2}+Q=h_{2}+\frac{V_{2} ^{2} }{2}+W[/tex]

We know that[tex]C_{p}=1.005\frac{Kj}{KgK}[/tex]and we take the air as ideal gas.

System is in steady state then mass flow rate in =mass flow rate out

Mass flow rate= [tex]density\times area\times velocity[/tex]

So mass flow rate =[tex]\rho _{1}V_{1}A_{1}[/tex]     ,[tex]\rho =\frac{P}{RT}[/tex]

                                   =1.23×200×2 Kg/s

                                  =541.17 Kg/s

[tex]\rho _{1}V_{1}A_{1}=\rho _{2}V_{2}A_{2}[/tex]

[tex]\rho _{2}=13.58\frac{Kg}{{m}^3}[/tex]  ,[tex]\rho =\frac{P}{RT}[/tex]

[tex]V_{2}[/tex]=80.07 m/s

Enthalpy of ideal gas h=[tex]C_{p}\times T[/tex]

So[tex] h_{1}=1.005\times283=284.41\frac{Kj}{Kg}[/tex]

             [tex]h_{2}=1.005\times513=515.56\frac{Kj}{Kg}[/tex]

Now by putting the values

[tex]284.41+\frac{220 ^{2} }{2000}+Q=515.56+\frac{80.07 ^{2} }{2000}+W[/tex]

Here Q=0 because heat transfer is zero here.

W= -210.15 KJ/kg

So power consume by compressor=541.17×210.15

                                                          =113,726.87 KW

If a hoist lifts a 4500lb load 30ft in 15s, the power delivered to the load is a) 18.00hp b) 9000hp c) 16.36hp d) None of the above

Answers

Answer:

Explanation:

load = 4500lb                   lift height= 30 ft

time =15 s

velocity=[tex]\frac{30}{15}[/tex] ft/s

velocity=2 ft/s

power = force[tex]\times[/tex] velocity

power=[tex]{4500}\times2[/tex]

power= 9000 lb ft/s

1 hp= 550 lb ft/s

power= [tex]\frac{9000}{550} =16.36[/tex] hp

there are totally (___) slip system in an FCC metal.

Answers

Answer: 12

Explanation: In FCC metal lattice there are total four octahedral slip plane and six direction where each are common to two octahedral plane   and so that gives total of three slip direction . So the total slip system is multiplication of the slip plane and the slip direction that is twelve.

Slip system=Slip plane×Slip direction

Slip system =4×3=12

Therefore there are total 12 slip system in the FCC metal lattice.

An oscillating mechanism has a maximum displacement of 3.2m and a frequency of 50Hz. At timet-0 the displacement is 150cm. Express the displacement in the general form Asin(wt + α).

Answers

Given:

max displacement, A = 3.2 m

f= 50 Hz

at t = 0, displacement, d = 150 cm = 1.5 m

Solution:

Displacement in the general form is represented by:

d = Asin(ωt ± α)

d = 3.2sin(2πft ± α)

d = 3.2sin(100πt ± α)                    

where,

A = 3.2 m,            

ω = 2πf = 100π

Now,

at t = 0,

1.5 = 3.2sin(100π(0) ± α )

1.5 = 3.2sinα

sin α = [tex]\frac{1.5}{3.2}[/tex] = 0.4687

α = [tex]sin^{-1}(0.46875)[/tex] = 27.95° = 0.488 radian

Now, we can express displacement in the form of 'Asin(wt + α)' as:

d = 3.2sin(100πt ± 0.488 )

A flywheel made of Grade 30 cast iron (UTS = 217 MPa, UCS = 763 MPa, E = 100 GPa, density = 7100 Kg/m, Poisson's ratio = 0.26) has the following dimensions: ID = 150mm, OD = 250 mm and thickness = 37 mm. What is the rotational speed in rpm that would lead to the flywheel's fracture?

Answers

Answer:

N = 38546.82 rpm

Explanation:

[tex]D_{1}[/tex] = 150 mm

[tex]A_{1}= \frac{\pi }{4}\times 150^{2}[/tex]

              = 17671.45 [tex]mm^{2}[/tex]

[tex]D_{2}[/tex] = 250 mm

[tex]A_{2}= \frac{\pi }{4}\times 250^{2}[/tex]

              = 49087.78 [tex]mm^{2}[/tex]

The centrifugal force acting on the flywheel is fiven by

F = M ( [tex]R_{2}[/tex] - [tex]R_{1}[/tex] ) x [tex]w^{2}[/tex] ------------(1)

Here F = ( -UTS x [tex]A_{1}[/tex] + UCS x [tex]A_{2}[/tex] )

Since density, [tex]\rho = \frac{M}{V}[/tex]

                        [tex]\rho = \frac{M}{A\times t}[/tex]

                        [tex]M = \rho \times A\times t[/tex][tex]M = 7100 \times \frac{\pi }{4}\left ( D_{2}^{2}-D_{1}^{2} \right )\times t[/tex]

                        [tex]M = 7100 \times \frac{\pi }{4}\left ( 250^{2}-150^{2} \right )\times 37[/tex]

                        [tex]M = 8252963901[/tex]

∴ [tex]R_{2}[/tex] - [tex]R_{1}[/tex] = 50 mm

∴ F = [tex]763\times \frac{\pi }{4}\times 250^{2}-217\times \frac{\pi }{4}\times 150^{2}[/tex]

  F = 33618968.38 N --------(2)

Now comparing (1) and (2)

[tex]33618968.38 = 8252963901\times 50\times \omega ^{2}[/tex]

∴ ω = 4036.61

We know

[tex]\omega = \frac{2\pi N}{60}[/tex]

[tex]4036.61 = \frac{2\pi N}{60}[/tex]

∴ N = 38546.82 rpm

Major processing methods for fiberglass composited include which of the following? Mark all that apply) a)- Open Mold b)- Closed Mold c)- Preforming d)- Postforming e)- None of the above f)- All the above

Answers

Answer:

it is f all of the above

Explanation:

let me know if im right

im not positive if im right but i should be right

A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water that enters the evaporator at 500C at a rate of 0.065 kg/s and leaves at 40°C. The refrigerant enters the evaporator at 20°C with a quality of 23 percent and leaves at the inlet pressure as saturated vapor. The refrigerant loses 300 W of heat to the surroundings as it flows through the compressor and the refrigerant leaves the compressor at 1.4 MPa at the same entropy as the inlet. Determine: (a) The degrees of subcooling of the refrigerant in the condenser, b)-The mass flow rate of the refrigerant . (c) The heating load and the COP of the pump, and d)-The theoretical minimum power input to the compressor for the same heating load.

Answers

Answer:2.88

Explanation:

Other Questions
Samples from the seafloor around the Mid-Atlantic Ridge and the East Pacific Rise show that both areas have been creating new material in the last five million years. Samples from the East Pacific Rise show the five million year old seafloor is three times as wide as similarly aged material from the Mid-Atlantic Ridge. What does this say about the rate of seafloor growth in the East Pacific X=2X=5 X=2, x=5No solution what is y=2x^2-32x+56 rewritten in the form of y=a(x-h)^2+k ? and what is the x-coordianate of the mininum? 13. For what value of b would the following system of equations have an infinite number of solutions?9x + 12y = 216x + 8y = 7bPlease explain and show steps :) A recent article in a college newspaper stated that college students get an average of 5.5 hrs of sleep each night. A student who was skeptical about this value decided to conduct a survey by randomly sampling 25 students. On average, the sampled students slept 6.25 hours per night. Identify which value represents the sample mean and which value represents the claimed population mean. Water flows at the rate of 200 I/s upwards through a tapered vertical pipe. The diameter at Marks(3) CLO5) the bottom is 240 mm and at the top 200 mm and the length is 5m. The pressure at the bottom is 8 bar, and the pressure at the topside is 7.3 bar. Determine the head loss through the pipe. Express it as a function of exit velocity head. Which is a major drawback to the use of ethanol-based energy? a. The use of ethanol is only efficient near rivers. b.Ethanol creates toxic waste that must be stored forever. c.Burning ethanol releases greenhouse gases. d.Ethanol may run out in the next 100 years Do quasars reside within or without side of galaxies? Read the following poem by Emily Dickinson.Hope is the thing with feathers,That perches in the soul,And sings the tune without the words, and never stops at all,And sweetest in the gale is heard, and sore must be the stormThat could abash the little birdThat kept so many warm.Ive heard it in the chillest landand on the strangest sea,Yet, never in extremity,It asked a crumb of me.What is the tone of this poem? Ammonium chloride, NH4Cl, is a salt formed from the neutralization of the weak base ammonia, NH3, with the strong acid hydrochloric acid. Given that the value of Kb for ammonia is 1.8105, what is the pH of a 0.176 M solution of ammonium chloride at 25C? 48:15The function f(x) = (x - 4)(x - 2) is shownWhat is the range of the function?OOall real numbers less than or equal to 3all real numbers less than or equal to -1all real numbers greater than or equal to 3all real numbers greater than or equal to - 1 Find the value of m Due to poorer soil,agriculture and raising livestock is centered around in the west part of china.A.wheat fieldB.rice farmsC.banana plantationsD.animal pastures An abstract method ____.is any method inthe abstract classcannot beinheritedhas nobodyis found in asubclass and overrides methods in a superclass using the reservedword abstract Somebody help and explain!!! How can you find the magnitude of a vector , where the horizontal change is x and the vertical change is y? Suppose a 50 turn coil lies in the plane of the page in a uniform magnetic field that is directed into the page. The coil originally has an area of 0.325 m^2. It is squished to have no area in 0.225 s. What is the magnitude of the average induced emf in volts if the uniform magnetic field has a strength of 1.5 T? Benson, a black lab, had learned to associate two stimuli with getting taken for a walk, his owner getting out his leash, and his owner getting out a belt. Every time his owner picked up his belt, Benson would jump around and get excited. His owner wanted Benson to stop that so he repeatedly took out his belt without taking Benson for a walk, and always took him for a walk when getting out his leash. He was teaching Benson to ________a) generalize.b) extinguish.c) discriminate.d) learn preferentially. A sample of nitrogen gas had a volume of 500. mL, a pressure in its closed container of 740 torr, and a temperature of 25 C. What was the new volume of the gas when the temperature was changed to 50 C and the new pressure was 760 torr? 200 pills , 1 pill a day , how many months is this?