Describe where the function has a vertical asymptote and how you found your answer. Remember that an asymptote is represented by an equation of a line and not just a single value.

Describe Where The Function Has A Vertical Asymptote And How You Found Your Answer. Remember That An

Answers

Answer 1

Answer:

x=-4 is a vertical asymptote

Step-by-step explanation:

A vertical asymptote of the graph of a rational function f(x) is a line x=a, such that one of of these statements is fulfilled

[tex]\displaystyle \lim _{x\to a^{+}}f(x)=\pm \infty[/tex]

[tex]\displaystyle \lim _{x\to a^{+}}f(x)=\pm \infty[/tex]

Our function is

[tex]\frac{x^2+7x+10}{x^2+9x+20}[/tex]

To find the candidate values of a, we set the denominator to zero

[tex]x^2+9x+20=0[/tex]

Factoring

[tex](x+4)(x+5)=0[/tex]

Which gives us two possible vertical asymptotes: x=-4 or x=-5

We now must confirm if one of the two conditions are true for each value of a

[tex]\displaystyle \lim _{x\to -4^{-}}\frac{x^2+7x+10}{x^2+9x+20}[/tex]

The numerator can be factored as

[tex]x^2+7x+10=(x+2)(x+5)[/tex]

So our limit is

[tex]\displaystyle \lim _{x\to -4^{-}}\frac{(x+2)(x+5)}{(x+4)(x+5)}[/tex]

Simplifying:

[tex]=\displaystyle \lim _{x\to -4^{-}}\frac{(x+2)}{(x+4)}=+\infty[/tex]

We can see x=-4 is a vertical asymptote

Checking with x=-5, and using the simplified limit:

[tex]\displaystyle \lim _{x\to -5^{-}}\frac{(x+2)}{(x+4)}=3[/tex]

[tex]\displaystyle \lim _{x\to -5^{+}}\frac{(x+2)}{(x+4)}=3[/tex]

The limit exists and is 3, so x=-5 is NOT a vertical asymptote

The only vertical asymptote of the function is x=4


Related Questions

Use synthetic division to check that the number k is a lower bound for the real zeros of the function f.

k=-7; f(x)= 5x^3 - 8x^2 + x -5

Answers

Answer:

  see below

Step-by-step explanation:

The signs on the bottom line alternate, so the value of k is, indeed, a lower bound.

_____

Comment on lower bound for this cubic

The signs of the coefficients alternate, so Descartes' rule of signs will tell you there are zero negative real roots. That is, 0 is a lower bound for real roots. No synthetic division is needed.

Mrs.Gonzalez has 36 students in her class and only 9 of them are boys . What percent of the students in Mrs.Gonzalez class are boys? Write a proportion and show your work please

A new pair of wireless earbuds cost $125. You found earbuds online and the website is offering a 20% discount if you buy them this week. But you remember seeing the same earbuds at your local store on sale for $90. Where will you purchases earbuds? Show work to support your answer please

Answers

Question #1:

To find the percentage of boy's in the class, divide.

9 / 36 = 0.25

0.25 * 100% = 25% (boys in the class)

We can write this proportion as 9/36 since this is the same as 25%.

_________

Question #2:

We know that the ear buds in both options cost $125.

The earbuds online are on a 20% discount.

The earbuds in store are on a 90$ sale

Lets find the discount for the online pair.

20% = 0.2

125 * 0.2 = 25

125 - 25 = $100 (price after discount)

After solving we can see that the earbuds in store are a better price. So, you will purchase the ear buds in store.

_________

Best Regards,

Wolfyy :)

Jill planted two flowers in her garden. The first flower is 2 inches tall, and it is growing 2.25 inches each week. The second plant is 5.75 inches tall, and it is growing 1.5 inches each week. How many weeks will it be until the two plants are the same height?

Answers

Answer:it will take the two plants 6 weeks before the heights are the same

Step-by-step explanation:

Jill planted two flowers in her garden.

The first flower is 2 inches tall, and it is growing 2.25 inches each week. Since the growth rate is in an arithmetic progression, we will apply the formula for finding the nth term of the series

Tn = a + (n - 1)d

Tn = the nth height of the first flower

a = the initial height of the first flower

d = the common difference in height of the first flower weekly

n = number of weeks

From the information given,

For the first flower,

a = 2

d = 2.25

Tn ?

n ?

Tn = 2 + (n - 1)2.25

For the second flower,

a = 5.75

d = 1.5

Tn ?

n ?

Tn = 5.75 + (n - 1)1.5

To determine the number of weeks that it will take until the two plants are the same height, we would equate Tn for both flowers. It becomes

2 + (n - 1)2.25 = 5.75 + (n - 1)1.5

2 + 2.25n - 2.25 = 5.75 + 1.5n - 1.5

Collecting like terms

2.25n - 1.5n = 5.75 - 1.5 - 2 + 2.25

0.75n = 4.5

n = 4.5/0.75

n = 6 weeks

Final answer:

To find out how many weeks it will be until the two plants are the same height, set up an equation and solve for x. The plants will be the same height after 5 weeks.

Explanation:

To find out how many weeks it will be until the two plants are the same height, we need to set up an equation. Let the number of weeks be represented by x. The height of the first plant can be represented as 2 + 2.25x, and the height of the second plant can be represented as 5.75 + 1.5x. Set these two expressions equal to each other: 2 + 2.25x = 5.75 + 1.5x.



To solve for x, subtract 1.5x from both sides: 2 + 0.75x = 5.75.



Then, subtract 2 from both sides: 0.75x = 3.75.



Finally, divide both sides by 0.75 to solve for x: x = 5.

A girl flies a kite at a height 34 m above her hand. If the kite flies horizontally away from the girl at the rate of 3 m/s, at what rate is the string being let out when the length of the string released is 60 m? Assume that the string remains taut.

Answers

Answer:

2.47 m/s

Step-by-step explanation:

A girl flies a kite at a height 34 m above her hand.

It is vertical height of kite, 34 m

The horizontal rate of kite, [tex]\dfrac{dx}{dt}=3/ m/s[/tex]

Let the length of string released be s m

In right triangle using pythagoreous theorem

[tex]s^2=34^2+x^2[/tex]

For s = 60 m ,

[tex]60^2=34^2+x^2[/tex]

[tex]x=49.44[/tex] m

Differentiate the equation  [tex]s^2=34^2+x^2[/tex]  w.r.t  t

[tex]2s\dfrac{ds}{dt}=0+2x\dfrac{dx}{dt}[/tex]

[tex]2\cdot 60\cdot \dfrac{ds}{dt}=2\cdot 49.44\cdot 3[/tex]

[tex]\dfrac{ds}{dt}=\dfrac{296.62}{120}[/tex]

[tex]\dfrac{ds}{dt}=2.47[/tex] m/s

Hence, the rate of string letting out 2.47 m/s

During one month, a rental agency rented a total of 155 cars, trucks, and vans. Nine times as many cars were rented as vans, and three times as many vans were rented as trucks. Let x represent cars, let y represent vans and let z represent trucks. Write a system of three equations that represent the number of each vehicle rented

Answers

Final answer:

The system of equations that represents the number of each vehicle rented is: x + y + z = 155, x = 9y, and y = 3z.

Explanation:

The question represents a system of linear equations. With the agreed notations: Let x represent cars, let y represent vans and let z represent trucks. We are given that:

The total number of all vehicles rented was 155. Therefore, the first equation is: x + y + z = 155. It was also given that nine times as many cars were rented as vans. Thus, the second equation is: x = 9y. Finally, three times as many vans were rented as trucks, giving us the third equation: y = 3z.

Learn more about Linear Equations here:

https://brainly.com/question/32634451

#SPJ3

The perpendicular bisector of side AB of triangle ABC intersects the extension of side AC at D. Find the measure of angle ABC if measurement of angle CBD=16 degrees and measurement of angle ACB=118 degrees

Answers

Answer:

  23°

Step-by-step explanation:

Let the interior angles of ΔABC be referenced by A, B, and C. The definition of point D means that ΔDAB is an isosceles triangle, so we have the relations ...

  A + B + 118 = 180 . . . . interior angles of ΔABC

  A = B +16 . . . . . . . . . . base angles of ΔDAB

Using the expression for A in the second equation to substitute into the first equation, we get ...

  (B+16) +B +118 = 180

  2B + 134 = 180 . . . . . collect terms

  2B = 46 . . . . . . . . . . . subtract 134

  B = 23 . . . . . . . . . . . . divide by 2

m∠ABC = 23°

The angle of inclination from the base of skyscraper A to the top of skyscraper B is approximately 10.4degrees. If skyscraper B is 1472 feet​ tall, how far apart are the two​ skyscrapers? Assume the bases of the two buildings are at the same elevation.

Answers

Answer:

  8020 feet

Step-by-step explanation:

The tangent relation can be used to answer this question, since it relates the sides of a right triangle to the acute angle.

 tan(elevation angle) = (1472 ft)/(distance between)

Then ...

  distance between = (1472 ft)/tan(10.4°) ≈ 8020 ft

The skyscrapers are 8020 feet apart.

Final answer:

Using the tangent of the given angle of inclination and the height of skyscraper B, the horizontal distance between the bases of the two skyscrapers is calculated to be approximately 8077 feet.

Explanation:

The question is looking for the horizontal distance between the bases of two skyscrapers, given the height of one skyscraper and the angle of inclination from its base to the top of the other. This scenario forms a right triangle, where the height of skyscraper B is the opposite side, the distance between the skyscrapers is the adjacent side, and the angle of inclination is the given angle. We can use the tangent trigonometric function, which is the ratio of the opposite side to the adjacent side, to solve for the distance.

To calculate the distance (adjacent side) we can rearrange the equation: Tan(angle) = opposite/adjacent, to: Adjacent = opposite/tan(angle). Plugging in our given values we find: Distance = 1472 feet / tan(10.4 degrees) = approximately 8077 feet. Thus, the two skyscrapers are about 8077 feet apart.

Learn more about Trigonometry here:

https://brainly.com/question/11016599

#SPJ3

Elizabeth brought a box of donuts to share. There are​ two-dozen (24) donuts in the​ box, all identical in​ size, shape, and color. Three are​ jelly-filled, four are​ lemon-filled, and seventeen are​ custard-filled. You randomly select one​ donut, eat​ it, and select another donut.
Find the probability of selecting a lemon​-filled donut followed by a custard-filled donut.

Answers

Answer:

P = 68/552 = 0.123 or 12.3%

Step-by-step explanation:

First, let's calculate the probability of getting a lemon donut. We have only 4 lemon donut among 24 donuts, so probability is:

P(A) = 4/24

Next, as we already ate the lemon donut, we only have 23 donuts now, and among these 23, 17 are custard filled, so probability of choosing one of those is:

P(B) = 17/23

But we want to know the probability that the custard filled donut is choosen after you eat the lemon one so:

P(B|A) = P(A) * P(B)

Replacing:

P(B|A) = 4/24 * 17/23

P(B|A) = 68/552 = 0.123 or 12.3%

Betty measured the diagonal length of a playing card to be 6 inches. The short side of the card is 4 inches. What is the length of the side of the playing card?

Answers

Answer:

The length of the longer side is 4.48 inches.

Step-by-step explanation:

Given,

Length of diagonal = 6 in

Length of Short side = 4 in

Solution,

Let the length of long side be x.

Since the card is in the shape of rectangle. On drawing the diagonal the rectangle divides into two equal triangle.

So for find out the length of other side we use the Pythagoras theorem, which states that;

"In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides."

[tex]Hypotenuse^2=(Short\ side)^2+(Long\ side)^2[/tex]

[tex]\therefore 6^2=4^2+x^2\\36=16+x^2\\x^2=36-16=20\\x=\sqrt{20} =2\sqrt{5}[/tex]

[tex]x=2\times2.24=4.48\ in[/tex]

Thus the length of the longer side is 4.48 inches.

Find the circumference. Leave your answer in terms of pi.

Answers

The circumference of circle with radius 18 inches in terms of pi is 36π inches

Solution:

From the given figure, radius "r" = 18 inches

We have to find circumference of circle

circumference would be the length of the circle if it were opened up and straightened out to a line segment.

The circumference of circle is given as:

[tex]\text {circumference of circle }=2 \pi r[/tex]

Where "r" is the radius of circle

Substituting the value r = 18 inches in above formula,

[tex]\text {circumference of circle }=2 \times \pi \times 18=36 \pi[/tex]

Thus circumference of circle in terms of pi is 36π inches

Solve the inequality and graph the solution
|2x - 7| > 1

Answers

Answer:

Open circle to the right of 4

x > 4

Step-by-step explanation:

Add 7 to both sides

2x > 8

x > 4

Open circle to the right of 4

write a proportion and solve for the question.

121.32 croatian kuna is worth US$18. How much in US dollars would you get for 375 croatian kuna?

Answers

Answer:

The worth of 375 Croatian Kuna  = $ 55.54

Step-by-step explanation:

Here, given:

The worth of  121.32 Croatian Kuna   = $18

Now, let us assume the worth of 375 Croatian Kuna  = $ m

As, both have same units in conversion at the same rate,

So, by the RATIO OF PROPORTION:

[tex]\frac{18}{121.32 }   = \frac{m}{375}[/tex]

Solving for the value of m, we get:

[tex]m = \frac{18}{121.32}  \times 375  = 55.64[/tex]

or, m = $55.64

Hence, the worth of 375 Croatian Kuna  = $ 55.54

In a calculus​ class, Jack Hartig scored 4 on a quiz for which the class mean and standard deviation were 2.9 and 2.1​, respectively. Norm Alpina scored 8 on another quiz for which the class mean and standard deviation were 6.5 and 1.9​, respectively. Relatively​ speaking, which student did​ better? Make use of​ z-scores.

Answers

Answer: Norm Alpina did better with z-score 0.79

Step-by-step explanation:

Z score formula = (raw score - mean) / standard deviation

For Jack Hartig,

score = 4; mean = 2.9; standard deviation = 2.1

Hence, Z score = (4 - 2.9) /2.1

= 1.1/2.1

= 0.52

For Norm Alpina,

score = 8; mean = 6.5; standard deviation = 1.9

Hence, Z score = (8 - 6.5) /1.9

= 1.5/1.9

= 0.79

Relatively, Norm Alpina did better for having Z score 0.79

By calculating z-scores for both students, which represent the number of standard deviations their scores are from the mean, Norm Alpina has a higher z-score and hence performed relatively better compared to Jack Hartig on their respective quizzes.

In order to determine which student did relatively better on their quizzes, we need to calculate the z-scores for each student. A z-score indicates how many standard deviations an observation is above or below the mean. The formula for a z-score is Z = (X - μ) / σ, where X is the score, μ(mu) is the mean, and σ(sigma) is the standard deviation.

For Jack Hartig:

Z = (4 - 2.9) / 2.1
 = 1.1 / 2.1
 = 0.524

For Norm Alpina:

Z = (8 - 6.5) / 1.9
 = 1.5 / 1.9
 = 0.789

Norm Alpina's z-score is higher, indicating that, relatively speaking, he performed better than Jack Hartig on the quiz based on how their scores relate to their respective class means and standard deviations.

Julie had three wheels from bikes and things that she stacked against the shed. Each wheel fitted so neatly together that Julie took this photo. The radius of the largest sheet is 16 cm and the radius of the middle-sized wheel is 9cm. What is the radius of Julie's smallest wheel?

Answers

Answer:

12.5 cm

Step-by-step explanation:

16 - 9 = 7

7 (1/2) = 3.5

9 + 3.5 = 12.5

15 - 3.5 = 12.5

What is the solution of the linear-quadratic system of equations?

y=x^2+5 −3

y − x = 2

Answers

The answer is (1,-5).

Final answer:

The solution to the linear-quadratic system of equations is found by substituting y from the linear equation into the quadratic equation and solving for x, then back-solving for y. The system has two solutions: (-5, -3) and (1, 3).

Explanation:

To solve the linear-quadratic system of equations:


 y = x2 + 5x - 3
 y - x = 2

First, let's use substitution. The second equation can be rearranged to y = x + 2. Substituting this into the first equation gives us:

x + 2 = x2 + 5x - 3

Let's move all terms to one side to make it a quadratic equation:

x2 + 5x - x - 3 - 2 = 0

x2 + 4x - 5 = 0

This is a quadratic equation that can be factored into:

(x + 5)(x - 1) = 0

Setting each factor equal to zero gives us the solutions for x:


 x + 5 = 0 → x = -5
 x - 1 = 0 → x = 1

Now we'll substitute these x-values back into y = x + 2 to find the corresponding y-values:


 For x = -5, y = -5 + 2 = -3
 For x = 1, y = 1 + 2 = 3

Therefore, the system has two solutions: (-5, -3) and (1, 3).

If we needed to use the quadratic formula, it would be in the context of an equation that is not easily factorable.

Learn more about Linear-Quadratic System here:

https://brainly.com/question/29966230

#SPJ2

The number of years a radio functions is exponentially distributed with parameter λ = 1 8 . If Jones buys a used radio, what is the probability that it will be working after an additional 8 years?

Answers

Answer:

[tex]P(X>8)=e^{-1}[/tex]

Step-by-step explanation:

The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution". The probability density function is given by:

[tex]P(X=x)=\lambda e^{-\lambda x}, x>0[/tex]

And 0 for other case. Let X the random variable that represent "The number of years a radio functions" and we know that the distribution is given by:

[tex]X \sim Exp(\lambda=\frac{1}{8})[/tex]

We can assume that the random variable t represent the number of years that the radio is already here. So the interest is find this probability:

[tex]P(X>8|X>t)[/tex]

We have an important property on the exponential distribution called "Memoryless" property and says this:

[tex]P(X>a+t| X>t)=P(X>a)[/tex]

Where a represent a shift and t the time of interest.

On this case then [tex]P(X>8|X>t)=P(X>8+t|X>t)=P(X>8)[/tex]

We can use the definition of the density function and find this probability:

[tex]P(X>8)=\int_{8}^{\infty} \frac{1}{8}e^{-\frac{1}{8}x}dx[/tex]

[tex]=\frac{1}{8} \int_{8}^{\infty} e^{-\frac{1}{8}x}dx[/tex]

[tex]=[lim_{x\to\infty} (-e^{-\frac{1}{8}x})+e^{-1}]=0+e^{-1}=e^{-1}[/tex]

Find the length of the base of a triangle when one side is 2cm shorter than the base and the other side is 3cm longer than the base. The perimeter is greater than 19cm

Answers

Answer:

  > 6 cm

Step-by-step explanation:

Let b represent the length of the base in cm. Then the perimeter is ...

  b + (b -2) + (b +3) > 19

  3b +1 > 19 . . . . . . collect terms

  3b > 18 . . . . . . . . subtract 1

  b > 6  . . . . . . . . . divide by 3

The length of the base is greater than 6 cm.

Final answer:

The length of the base of the triangle is greater than 6 cm.

Explanation:

To find the length of the base of the triangle, let's assume that the base is x cm. According to the question, one side is 2 cm shorter than the base, so its length would be (x - 2) cm. The other side is 3 cm longer than the base, so its length would be (x + 3) cm. The perimeter of a triangle is the sum of all its sides, so we can set up an equation: x + (x - 2) + (x + 3) > 19. Solving this inequality will give us the value of x, which is the length of the base.

Start by simplifying the equation: 3x + 1 > 19.Subtract 1 from both sides: 3x > 18.Divide both sides by 3: x > 6.

Therefore, the length of the base of the triangle is greater than 6 cm.

Learn more about Length of base of a triangle here:

https://brainly.com/question/35544614

#SPJ2

Machines A and B always operate independently and at their respective constant rates. When working alone, Machine A can fill a production lot in 5 hours, and Machine B can fill the same lot in x hours. When the two machines operate simultaneously to fill the production lot, it takes them 2 hours to complete the job. What is the value of x ?

Answers

Answer:

The value of x is [tex]\frac{10}{3}[/tex] hours.

Step-by-step explanation:

Machine A = 5 hours

Machine B = x hours

Machine A and B = 2 hours

Using the formula: [tex]\frac{T}{A}  + \frac{T}{B} = 1[/tex]

where:

T is the time spend by both machine

A is the time spend by machine A

B is the time spend by machine B

[tex]\frac{2}{5}  + \frac{2}{x}  = 1[/tex]

Let multiply the entire problem by the common denominator (5B)

[tex]5x(\frac{2}{5}  + \frac{2}{x} = 1)[/tex]

2x + 10 = 5x

Collect the like terms

10 = 5x - 2x

10 = 3x

3x = 10

Divide both side by the coefficient of x (3)

[tex]\frac{3x}{3}  = \frac{10}{3}[/tex]

[tex]x = \frac{10}{3}[/tex] hours.

Therefore, Machine B will fill the same lot in [tex]\frac{10}{3}[/tex] hours.

A car repair shop offers its customers free coffee while they wait. By the end of each day, the coffee urn, which had started out with 7 1/4 gallons of coffee, was left with 2 1/12 gallons. How many gallons of coffee had been dispensed?

Answers

Answer: 5.1667 gallons of coffee had been dispensed

Step-by-step explanation:

Let x represent the number of gallons of coffee that had been dispensed.

By the end of each day, the coffee urn, which had started out with 7 1/4 gallons of coffee, was left with 2 1/12 gallons. This means that the initial number of gallons of coffee was 7 1/4 = 7.25 gallons

The amount left after dispense x gallons is 2 1/12 = 2.0833 gallons.

Therefore,

x +2.0833 = 7.25

x = 7.25 - 2.0833 = 5.1667 gallons

Richard walked around 2 rectangular parks. One measures 450 feet by 167 feet and the other measures 234 feet by 156 feet. Part B Richard's brother walked around a different park that is 254 feet by 56 feet.

Answers

What is the question?

Answer:

The answer is in the explanation.

Step-by-step explanation:

450x2=900 167x2=334 Then you add those together and you get 1,234 then you do 234x2=468 156x2=312 then you add those two, and you get 780 then you add 1,234+780= 2014. For his brother you do 254x2=508 and 56x2=112 then you add them and you get 620. Then you subtract 2014-620= 1394. That is the final answer. Hope it helps!

Use Euler's formula to derive the identity. (Note that if a, b, c, d are real numbers, a + bi = c + di means that a = c and b = d. Simplify your answer completely.) sin(2θ) = 2 sin(θ) cos(θ) Using Euler's formula, we have ei(2θ) = + i sin(2θ). On the other hand, ei(2θ) = (eiθ)2 = + i sin(θ) 2 = (cos2(θ) − sin2(θ)) + i sin(θ) . Equating Correct: Your answer is correct. parts, we find sin(2θ) = 2 sin(θ) cos(θ).

Answers

Answer with Step-by-step explanation:

We have to prove that

[tex]sin 2\theta=2sin\theta cos\theta[/tex] by using Euler's formula

Euler's formula :[tex]e^{i\theta}=cos\theta+isin\theta[/tex]

[tex]e^{i(2\theta)}=(e^{i\theta})^2[/tex]

By using Euler's identity, we get

[tex]cos2\theta+isin2\theta=(cos\theta+isin\theta)^2[/tex]

[tex]cos2\theta+isin2\theta=(cos^2\theta-sin^2\theta+2isin\theta cos\theta)[/tex]

[tex](a+b)^2=a^2+b^2+2ab, i^2=-1[/tex]

[tex]cos2\theta+isin2\theta=cos2\theta+i(2sin\theta cos\theta)[/tex]

[tex]cos2\theta=cos^2\theta-sin^2\theta[/tex]

Comparing imaginary part on both sides

Then, we get

[tex]sin2\theta=2sin\theta cos\theta[/tex]

Hence, proved.

Dale graphed the absolute value parent function. Then, he reflected the graph over the x-axis, shifted it four units to the right and three units up. Give the new equation

Answers

Answer:

i(x) = - |x - 4| + 3

Step-by-step explanation:

Refer to attached graph

Parent function:

f(x) = |x|, solid black on the graph

Transformations

1. Reflection over x-axis: f(x) →  -f(x)

g(x) = -|x|, dotted blue on the graph

2. Horizontal shift 4 units to the right: g(x) → g(x - 4)

h(x) = -|x - 4|, dotted green on the graph

3. Vertical shift 3 units up: h(x)  → h(x) + 3

i(x) = - |x - 4| + 3, solid red on the graph

This is the final function

A soccer ball is kicked in the air off a 22.0 meter high hill. The equation h(t)=-5t^2+10t+22 gives the approximated height h, in meters, of the ball t seconds after it is kicked. What equation can be used to tell if the ball reaches a height of 35 meters? Does the ball reach a height of 35 meters? How can you tell?

Equation:____
Answer:____​

Answers

Answer:

Equation: 5t² − 10t + 13 = 0

Answer: No

Step-by-step explanation:

h(t) = -5t² + 10t + 22

When h(t) = 35:

35 = -5t² + 10t + 22

5t² − 10t + 13 = 0

This equation must have at least one real solution if the ball is to reach a height of 35 meters.  Which means the discriminant can't be negative.

b² − 4ac

(-10)² − 4(5)(13)

100 − 260

-160

The ball does not reach a height of 35 meters.

Answer:

Equation: 5t² − 10t + 13 = 0

Answer: No

What is the height of the pyramid?

Answers

Answer:

Step-by-step explanation:

280 cubit

Answer:

Step-by-step explanation:

The formula for the volume,V of the square base pyramid is

V = 1/3(lwh)

Where

l = length of one side of the base of the pyramid.

w = length of the other side of the base of the pyramid.

h = the perpendicular height of the pyramid. Since the base of the pyramid is a square, l = w

The Volume, V is given as 18069333.3333 cubits^3

l = 440 cubits

w = 440 cubits

18069333.3333 = 1/3 × 440 × 440 × h

18069333.3333 = 64533.33h

h = 18069333.3333/64533.33

h = 280 cubits

HELP NEEDED, GIVING BRAINLIEST!!

Which of the following are the vertices of the image of the figure below under the translation (x , y) ---> (x + 4, y - 2)? SELECT ALL THAT APPLY

A. (- 1, 2)
B. (- 9, 6)
C. (- 2, 7)
D. (6, 3)
E. (1, - 4)
F. (- 7, 0)

Answers

Answer:

d b f

Step-by-step explanation:

Suppose that the functions r and a are defined for all real numbers x as follows. r(x)=2x-1 S(x)=5x write the expressions for (r-s)(x)and(r•s)(x)and evaluate(r+s)(-2).

Answers

[tex]\boxed{(r-s)(x)=-3x-1} \\ \\ \boxed{(r\cdot s)(x)=10x^2-5x} \\ \\ \boxed{(r+s)(-2)=-15}[/tex]

Explanation:

In this exercise, we have the following functions:

[tex]r(x)=2x-1 \\ \\ s(x)=5x[/tex]

And they are defined for all real numbers x. So we have to write the following expressions:

First expression:

[tex](r-s)(x)[/tex]

That is, we subtract s(x) from r(x):

[tex](r-s)(x)=2x-1-5x \\ \\ Combine \ like \ terms: \\ \\ (r-s)(x)=(2x-5x)-1 \\ \\ \boxed{(r-s)(x)=-3x-1}[/tex]

Second expression:

[tex](r\cdot s)(x)[/tex]

That is, we get the product of s(x) and r(x):

[tex](r\cdot s)(x)=(2x-1)(5x) \\ \\ By \ distributive \ property: \\ \\ (r\cdot s)(x)=(2x)(5x)-(1)(5x) \\ \\ \boxed{(r\cdot s)(x)=10x^2-5x}[/tex]

Third expression:

Here we need to evaluate:

[tex](r+s)(-2)[/tex]

First of all, we find the sum of functions r(x) and s(x):

[tex](r+s)(x)=2x-1+5x \\ \\ Combine \ like \ terms: \\ \\ (r+s)(x)=(2x+5x)-1 \\ \\ (r+s)(x)=7x-1[/tex]

Finally, substituting x = -2:

[tex](r+s)(-2)=7(-2)-1 \\ \\ (r+s)(-2)=-14-1 \\ \\ \boxed{(r+s)(-2)=-15}[/tex]

Learn more:

Parabola: https://brainly.com/question/12178203

#LearnWithBrainly

Robert's father is 4 times as old as robert. After 5 years, father will be three times as old as robert.What is their present ages of robert and his father respectively

Answers

Answer: Robert's present age is 10 years

Robert father's present age is 40 years

Step-by-step explanation:

Let r = Robert's current age

Let y = Robert father's current age

Robert's father is 4 times as old as robert. This means that

y = 4x

After 5 years, Robert's father will be three times as old as Robert. This means that

y + 5 = 3(x+5)

y + 5 = 3x + 15 - - - - - - - ;1

We will substitute y = 4x into equation 1. It becomes

4x + 5 = 3x + 15

Collecting like terms,

4x - 3x = 15 - 5

x = 10

y = 4x

Substituting x = 10,

y = 4× 10 = 40 years

Michelle has 8 1/4 pounds of dry cat food for her cat smokey. She places the cat food into 3 containers to use at later date. How much cat food will be in each container

Answers

Answer:

Each container contains [tex]2.5 \ pounds \ \ OR \ \ \frac{11}{4} \ pounds \ \ OR \ \ 2 \frac{3}{4} \ pounds[/tex] of cat food.

Step-by-step explanation:

Given:

Amount of cat food = 8 1\4 pounds.

Also 8 1\4 can be rewritten as 8.25 pounds

Number of containers =3

We need to find the amount of cat food in each container.

Amount of cat food in each container can be calculated by Dividing Amount of cat food she has with number of Containers.

Amount of cat food in each container = [tex]\frac{8.25}{3}= 2.75 \ pounds[/tex]

2.75 pounds ca be rewritten as [tex]\frac{11}{4} \ pounds \ \ OR \ \ 2 \frac{3}{4} \ pounds[/tex]

Hence Each container contains [tex]2.5 \ pounds \ \ OR \ \ \frac{11}{4} \ pounds \ \ OR \ \ 2 \frac{3}{4} \ pounds[/tex] of cat food.

Mae king earns a weekly salary of $305 plus a 7.5% commission on sales at a gift shop.How much would she make in a work week if she sold 4,300 worth of merchandise

Answers

Answer:

Step-by-step explanation:

Mae king earns a weekly salary of $305 plus a 7.5% commission on sales at a gift shop. This means that the total amount that she can earn in a week is not fixed. If in a week, she sold 4,300 worth of merchandise, her commission on this amount of sales will be 7.5 % of 4,300

Commission on sales = 7.5/100× 4300 = 0.075×4300= $332.25

Amount of money made for the week will be the sum of her weekly salary and the commission earned on sales. It becomes

305 + 332.25 = $627.5

Please help me with this!!!

Answers

Answer:

  {A, H, M, O, P, R, S, T} = {1, 7, 5, 0, 8, 6, 4, 9}

or

  {O, A, S, M, R, H, P, T} = {0, 1, 4, 5, 6, 7, 8, 9}

Step-by-step explanation:

Starting in the thousands column, we see the sum P+M+A mod 10 = M, so P + A = 10 or 11. That is, there is a carry to the next column of 1, meaning T + 1 = O, and that sum must also create a carry of 1, so S + 1 = M.

In order for T + 1 to generate a carry, we must have T = 9 and O = 0.

Now, consider the 10s column. This has 36 +A +(carry in) mod 10 = 9. So, A+(carry in) = 3.

Considering the 1s column, we have 9+0+2H+S = H+10 or H+20. We know H+S+9 cannot be 10, so it must be 20. That means H+S = 11, and (carry in) to the 10s column must be 2. Since A = 3 - (carry in), we must have A=1.

At this point, we have ... A=1, T=9, O=0, S+H=11, S+1=M.

Now, consider the 100s column. We know the carry in from the 10s column is 3, so we have 3+2A+R=A+10. Since we know A=1, this means 5+R=11, or R=6.

The carry in to the 1000s column is 1, so we have P+A+1 = 10, or P=8.

__

Our assignments so far are ...

  0 = O, 1 = A, 6 = R, 8 = P, 9 = T.

and we need to find S, M, and H such that M=S+1 and S+H=11. We know S and H cannot be 2, 3, or 5, because the 11's complement of those digits is already assigned. That leaves 4 and 7 for S and H, but we also need an unassigned value that is 1 more than S. These considerations make it necessary that S=4, M=5, H=7.

Then the addition problem is ...

  8197 + 90 + 5197 +491694 +19 = 505197

_____

Final assignments are ...

  O = 0, A = 1, S = 4, M = 5, R = 6, H = 7, P = 8, T = 9

Other Questions
A crime scene reveals a tiny amount of genetic material that may be linked with the guilty person. This small amount of DNA may be amplified, or copied many times over, through a process called ___________ ___________ ___________. Saturn has a radius of about 9.0 earth radii, and a mass 95 times the Earths mass. Estimate the gravitational field on the surface of Saturn compared to that on the Earth. Show your work. What is this: "On behalf of the great state of Illinois, crossroads of a nation, Land of Lincoln"A. Figure of speech about divisions among peopleB. Metaphor about how others see the United States as two seperate countriesC. Personification of money showing money as a powerful humanlike forceD. Hyperbole regarding the idea of America as a place of opportunityE. Historical allusion referencing the place where people migrated across America in search of new opportunitiesF. Metaphor comparing financial problems to being kept against ones will A 500 kg horse can provide a steady output power of 750 W (that is, 1 horsepower) when pulling a load; how about a 38 kg sled dog? Data shows that a 38 kg dog can pull a sled that requires a pulling force of 60 N at a steady 2.2 m/s. 1. What is the specific power for the dog and the horse? 2. What is the minimum number of dogs needed to provide the same power as one horse? In addition to the macronutrients it provides, the energy bar makes a significant contribution to meeting the Daily Value for several vitamins and minerals. What is a potential concern when consuming highly-fortified food products? Identify the group of elements that corresponds to each of the following generalized electron configurations and indicate the number of unpaired electrons for each: (a) [Noble gas] ns^2 np^5 (b) [noble gas] ns^2 (n-1)d^2 (c) [noble gas] ns^2 (n-1)d^10 np^1 (d)[noble gas] ns^2 (n-2)f^6 Please answer this correctly what is the main goal of DNA replication EDPUZZLE 89 kids show up for the first Soccer practice. the coaches Organizer them into groups of 4 for warm up exercises. How many groups were there? If a retired worker receives a fixed income of $45,000 a year from a pension plan, and there is a fall in the economy this year resulting in deflation, then _____. A. the purchasing power of his fixed income would rise compared to last year B. the purchasing power of his fixed income would be unknown without a better idea of the price level C. the purchasing power of his fixed income would fall compared to last year D. the purchasing power of his fixed income would remain the same compared to last year 3x - 4y = -162x - 4y = -8what is x and y 33% of college students say they use credit cards because of the rewards program. You randomly select 10 college students and ask each to name the reason he or she uses credit cards. Find the probability that the number of college students who say they use credit cards because of the rewards program is (a) exactly two, (b) more than two, and (c) between two and five inclusive. If convenient, use technology to find the probabilities. the equations below are. parallel perpendicular or neither A 24 kg child slides down a 3.3-m-high playground slide. She starts from rest, and her speed at the bottom is 3.0 m/s.a. What energy transfers and transformation occurs during the slide?b.What is the total change in the thermal energy of the slide and the seat of her pants? Express the ratio of the area of the circle to the area of the square Dora is conducting a performance appraisal for Sue, one of her employees. The company's performance appraisal form asks her to rate Sue's performance on various items like "Submits reports on time with minimal errors" on a scale from 1 to 5. There are 1/35 of the students in the school that are allergic to seafood. there are 1/15 of the students in school that are allegic to peanuts? Are there more students allergic to seafood or peanuts? hat are the wavelengths of peak intensity and the corresponding spectral regions for radiating objects at (a) normal human body temperature of 37C, (b) the temperature of the filament in an incandescent lamp, 1500C, and (c) the temperature of the surface of the sun, 5800 K? Think of something in your home or community that could be described as a proportional relationship. List at least three examples.Answer in 3 complete sentences. A variable declared to be of one class can later reference an extended class of that class. This variable is known as_________.a. publicb. derivablec. cloneabled. polymorphice. none of the above, a variable declared to be of one class can never reference any other type of class, even an extended class