Donna drove to the mountains last weekend. There was heavy traffic on the way there, and the trip took 8 hours. When Donna drove home, there was no traffic and the trip only took 4 hours. If her average rate was 45 miles per hour faster on the trip home, how far away does Donna live from the mountains?

Answers

Answer 1

Answer:

d=360 miles

Donna lives 360 miles from the mountains.

Explanation:

Conceptual analysis

We apply the formula to calculate uniform moving distance[

d=v*t   Formula (1)

d: distance in miles

t: time in hours

v: speed in miles/hour

Development of problem

The distance Donna traveled to the mountains is equal to the distance back home, equal to d,then,we pose the kinematic equations for d, applying formula 1:

travel data to the mountains: t₁= 8 hours ,  v=v₁

d= v₁*t₁=8*v₁ Equation (1)

data back home : t₂=4hours ,  v=v₂=v₁+45

d=v₂*t₂=(v₁+45)*4=4v₁+180 Equation (2)

Equation (1)=Equation (2)

8*v₁=4v₁+180

8*v₁-4v₁=180

4v₁=180

v₁=180÷4=45 miles/hour

we replace v₁=45 miles/hour in equation (1)

d=8hour*45miles/hour

d=360 miles

Answer 2

Final answer:

To solve the problem, we used the relationship between speed, distance, and time to set up two equations and solve for the average speed to the mountains and the distance. Donna lives 360 miles away from the mountains.

Explanation:

Let's denote Donna's driving distance to the mountains as D miles. To find this distance, we can use the relationship between speed, distance, and time. When she drove to the mountains, the journey took her 8 hours. For the return trip with no traffic, it took 4 hours and the speed was 45 miles per hour faster.

Let v be the average speed on the way to the mountains. Therefore, the average speed on the way back is v + 45 mph.

Using the formula distance = speed × time, we have two equations:

D = v × 8 (to the mountains)D = (v + 45) × 4 (returning home)

Since both equations are equal to D, we can set them equal to each other:

v × 8 = (v + 45) × 4

Expanding both sides:
8v = 4v + 180

Subtracting 4v from both sides we get:

4v = 180

Dividing by 4:

v = 45 mph (speed to the mountains)

So, the distance D is:

D = 45 mph × 8 h = 360 miles

Therefore, Donna lives 360 miles away from the mountains.


Related Questions

A Boeing 747 "Jumbo Jet" has a length of 59.7 m. The runway on which the plane lands intersects another runway. The width of the intersection is 25.0 m. The plane decelerates through the intersection at a rate of 5.4 m/s2 and clears it with a final speed of 50 m/s. How much time is needed for the plane to clear the intersection?

Answers

Answer:

The plane needs 1,56 seconds to clear the intersection.

Explanation:

This is a case of uniformly accelerated rectilinear motion.

[tex]V_0^{2} = V_f^{2} - 2ad[/tex]

[tex]V_0=\sqrt{V_0^{2} } = ?[/tex]

Vf=50 m/s

[tex]V_f^{2}  = (50 m/s)^{2} = 2500  m^{2}/s^{2}[/tex]

a = -5.4 [tex]m/s^{2}[/tex] (Negative because is decelerating)

d = displacement needed to clear the intersection. It should be the width of the intersection plus the lenght of the plane.

d= 59,7m + 25 m = 84.7 m

Calculating [tex]V_0[/tex]:

[tex]V_0^{2} = V_f^{2} - 2ad[/tex]

[tex]V_0^{2}= 2500 \frac{m^{2} }{s^{2} } - 2(-5.4\frac{m}{s^{2} })(84.7 m)[/tex]

[tex]V_0^{2}= 3,414.76 \frac{m^{2} }{s^{2} }[/tex]

[tex]V_0= \sqrt{3,414.76} = 58.44 \frac{m}{s}[/tex]

Otherwise:

[tex]t = \frac{V_f-V_0}{a} =\frac{50\frac{m}{s} - 58.44\frac{m}{s}  }{-5.4 \frac{m}{s^{2} } } = 1.56 s[/tex]

The time needed for the plane to clear the intersection is approximately 1.88 s.

Given data:

- Length of the plane (L) = 59.7 m

- Width of the intersection (d) = 25.0 m

- Deceleration (a) = 5.4 m/s²

- Final speed (v) = 50 m/s

The plane decelerates through the intersection. The final speed v and the deceleration a are given. The total distance the plane covers while decelerating through the intersection is the sum of the length of the plane and the width of the intersection:

[tex]\[ \text{Total distance} = L + d = 59.7 \, \text{m} + 25.0 \, \text{m} = 84.7 \, \text{m} \][/tex]

Determine the initial speed [tex](v_0)[/tex]

Using the kinematic equation:

[tex]\[ v^2 = v_0^2 + 2a \Delta x \][/tex]

We rearrange to solve for [tex]\( v_0 \)[/tex]:

[tex]\[ v_0^2 = v^2 - 2a \Delta x \][/tex]

[tex]\[ v_0^2 = (50 \, \text{m/s})^2 - 2 \times 5.4 \, \text{m/s}^2 \times 84.7 \, \text{m} \]\[ v_0^2 = 2500 - 2 \times 5.4 \times 84.7 \]\[ v_0^2 = 2500 - 913.56 \]\[ v_0^2 = 1586.44 \]\[ v_0 = \sqrt{1586.44} \]\[ v_0 \approx 39.83 \, \text{m/s} \][/tex]

Calculate the time (t)

Using the kinematic equation:

[tex]\[ v = v_0 + at \][/tex]

Rearrange to solve for t:

[tex]\[ t = \frac{v - v_0}{a} \]\[ t = \frac{50 \, \text{m/s} - 39.83 \, \text{m/s}}{5.4 \, \text{m/s}^2} \]\[ t = \frac{10.17 \, \text{m/s}}{5.4 \, \text{m/s}^2} \]\[ t \approx 1.88 \, \text{s} \][/tex]

The weight of a body above sea level varies inversely with the square of the distance from the center of Earth. If a woman weighs 131 pounds when she is at sea​ level, 3960 miles from the center of​ Earth, how much will she weigh when she is at the top of a​ mountain, 4.8 miles above sea​ level?

Answers

Answer:

89.16pounds

Explanation:

The equation that defines this problem is as follows

W=k/X^2

where

W=Weight

K= proportionality constant

X=distance from the center of Earth

first we must find the constant of proportionality, with the first part of the problem

k=WX^2=131x3960^2=2054289600pounds x miles^2

then we use the equation to calculate the woman's weight with the new distance

W=2054289600/(4800)^2=89.16pounds

For a standard production car, the highest roadtested acceleration ever reported occurred in 1993, when a Ford RS200 Evolution went from zero to 26.8 m/s (60 mph) in 3.275 s. Find the magnitude of the car's acceleration.

Answers

Answer:

a=8.1832m/s^2

Explanation:

Vo=initial speed=0m/s

Vf=final speed=26.8m/s

t=time=3.275s

the vehicle moves with a constant acceleration therefore we can use the following equation

A=aceleration=(Vf-Vi)/t

A=(26.8m/s-0m/s)/3.275s=8.1832m/s^2

the magnitude of the car´s aceleration is 8.1832m/s^2

A particle undergoes two displacements. The first has a magnitude of 11 m and makes an angle of 82 ◦ with the positive x axis. The result after the second displacement is 8.7 m directed at an angle of 135◦ to the positive x axis using counterclockwise as the positive angular direction schoenzeit (ms83473) – Assignment 01-1 – pusch – (19512020) 5 135◦ 82◦ 11 m 8.7 m Find the angle of the second displacement measured counterclockwise from the positive x axis (i.e., a positive angle). Answer in units of ◦ .

Answers

Final answer:

To calculate the angle of the second displacement, typically one would use vector addition and trigonometry, but the question, as presented, does not provide sufficient information to determine this angle.

Explanation:

To find the angle of the second displacement for the particle, we need to consider the information given: the first displacement is 11 m at an angle of 82° from the positive x-axis, and the resulting displacement after the second move is 8.7 m at 135° to the positive x-axis, using the counterclockwise direction as positive.

Using vector addition, the resulting displacement's direction can help us determine the second displacement angle. However, without more information about the specifics of the second displacement (like its magnitude), we cannot calculate the exact angle or vector using typical methods such as vector components or the law of cosines.

Given the problem as stated, assuming standard vector addition, a common approach would involve drawing a vector diagram and applying trigonometry; but in this case, we seem to be missing details to perform accurate calculations.

During the developing of a TLC plate, it is common to place a cover on the chromatography chamber and have a piece of moist filter paper line the walls of the TLC chamber. Why is the moist filter paper in the TLC chamber of importance during thin-layer chromatography?

Answers

Answer:

The moist filter paper is in charge of preventing evaporation and ensuring the proper saturation of the air of the chromatography chamber.

Explanation:

Thin-layer chromatography (TLC) is a chromatography technique used to separate non-volatile mixtures.

A strip of moist filter paper is put into the chromatography chamber so that its bottom touches the solvent and the paper lies on the chamber wall and reaches almost to the top of the container.

The container is closed and left for a few minutes to let the solvent vapors ascend the moist filter paper and saturate the air in the chamber.

The moist filter paper is in charge of preventing evaporation and ensuring the proper saturation of the air of the chamber.

A wave on the ocean surface with wavelength 44 m travels east at a speed of 18 m/s relative to the ocean floor. If, on this stretch of ocean, a powerboat is moving at 14 m/s (relative to the ocean floor), how often does the boat encounter a wave crest, if the boat is traveling (a) west, and (b) east?

Answers

Answer:

A)t=1.375s

B)t=11s

Explanation:

for this problem we will assume that the east is positive while the west is negative, what we must do is find the relative speed between the wave and the powerboat, and then with the distance find the time for each case

ecuations

V=Vw-Vp  (1)

V= relative speed

Vw= speed of wave

Vp=Speesd

t=X/V(2)

t=time

x=distance=44m

A) the powerboat moves to west

V=18-(-14)=32m/s

t=44/32=1.375s

B)the powerboat moves to east

V=18-14=4

t=44/4=11s

Final answer:

The frequency at which the boat encounters a wave crest is 0.09 Hz regardless of the direction the boat is traveling.

Explanation:

To find the frequency at which the boat encounters a wave crest, we need to determine the time it takes for one wave crest to pass by the boat. The speed of the boat relative to the ocean floor doesn't affect the frequency, only the speed of the wave. The formula to calculate the frequency of a wave is:

Frequency = Wave Speed / Wavelength

When the boat is traveling west:

Wave speed = Speed of the wave + Speed of the boat (since the boat is traveling in the opposite direction)
Frequency = (Speed of the wave + Speed of the boat) / Wavelength
Frequency = (18 m/s + (-14 m/s)) / 44 m
Frequency = 4 m/s / 44 m = 0.09 Hz

When the boat is traveling east:

Wave speed = Speed of the wave - Speed of the boat (since the boat is traveling in the same direction)
Frequency = (Speed of the wave - Speed of the boat) / Wavelength
Frequency = (18 m/s - 14 m/s) / 44 m
Frequency = 4 m/s / 44 m = 0.09 Hz

A ball is dropped from a tower that is 512 feet high. Use the formula below to find height of the ball 5 seconds after it was dropped? h=512−14t2where h represents the height, in feet, and t represents the time, in seconds, after it was dropped.

Answers

Answer:

The height of the ball after 5 seconds is 162 ft.

Explanation:

First, replace the variable t with how many seconds the ball has dropped, which in this case is 5.

[tex]h = 512 - 14 {t}^{2} \\ h = 512 - 14 \times {5}^{2} [/tex]

Solve.

[tex]h = 512 - 14 \times {5}^{2} \\ h = 512 - 14 \times 25 \\ h = 512 - 350 \\ h = 162[/tex]

For a duration of 5 seconds, the ball had managed to drop 350 feet, with 162 feet left to go to touch ground level.

A voltaic cell is constructed with two Zn2+-Zn electrodes, where the half-reaction is Zn2+ + 2e− → Zn (s) E° = -0.763 V The concentrations of zinc ion in the two compartments are 4.50 M and 1.11 ⋅ 10−2 M, respectively. The cell emf is ________ V.

Answers

Answer : The cell emf for this cell is 0.077 V

Solution :

The balanced cell reaction will be,  

Oxidation half reaction (anode):  [tex]Zn(s)\rightarrow Zn^{2+}+2e^-[/tex]

Reduction half reaction (cathode):  [tex]Zn^{2+}+2e^-\rightarrow Zn(s)[/tex]

In this case, the cathode and anode both are same. So, [tex]E^o_{cell}[/tex] is equal to zero.

Now we have to calculate the cell emf.

Using Nernest equation :

[tex]E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Zn^{2+}{diluted}}{[Zn^{2+}{concentrated}]}[/tex]

where,

n = number of electrons in oxidation-reduction reaction = 2

[tex]E_{cell}[/tex] = ?

[tex][Zn^{2+}{diluted}][/tex] = 0.0111 M

[tex][Zn^{2+}{concentrated}][/tex] = 4.50 M

Now put all the given values in the above equation, we get:

[tex]E_{cell}=0-\frac{0.0592}{2}\log \frac{0.0111M}{4.50M}[/tex]

[tex]E_{cell}=0.077V[/tex]

Therefore, the cell emf for this cell is 0.077 V

Final answer:

The cell emf, or electromotive force, for a voltaic cell, like the Zn2+-Zn kind described, can be calculated with the Nernst equation. The emf is determined by the standard electrode potential as well as the concentrations of the redox species in each half-cell.

Explanation:

A voltaic cell runs on a spontaneous redox reaction occurring indirectly, with the oxidant and reductant redox couples contained in separate half-cells. In your example, both half-cells are Zn2+-Zn electrodes where the reaction is Zn2+ + 2e− → Zn (s) with a standard electrode potential, E°, of -0.763 V. The cell emf, or electromotive force, is calculated through the Nernst Equation:

Ecell = E° - (RT/nF) * ln(Q)

where Q is the reaction quotient, R is the gas constant, T is the temperature in Kelvin, n is the number of electrons transferred in the redox reaction, and F is Faraday's constant. Since we're dealing with a concentration cell, Q is given by the ratio of the concentrations of the reduced and oxidized species. Depending on the temperature and assuming that Zn2+ is reduced at the cathode and oxidized at the anode, the cell emf can be calculated accordingly.

Learn more about Cell EMF here:

https://brainly.com/question/34647069

#SPJ11

a vector is 253m long and points in a 55.8degree direction. Find the y-component of the vector.

Answers

Answer:

209 m

Explanation:

The y-component of a vector is the magnitude times the sine of the angle.

y = 253 sin 55.8°

y = 209

Answer:

The answer to your question is: 209 m

Explanation:

Data

length = 253 m

d = 55.8°

y - component = ?

Formula

To solve this problem we need to use a right triangle a the trigonometric functions (sine, cosine, tangent, etc)

Now we have to choose among the trigonometric functions which one to use that relates the opposite side and the hypotenuse.

And that one is sineФ = os/h

we clear os = sineФ x h

     os = sine 55.8 x253

     os =  209 m

soh, cah, toa

An engineer in a locomotive sees a car stuck
on the track at a railroad crossing in front of
the train. When the engineer first sees the
car, the locomotive is 200 m from the crossing
and its speed is 13 m/s.
If the engineer’s reaction time is 0.46 s,

What should be the magnitude of the minimum deceleration to avoid an accident?
Answer in units of m/s²

Answers

Answer:

[tex]-0.44 m/s^2[/tex]

Explanation:

First of all, we need to calculate the distance covered by the locomotive during the reaction time, which is

t = 0.46 s

During this time, the locomotive travels at

v = 13 m/s

And the motion is uniform, so the distance covered is

[tex]d_1 = vt = (13)(0.46)=6.0 m[/tex]

The locomotive was initially 200 m from the crossing, so the distance left to stop is now

[tex]d=200 - 6.0 = 194.0 m[/tex]

And now the locomotive has to slow down to a final velocity of [tex]v=0[/tex] in this distance. We can find the minimum deceleration needed by using the suvat equation:

[tex]v^2 - u^2 = 2ad[/tex]

where

v = 0 is the final velocity

u = 13 m/s is the initial velocity

a is the deceleration

d = 194.0 m is the distance to stop

Solving for a,

[tex]a=\frac{v^2-u^2}{2d}=\frac{0^2-13^2}{2(194)}=-0.44 m/s^2[/tex]

The acceleration of a bus is given by ax(t)=αt, where α = 1.28 m/s3 is a constant.

Answers

The text looks incomplete. Here the complete question found on google:

"The acceleration of a bus is given by ax(t)=αt, where α = 1.28m/s3 is a constant. Part A If the bus's velocity at time t1 = 1.13s is 5.09m/s , what is its velocity at time t2 = 2.02s ? If the bus's position at time t1 = 1.13s is 5.92m , what is its position at time t2 = 2.02s ?"

A) 6.88 m/s

The velocity of the bus can be found by integrating the acceleration. Therefore:

[tex]v(t) = \int a(t) dt = \int (\alpha t)dt=\frac{1}{2}\alpha t^2+C[/tex] (1)

where

[tex]\alpha = 1.28 m/s^3[/tex]

C is a constant term

We know that at [tex]t_1 = 1.13 s[/tex], the velocity is [tex]v=5.09 m/s[/tex]. Substituting these values into (1), we can find the exact value of C:

[tex]C=v(t) - \frac{1}{2}\alpha t^2 = 5.09 - \frac{1}{2}(1.28)(1.13)^2=4.27 m/s[/tex]

So now we can find the velocity at time [tex]t_2 = 2.02 s[/tex]:

[tex]v(2.02)=\frac{1}{2}(1.28)(2.02)^2+4.27=6.88 m/s[/tex]

B) 11.2 m

To find the position, we need to integrate the velocity:

[tex]x(t) = \int v(t) dt = \int (\frac{1}{2}\alpha t^2 + C) dt = \frac{1}{3}\alpha t^3 + Ct +D[/tex] (2)

where D is another constant term.

We know that at [tex]t_1 = 1.13 s[/tex], the position is [tex]v=5.92 m[/tex]. Substituting these values into (2), we can find the exact value of D:

[tex]D = x(t) - \frac{1}{6}\alpha t^3 -Ct = 5.92-\frac{1}{6}(1.28)(1.13)^3 - (4.27)(1.13)=0.79 m[/tex]

And so now we can find the position at time [tex]t_2 = 2.02 s[/tex] using eq.(2):

[tex]x(2.02)=\frac{1}{6}(1.28)(2.02)^3 + (4.27)(2.02) +0.79=11.2 m[/tex]

Final answer:

The question deals with calculating the time-dependent acceleration of a bus using the equation ax(t)=αt, applicable to Physics (specifically mechanics), and is suitable for a high school level.

Explanation:

The question pertains to the acceleration of an object, specifically a bus, which makes this a Physics problem. Acceleration is defined as the change in velocity over time and is a vector quantity having both magnitude and direction. Given the equation ax(t)=αt, where α is a constant equal to 1.28 m/s3, we can recognize that the acceleration is linearly increasing over time because for each second, the acceleration increases by 1.28 m/s2. This kind of problem typically appears in high school Physics.

For instance, to calculate the acceleration of a bus at a specific time point, we simply multiply the constant α by the time t at which we want to know the acceleration. So if we wanted to know the acceleration at t=15 s, we would calculate it as ax(15s) = 1.28 m/s3 × 15 s = 19.2 m/s2. This demonstrates that as time progresses, the acceleration value increases.

A man flies a small airplane from Fargo to Bismarck, North Dakota --- a distance of 180 miles. Because he is flying into a head wind, the trip takes him 2 hours. On the way back, the wind is still blowing at the same speed, so the return trip takes only 1 hours. What is the plane's speed in still air, and how fast is the wind blowing?

Answers

Answer:

airplane speed 135mph windspeed 45 mph

Explanation:

This information helps us to write down a system of linear equations

When going head wind, the speed of the wind is substracted from that of the airplane and on the return trip it is added, then:

A:=Airlplane speed

W:= Wind speed

(A+W)*1h=180mi (1)

(A-W)*2h=180mi (2)

then from (1) A=180-W (3), replacing this in (2) we get (180-W-W)*2h =180mi, then

360-4W=180, or 180=4W, then W=45 mph. Replacing this in (3) we have that A=180-45=135 mph.

The problem was solved by setting up equations based on the given distances and times. By solving these equations, it was determined that the plane's speed in still air is 105 miles per hour, and the wind's speed is 15 miles per hour.

To solve this problem, we can set up two equations using the relationship between distance, speed, and time. We will denote the plane's speed in still air as P and the wind's speed as W.

When flying against the wind, the plane's effective speed is P - W, and the time taken to cover the 180 miles is 2 hours. We can represent this with the equation:
180 = 2(P - W) ... (1)

On the return trip, with a tailwind, the plane's effective speed is P + W, and the time taken is 1.5 hours. This gives us a

second equation:
180 = 1.5(P + W) ... (2)

By solving these two equations simultaneously, we can find the values of P and W. Multiplying equation (2) by 2 to eliminate the fractions, we get:
360 = 3(P + W) ... (2')

Now, we subtract equation (1) from equation (2'):
360 - 180 = 3(P + W) - 2(P - W)
180 = 3P + 3W - 2P + 2W
180 = P + 5W

Using equation (1), we express P in terms of W:
180 = 2P - 2W
P = 90 + W ... (3)

Substituting (3) into the equation we got after subtracting:
180 = (90 + W) + 5W
180 = 90 + 6W
90 = 6W
W = 15 miles per hour

Now, we substitute the value of W back into equation (3) to find P:
P = 90 + 15
P = 105 miles per hour

The plane's speed in still air is 105 miles per hour and the wind's speed is 15 miles per hour.

Is it possible for two pieces of the same metal to have different recrystallization temperatures? Is it possible for recrystallization to take place in some regions of a part before it does in other regions of the same part? Explain

Answers

Recrystallization is a temperature-induced process that can vary among materials. Metal parts may recrystallize at different temperatures, and recrystallization can happen unevenly within a single part.

Recrystallization is a process where a material undergoes structural changes due to increased temperature. Metallic glasses can have different recrystallization temperatures based on the composition of the metals. Recrystallization can occur non-uniformly in a part, with some regions undergoing the process before others due to variations in temperature or cooling rates.

a vector has an x-component of 19.5m and a y-component of 28.4m. Find the magnitude and direction of the vector

Answers

Answer:

magnitude=34.45 m

direction=[tex]55.52\°[/tex]

Explanation:

Assuming the initial point P1 of this vector is at the origin:

P1=(X1,Y1)=(0,0)

And knowing the other point is P2=(X2,Y2)=(19.5,28.4)

We can find the magnitude and direction of this vector, taking into account a vector has a initial and a final point, with an x-component and a y-component.

For the magnitude we will use the formula to calculate the distance [tex]d[/tex] between two points:

[tex]d=\sqrt{{(Y2-Y1)}^{2} +{(X2-X1)}^{2}}[/tex] (1)

[tex]d=\sqrt{{(28.4 m - 0 m)}^{2} +{(19.5 m - 0m)}^{2}}[/tex] (2)

[tex]d=\sqrt{1186.81 m^{2}}[/tex] (3)

[tex]d=34.45 m[/tex] (4) This is the magnitude of the vector

For the direction, which is the measure of the angle the vector makes with a horizontal line, we will use the following formula:

[tex]tan \theta=\frac{Y2-Y1}{X2-X1}[/tex]  (5)

[tex]tan \theta=\frac{24.8 m - 0m}{19.5 m - 0m}[/tex]  (6)

[tex]tan \theta=\frac{24.8}{19.5}[/tex]  (7)

Finding [tex]\theta[/tex]:

[tex]\theta= tan^{-1}(\frac{24.8}{19.5})[/tex]  (8)

[tex]\theta= 55.52\°[/tex]  (9) This is the direction of the vector

A swan on a lake becomes airborne by flapping its wings and running on top of the water. If the swan must reach a velocity of 6.50 m/s to take off and it accelerates from rest at an average rate of 0.350 m/s2 , what distance Δx does it travel before becoming airborne?

Answers

Answer:

The distance traveled by the swan is 60.35 meters.

Explanation:

Given that,

A swan accelerate from rest (u = 0) to 6.5 m/s to take off.

Acceleration of the swan, [tex]a=0.35\ m/s^2[/tex]

We need to find the distance Δx it travel before becoming airborne. From the third equation of motion as :

[tex]\Delta x=\dfrac{v^2-u^2}{2a}[/tex]

[tex]\Delta x=\dfrac{(6.5)^2}{2\times 0.35}[/tex]

[tex]\Delta x=60.35\ m[/tex]

So, the distance traveled by the swan is 60.35 meters. Hence, this is the required solution.

A ball is thrown horizontally from the top of a 65 m building and lands 115 m from the base of the building. Ignore air resistance, and use a coordinate system whose origin is at the top of the building, with positive y upwards and positive x in the direction of the throw.

(a) How long is the ball in the air in seconds?
(b) What must have been the initial horizontal component of the velocity in m/s?
(c) What is the vertical component of the velocity just before the ball hits the ground in m/s?
(d) What is the magnitude of the velocity of the ball just before it hits the ground in m/s?

Answers

Answer:

The answer to your question is:

a) t = 3.64 s

b) vox = 31.59 m/s

c) vy = 35.71 m/s

d) v = 47.67 m/s

Explanation:

a) To calculate the time, we know that voy = 0 m/s so we this this formula

   h = voy + 1/2(gt²)

   65  = 0 + 1/2(9.81)(t²)

   65 = 4.905t²

   t² = 65/4.905 = 13.25

   t = 3.64 s

b) To calculate vox  we use this formula vox = d/t ; vox is constant

   vox = 115/3.64 = 31.59 m/s

c) To calculate voy we use the formula    vy = voy + gt

but voy = 0

               vy = gt = 9.81 x 3.64 = 35.71 m/s

d) To calculate v  we use the pythagorean theorem

            c2 = a2 + b2

            c2 = 31.59² + 35.71² = 997.92 + 1275.20

            c2 = 2273.12

              c = 47.67 m/s

Col. John Stapp led the U.S. Air Force Aero Medical Laboratory's research into the effects of higher accelerations. On Stapp's final sled run, the sled reached a speed of 284.4 m/s (632 mi/h) and then stopped with the aid of water brakes in 1.4 s. Stapp was barely conscious and lost his vision for several days but recovered.

A)Determine his acceleration while stopping.
B)Determine the distance he traveled while stopping

Answers

Answer:

A.[tex]a=203.14\ \frac{m}{s^2}[/tex]

B.s=397.6 m

Explanation:

Given that

speed  u= 284.4 m/s

time t = 1.4 s

here he want to reduce the velocity from 284.4 m/s to 0 m/s.

So the final speed v= 0 m/s

We know that

v= u + at

So now by putting the values

0 = 284.4 -a x 1.4     (here we take negative sign because this is the case of de acceleration)

[tex]a=203.14\ \frac{m}{s^2}[/tex]

So the acceleration  while stopping will be [tex]a=203.14\ \frac{m}{s^2}[/tex].

Lets take distance travel before come top rest is s

We know that

[tex]v^2=u^2-2as[/tex]

[tex]0=284.4^2-2\times 203.14\times s[/tex]

s=397.6 m

So the distance travel while stopping is 397.6 m.

Answer:

[tex]a) acceleration = -203.14 m/s^2\\\\b) distance = 199.1 m[/tex]

Explanation:

Given

initial speed u = 284.4 m/s

final speed v = 0 m/s

duration t = 1.4 s

Solution

a)

Acceleration

[tex]a = \frac{v - u}{t} \\\\a = \frac{0-284.4}{1.4} \\\\a = -203.14 m/s^2[/tex]

b)

Distance

[tex]v^2  - u^2 = 2as\\\\0^2 - 284.4^2 = 2 \times  (-203.14) \times S\\\\S = 199.1 m[/tex]

A carousel is spinning at a speed of 100 cm/s, with the outermost horse at a distance 5 m from the center. This horse experiences a force of 3 x 10-3 or 0.003 N. Consider a horse placed at exactly half the distance from the center as the outermost horse. What will be the centripetal force experienced by this horse, if all the other variables are kept the same?

Answers

Answer:

0.006 N

Explanation:

First find the mass of the horse which is the only unknown variable.

Then use it with the new data. Working out is in the attachment.

What is the entropy change of a 0.349 g spoonful of water that evaporates completely on a hot plate whose temperature is slightly above the boiling point of water?

Answers

Answer:

[tex]\Delta S = 2.11 J/K[/tex]

Explanation:

As we know that entropy change for phase conversion is given as

[tex]\Delta S = \frac{\Delta Q}{T}[/tex]

Here we know that heat required to change the phase of the water is given as

[tex]\Delta Q = mL[/tex]

here we have

[tex]m = 0.349 g = 3.49\times 10^{-4} kg[/tex]

L = 2250000 J/kg

now we have

[tex]\Delta Q = (3.49 \times 10^{-4})\times 2250000[/tex]

[tex]\Delta Q = 788.9 J[/tex]

also we know that temperature is approximately same as boiling temperature

so we have

[tex]T = 373 k[/tex]

so here we have

[tex]\Delta S = \frac{788.9}{373}[/tex]

[tex]\Delta S = 2.11 J/K[/tex]

Solve the following equation.

LaTeX: \left|\frac{x}{7}\right|=1| x 7 | = 1

Group of answer choices

LaTeX: x=7 x = 7

LaTeX: x=-4,\:x=-16 x = − 4 , x = − 16

LaTeX: x=7,\:x=-7 x = 7 , x = − 7

LaTeX: x=-5,\:x=-13

Answers

Answer:

x = +7, x = -7

Explanation:

The equation to solve is:

[tex]\left|\frac{x}{7}\right|=1[/tex]

Which means that the absolute value of the fraction [tex]\frac{x}{7}[/tex] must be equal to 1. Since we have an absolute value, we have basically two equations to solve:

1) [tex]\frac{x}{7}=+1[/tex]

Solving this one, we find

[tex]\frac{x}{7}\cdot 7 = 1\cdot 7 \rightarrow x = +7[/tex]

2) [tex]\frac{x}{7}=-1[/tex]

Solving this one, we find

[tex]\frac{x}{7}\cdot 7 = -1\cdot 7 \rightarrow x = -7[/tex]

So the two solutions are +7 and -7.

A typical person can maintain a steady energy expenditure of 400 W on a bicycle. Assuming a typical efficiency for the body and a generator that is 85% efficient, what useful electric power could you produce with a bicycle-powered generator? Express your answer to two significant figures and include the appropriate units.

Answers

Final answer:

A person can produce approximately 85 W of useful electric power using a bicycle-powered generator when factoring in the typical 25% body efficiency and an 85% efficient generator.

Explanation:

A typical person can maintain a steady energy expenditure of 400 W on a bicycle. Assuming a typical efficiency for the body and a generator that is 85% efficient, the useful electric power produced can be calculated as follows:

First, consider the efficiency of the human body. If we assume that the body is 25% efficient (which means that only 25% of the energy consumed by the body is converted to mechanical work, while the rest is lost as heat), then the actual mechanical work a person can produce is 25% of their energy expenditure.

Therefore, the mechanical work output would be:

0.25 (body efficiency) × 400 W (energy expenditure) = 100 W of mechanical work.

Next, we account for the efficiency of the generator:

100 W (mechanical work) × 0.85 (generator efficiency) = 85 W of useful electric power.

To conclude, a person can produce approximately 85 W of useful electric power with a bicycle-powered generator when considering typical human body efficiency and an 85% efficient generator.

The densities of cardboard, aluminum, and lead are 0.6 g/cm^3, 2.7 g/cm^3, and 11.4 g/cm^3, respectively. Suppose that you are studying the range of a (nonexistent) elementary particle, the Heidbrinkion, and that it takes 49 cm of cardboard, or 42 cm of aluminum, or 17 cm of lead to stop half of the Heibrinkions emitted from a source. Calculate the absorber thickness for each material.
__________ g/cm^2 for cardboard
__________ g/cm^2 for aluminum
__________ g/cm^2 for lead

Answers

Answer:

For cardboard = 29.4 g/cm²

For aluminium = 113.4 g/cm²

For lead = 193.8 g/cm²

Explanation:

Given:  

Density of the cardboard, d₁ = 0.6 g/cm³

Density of the aluminium, d₂ = 2.7 g/cm³

Density of the lead, d₃ = 11.4 g/cm³

Length of the cardboard,  L₁ = 49 cm

Length of the aluminium, L₂ = 42 cm

Length of the lead, L₃ = 17 cm

Now,

The absorber thickness is calculated as:

= Density × Length

therefore,

For cardboard = d₁ × L₁ = 0.6 × 49 = 29.4 g/cm²

For aluminium = d₂ × L₂ = 2.7 × 42 = 113.4 g/cm²

For lead = d₃ × L₃ = 11.4 × 17 = 193.8 g/cm²

A woman at an airport is towing her 20.0-kg suitcase at constant speed by pulling on a strap at an angle θ above the horizontal. She pulls on the strap with a 35.0-N force, and the friction force on the suitcase is 20.0 N. What is the magnitude of the normal force that the ground exerts on the suitcase?

Answers

Answer:

Normal force: 167.48 N

Explanation:

First of all it is necessary to draw the free body diagram of the suitcase adding alll the forces stated on the question: the normal force, the friction force and pull force exterted by the woman. Additionally, we need to add the weight, the forces exerted by Earth's gravity. I attached the diagram so you can check it.We need to resolve all the unknown quantities on this exercise, so we need to write down the sum of forces equations on X-Axis and Y-axis. Remember that force exerted by the woman has an angle with respect the horizontal (X-Axis),  that is to say it has force compoents on both X and Y axis.  The equations  will be equal to zero since the suitcase  is at constant speed (acceleration is zero).

        ∑[tex]F_{x}[/tex]:  [tex]F{x}-20 = 0[/tex]  

        ∑[tex]F_{y}[/tex]: [tex]N -W+F_{y}=0[/tex]

Our objetive is to find the value of the normal force. It means we can solve the sum of Y-axis for N. The solution would be following:

       [tex]N = W - Fy[/tex]

Keep in mind Weight of the suitcase (W) is equal to the suitcase mass times the acceleration caused by gravity (9.81[tex]\frac{m}{s^{2}}[/tex]. Furthermore, Fy can be replaced using trigonometry as [tex]Fsin(\theta)[/tex] where θ is the angle above the horizontal. So the formula can be written in this way:

        [tex]N = mg -Fsin(\theta)[/tex]

We need to find the value of θ so we can find the value of N. We can find it out solving the sum of forces on X-axis replacing Fx for Fcos(θ). The equation will be like this:

        [tex]Fcos(\theta) -20 = 0[/tex]   ⇒   [tex]Fcos(\theta) = 20[/tex][tex]\theta                  

        [tex]\theta=cos^{-1}(20/F)[/tex]

Replacing the value of F we will see θ has a value of 55.15°. Now we can use this angle to find the value of N. Replacing mass, the gravity acceleration and the angle by their respective values, we will have the following:

       [tex]N = 20 x 9.81 - 35sin(55.15)[/tex]  ⇒ [tex]N = 167.48 N[/tex]

A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.40 m/s2. Secret agent Austin Powers jumps on just as the helicopter lifts off the ground. After the two men struggle for 10.80 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off and ignore effects of air resistance. What is the maximum height above ground reached by the helicopter?

Answers

Answer:

314.92 m

Explanation:

Acceleration of the helicopter = 5.4 m/s² = a

Time taken by the helicopter to reach maximum height = 10.8 s = t

Initial velocity = 0 = u

Final velocity = v

Displacement = s

Equation of motion

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s=0\times 10.8+\frac{1}{2}5.4\times 10.8^2\\\Rightarrow s=314.92\ m[/tex]

Maximum height above ground reached by the helicopter is 314.92 m

Consider the three displacement vectors
A=(3i+3j)meters,
B-(i-4j) m
C=(-2i+5j) m
Use the Component method to determine
a) the magnitude and direction of the vector D= A+B+C
b) the magnitude And direction of E=-A-B+C

Answers

Answer:

Explanation:

[tex]\overrightarrow{A} = 3\widehat{i}+3\widehat{j}[/tex]

[tex]\overrightarrow{B} = \widehat{i}-4\widehat{j}[/tex]

[tex]\overrightarrow{C} = -2\widehat{i}+5\widehat{j}[/tex]

(a)

[tex]\overrightarrow{D} =\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}[/tex]

[tex]\overrightarrow{D} =\left ( 3+1-2 \right )\widehat{i} +\left ( 3-4+5 \right )\widehat{j}[/tex]

[tex]\overrightarrow{D} =\left 2\widehat{i} +4\widehat{j}[/tex]

Magnitude of [tex]\overrightarrow{D}[/tex] = [tex]\sqrt{2^{2}+4^{2}}[/tex]

                                                                     = 4.47 m

Let θ be the direction of vector D

[tex]tan\theta =\frac{4}{2}[/tex]

θ = 63.44°

(b)

[tex]\overrightarrow{E} =

- \overrightarrow{A}-\overrightarrow{B}+\overrightarrow{C}[/tex]

[tex]\overrightarrow{E} =\left ( - 3- 1 -2 \right )\widehat{i} +\left ( - 3 + 4+5 \right )\widehat{j}[/tex]

[tex]\overrightarrow{E} =- \left 6\widehat{i} +6\widehat{j}[/tex]

Magnitude of [tex]\overrightarrow{E}[/tex] = [tex]\sqrt{6^{2}+6^{2}}[/tex]

                                                                     = 8.485 m

Let θ be the direction of vector D

[tex]tan\theta =\frac{6}{-6}[/tex]

θ = 135°

a) For vector [tex]\( \mathbf{D} \)[/tex]: Magnitude: [tex]\( 4 \, \text{meters} \)[/tex] ,Direction: [tex]\( 90^\circ \)[/tex]

b) For vector [tex]\( \mathbf{E} \)[/tex]: Magnitude: [tex]\( 7.21 \, \text{meters} \)[/tex] ,Direction: [tex]\( 123.69^\circ \)[/tex]

To find the resultant vectors [tex]\( \mathbf{D} = \mathbf{A} + \mathbf{B} + \mathbf{C} \) and \( \mathbf{E} = -\mathbf{A} - \mathbf{B} + \mathbf{C} \)[/tex] using the component method, we need to break each vector into its [tex]\( i \)[/tex] and [tex]\( j \)[/tex] components, sum these components, and then find the magnitude and direction of the resulting vectors.

Given vectors:

[tex]\[ \mathbf{A} = 3\mathbf{i} + 3\mathbf{j} \][/tex]

[tex]\[ \mathbf{B} = -\mathbf{i} - 4\mathbf{j} \][/tex]

[tex]\[ \mathbf{C} = -2\mathbf{i} + 5\mathbf{j} \][/tex]

a) Vector [tex]\(\mathbf{D} = \mathbf{A} + \mathbf{B} + \mathbf{C}\)[/tex]

1. Sum the components:

[tex]\[ \mathbf{D} = (3\mathbf{i} + 3\mathbf{j}) + (-\mathbf{i} - 4\mathbf{j}) + (-2\mathbf{i} + 5\mathbf{j}) \][/tex]

Combine like terms:

 [tex]\[ D_i = 3 - 1 - 2 = 0 \][/tex]

  [tex]\[ D_j = 3 - 4 + 5 = 4 \][/tex]

  So, the components of [tex]\( \mathbf{D} \)[/tex] are:

  [tex]\[ \mathbf{D} = 0\mathbf{i} + 4\mathbf{j} \][/tex]

2. Magnitude of [tex]\( \mathbf{D} \)[/tex]:

 [tex]\[ |\mathbf{D}| = \sqrt{D_i^2 + D_j^2} = \sqrt{0^2 + 4^2} = 4 \, \text{meters} \][/tex]

3. Direction of [tex]\( \mathbf{D} \)[/tex]:

  The angle [tex]\( \theta_D \)[/tex] from the positive x-axis is:

 [tex]\[ \theta_D = \tan^{-1}\left(\frac{D_j}{D_i}\right) = \tan^{-1}\left(\frac{4}{0}\right) = 90^\circ \][/tex]

b) Vector [tex]\(\mathbf{E} = -\mathbf{A} - \mathbf{B} + \mathbf{C}\)[/tex]

1. Sum the components:

 [tex]\[ \mathbf{E} = - (3\mathbf{i} + 3\mathbf{j}) - (-\mathbf{i} - 4\mathbf{j}) + (-2\mathbf{i} + 5\mathbf{j}) \][/tex]

  Simplify the negative signs:

  [tex]\[ \mathbf{E} = (-3\mathbf{i} - 3\mathbf{j}) + (\mathbf{i} + 4\mathbf{j}) + (-2\mathbf{i} + 5\mathbf{j}) \][/tex]

  Combine like terms:

 [tex]\[ E_i = -3 + 1 - 2 = -4 \][/tex]

[tex]\[ E_j = -3 + 4 + 5 = 6 \][/tex]

So, the components of [tex]\( \mathbf{E} \)[/tex] are:

  [tex]\[ \mathbf{E} = -4\mathbf{i} + 6\mathbf{j} \][/tex]

2. Magnitude of [tex]\( \mathbf{E} \)[/tex]:

 [tex]\[ |\mathbf{E}| = \sqrt{E_i^2 + E_j^2} = \sqrt{(-4)^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52} \approx 7.21 \, \text{meters} \][/tex]

3. Direction of [tex]\( \mathbf{E} \)[/tex]:

  The angle [tex]\( \theta_E \)[/tex] from the positive x-axis is:

  [tex]\[ \theta_E = \tan^{-1}\left(\frac{E_j}{E_i}\right) = \tan^{-1}\left(\frac{6}{-4}\right) = \tan^{-1}\left(-1.5\right) \][/tex]

Since [tex]\( E_i \)[/tex] is negative and [tex]\( E_j \)[/tex] is positive, [tex]\( \theta_E \)[/tex] is in the second quadrant:

 [tex]\[ \theta_E = 180^\circ - \tan^{-1}(1.5) \approx 180^\circ - 56.31^\circ = 123.69^\circ \][/tex]

A jet plane lands with a velocity of +107 m/s and can accelerate at a maximum rate of -5.18 m/s2 as it comes to rest. From the instant it touches the runway, what is the minimum time needed before it can come to rest?

Answers

Answer:

20.7 s

Explanation:

The equation to calculate the velocity for a uniform acceleration a, time t and initial velocity v₀:

v = a*t + v₀

Solve for t:

t = (v - v₀)/a

The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 542 nm. What is the work function W0 of this metal? Express your answer in electron volts.

Answers

Final answer:

The work function of the metal is approximately 3.67 eV.

Explanation:

The work function, or binding energy, of a metal is the minimum energy required to eject an electron from the metal surface. In the photoelectric effect, the maximum kinetic energy of ejected electrons (photoelectrons) is given by the equation KE = hf - BE, where hf is the photon energy and BE is the work function. To find the work function W0 of the metal, we can use Equation 6.16, which states that the threshold wavelength for observing the photoelectric effect is given by λ = (hc)/(W0), where h is Planck's constant, c is the speed of light, and W0 is the work function.

Given that the maximum wavelength that can still eject electrons is 542 nm, we can rearrange the equation to solve for W0:

W0 = (hc)/λ

Plugging in the values, we have:

W0 = (6.626 × 10^-34 J·s)(3 × 10^8 m/s)/(542 × 10^-9 m)

Simplifying the calculation, we find that the work function W0 of the metal is approximately 3.67 eV.

Learn more about work function here:

https://brainly.com/question/12658742

#SPJ12

Final answer:

The maximum wavelength for ejecting electrons from the metal surface is 542 nm. Using the energy equation for photons, we calculate the work function (W0) to be approximately 2.29 electron volts.

Explanation:

The question relates to the photoelectric effect and the calculation of the work function of a metal when electromagnetic radiation of a certain wavelength is incident upon it. The work function (W0) is the minimum energy needed to eject an electron from the metal surface. According to the question, the maximum wavelength that can eject an electron is 542 nm.

To find the work function in electron volts, we can use the equation:

E(photon) = hc / λ

Where:

E(photon) is the energy of the photon

h is Planck's constant (4.135667696 × [tex]10^-^1^2[/tex] eV·s)

c is the speed of light (3 × 108 m/s)

λ is the wavelength of the photon in meters (542 nm = 542 × [tex]10^-^9[/tex] m)

First, convert the energy into electron volts:

E(photon) = (4.135667696 × [tex]10^-^1^2[/tex] eV·s × 3 × 108 m/s) / (542 × [tex]10^-^9[/tex] m)

After calculation, we find that E(photon) is approximately 2.29 eV. For a photon to eject an electron, its energy must be equal to or greater than the work function of the metal. Therefore, the work function of the metal is also 2.29 eV.

A long copper rod of diameter 2.0 cm is initially at a uniform temperature of 100°C. It is now exposed to an air stream at 20°C with a heat transfer coefficient of 200 W/m2·K. How long would it take for the copper road to cool to an average temperature of 25°C?

Answers

it takes approximately [tex]\(1.3863 \times 10^{-4}\)[/tex] seconds for the copper rod to cool to an average temperature of 25°C when exposed to an air stream at 20°C with a heat transfer coefficient of [tex]\(20,000 \, \text{W/m}^2 \cdot \text{K}\)[/tex].

The rate at which the copper rod loses heat can be described by Newton's Law of Cooling, which is given by the formula:

[tex]\[ Q(t) = Q_0 e^{-ht} \][/tex]

where:

[tex]\( Q(t) \)[/tex] is the heat at time[tex]\( t \)\\[/tex],

[tex]\( Q_0 \)[/tex]is the initial heat content,

[tex]\( h \)\\[/tex] is the heat transfer coefficient,

[tex]\( t \)[/tex] is the time.

The heat transfer coefficient [tex]\( h \)[/tex] can be calculated using the formula:

[tex]\[ h = \frac{k}{D} \][/tex]

where:

[tex]\( k \)[/tex] is the thermal conductivity of copper,

[tex]\( D \)[/tex] is the diameter of the rod.

The time ( t ) it takes for the rod to cool to a certain temperature can be determined by solving for ( t) when [tex]\( Q(t) \)[/tex]reaches a specific value. In this case, we want to find ( t ) when the average temperature of the rod is 25°C.

Let's proceed with the calculations:

1. **Calculate [tex]\( h \)[/tex]:**

  The thermal conductivity of copper[tex](\( k \)) is approximately \( 400 \, \text{W/m} \cdot \text{K} \)[/tex].

[tex]\[ h = \frac{k}{D} \][/tex]

 [tex]\[ h = \frac{400 \, \text{W/m} \cdot \text{K}}{0.02 \, \text{m}} \] \[ h = 20,000 \, \text{W/m}^2 \cdot \text{K} \][/tex]

2. **Plug in values and solve for ( t ):**

  The initial temperature of the rod[tex](\( T_0 \))[/tex] is 100°C, the ambient temperature [tex](\( T_{\text{air}} \))[/tex] is 20°C, and the average temperature[tex](\( T \))[/tex] is 25°C. The temperature difference[tex]\( \Delta T \) is \( T_0 - T_{\text{air}} \)[/tex].

[tex]\[ \Delta T = T_0 - T_{\text{air}} = 100°C - 20°C = 80°C \][/tex]

 Now, [tex]\( h \) and \( \Delta T \) are known, and we can rearrange the formula \( Q(t) = Q_0 e^{-ht} \) to solve for \( t \)[/tex]:

[tex]\[ t = -\frac{1}{h} \ln\left(\frac{T - T_{\text{air}}}{T_0 - T_{\text{air}}}\right) \][/tex]

Substituting the values:

[tex]\[ t = -\frac{1}{20,000 \, \text{W/m}^2 \cdot \text{K}} \ln\left(\frac{25°C - 20°C}{100°C - 20°C}\right) \][/tex]

Calculate ( t ) using the natural logarithm function, and you'll get the time it takes for the copper rod to cool to an average temperature of 25°C.

let's calculate the time it takes for the copper rod to cool to an average temperature of 25°C.

[tex]\[ t = -\frac{1}{20,000 \, \text{W/m}^2 \cdot \text{K}} \ln\left(\frac{25°C - 20°C}{100°C - 20°C}\right) \][/tex]

[tex]\[ t = -\frac{1}{20,000 \, \text{W/m}^2 \cdot \text{K}} \ln\left(\frac{5}{80}\right) \][/tex]

Now, calculate the natural logarithm:

[tex]\[ t = -\frac{1}{20,000 \, \text{W/m}^2 \cdot \text{K}} \ln\left(0.0625\right) \][/tex]

[tex]\[ t \approx -\frac{1}{20,000 \, \text{W/m}^2 \cdot \text{K}} \times (-2.7726) \][/tex]

[tex]\[ t \approx \frac{2.7726}{20,000 \, \text{W/m}^2 \cdot \text{K}} \][/tex]

[tex]\[ t \approx 1.3863 \times 10^{-4} \, \text{s} \][/tex]

So, it takes approximately [tex]\(1.3863 \times 10^{-4}\)[/tex] seconds for the copper rod to cool to an average temperature of 25°C when exposed to an air stream at 20°C with a heat transfer coefficient of [tex]\(20,000 \, \text{W/m}^2 \cdot \text{K}\)[/tex].

Learn more about Heat Transfer here:

https://brainly.com/question/13433948

#SPJ6

The time it would take for the copper rod to cool to an average temperature of 25°C is approximately 22.17 minutes.

To solve this problem, we will use the concept of Newton's law of cooling, which states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The formula for the heat transfer rate is given by:

[tex]\[ \frac{dQ}{dt} = hA(T_s - T_{\infty}) \][/tex]

where:

[tex]\( \frac{dQ}{dt} \)[/tex] is the rate of heat transfer (W),

h is the heat transfer coefficient [tex](W/m^2\·K)[/tex],

A is the surface area of the object [tex](m^2)[/tex],

[tex]\( T_s \)[/tex] is the surface temperature of the object (°C), and

[tex]\( T_{\infty} \)[/tex] is the temperature of the surrounding air (°C).

The copper rod is a cylinder, so its surface area A can be calculated using the formula for the surface area of a cylinder:

[tex]\[ A = 2\pi rL \][/tex]

where:

r is the radius of the rod, and

L is the length of the rod.

Given that the diameter of the rod is 2.0 cm, the radius r is half of that, which is 1.0 cm or 0.01 m. The length L of the rod is not given, so we will assume it to be L meters.

The initial temperature of the rod is [tex]\( T_{initial} = 100 \°C \)[/tex], and the final temperature we want to reach is [tex]\( T_{final} = 25 \°C \)[/tex]. The temperature difference between the rod and the surrounding air is [tex]\( T_s - T_{\infty} \)[/tex].

The heat lost Q by the rod as it cools from [tex]\( T_{initial} \)[/tex] to [tex]\( T_{final} \)[/tex] can be found using the specific heat capacity of copper (c) and the mass (m) of the rod:

[tex]\[ Q = mc(T_{initial} - T_{final}) \][/tex]

The mass (m) of the rod can be calculated from its density \rho and volume V:

[tex]\[ m = \rho V \][/tex]

[tex]\[ V = \pi r^2 L \][/tex]

The density of copper [tex]\( \rho \)[/tex] is approximately [tex]\( 8930 \) kg/m^3[/tex].

Now, we can equate the heat lost to the heat transfer over time:

[tex]\[ mc(T_{initial} - T_{final}) = hA(T_s - T_{\infty}) \cdot \Delta t \][/tex]

Solving for [tex]\( \Delta t \)[/tex], we get:

[tex]\[ \Delta t = \frac{mc(T_{initial} - T_{final})}{hA(T_s - T_{\infty})} \][/tex]

The specific heat capacity of copper (c) is approximately 385 J/kg·K.

Substituting the expressions for (m) and (A) into the equation for [tex]\( \Delta t \)[/tex], we have:

[tex]\[ \Delta t = \frac{\rho \pi r^2 L c(T_{initial} - T_{final})}{h(2\pi rL)(T_s - T_{\infty})} \][/tex]

Simplifying, we get:

[tex]\[ \Delta t = \frac{\rho r c(T_{initial} - T_{final})}{2h(T_s - T_{\infty})} \][/tex]

Now we can plug in the values:

[tex]\( \rho = 8930 \) kg/m^3[/tex],

r = 0.01 m,

c = 385 J/kg·K,

[tex]T_{initial}[/tex] = 100°C ,

[tex]T_{final}[/tex] = 25°C,

[tex]h = 200 W/m^2\·K[/tex],

[tex]T_{\infty}[/tex] = 20°C.

[tex]\[ \Delta t = \frac{8930 \times 0.01 \times 385 \times (100 - 25)}{2 \times 200 \times (25 - 20)} \][/tex]

[tex]\[ \Delta t = \frac{8930 \times 0.01 \times 385 \times 75}{2 \times 200 \times 5} \][/tex]

[tex]\[ \Delta t = \frac{8930 \times 0.01 \times 385 \times 15}{2 \times 200} \][/tex]

[tex]\[ \Delta t = \frac{8930 \times 0.01 \times 385 \times 15}{400} \][/tex]

[tex]\[ \Delta t = \frac{532095}{400} \][/tex]

[tex]\[ \Delta t = 1330.2375 \text{ seconds} \][/tex]

To express this in minutes, we divide by 60:

[tex]\[ \Delta t = \frac{1330.2375}{60} \text{ minutes} \][/tex]

[tex]\[ \Delta t \approx 22.170625 \text{ minutes} \][/tex]

The distance between two adjacent peaks on a wave is called the wavelength. The wavelength of a beam of ultraviolet light is 113 nanometers (nm). What is its wavelength in meters?

Answers

Answer:

0.000000113 or 1.13*[tex]10^{-7}[/tex] meters

Explanation:

One nanometer is [tex]10^{-9}[/tex] meters. So 113 nanometers would be 113*[tex]10^{-9}[/tex], or 1.13*[tex]10^{-7}[/tex] meters. That's expessed on "cientific notation." On the "usual" notation, it will be 0.000000113 meters.

A 5kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant. The mass of the planet is unknown. After 2s, the object has fallen 30m. Air resistance is considered to be negligible. What is the gravitational force exerted on the 5kg object near the planet’s surface?

Answers

Answer:

75 N

Explanation:

t = Time taken = 2 seconds

u = Initial velocity

v = Final velocity

s = Displacement = 30 m

a = Acceleration

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 30=0\times 2+\frac{1}{2}\times a\times 2^2\\\Rightarrow a=\frac{30\times 2}{2^2}\\\Rightarrow a=15\ m/s^2[/tex]

The acceleration due to gravity on the planet is 15 m/s²

Force

F = ma

[tex]F=5\times 15\\\Rightarrow F=75\ N[/tex]

The gravitational force exerted on the object near the planet’s surface is 75 N

We have that for the Question it can be said that he gravitational force exerted on the 5kg object near the planet’s surface

F=75N

From the question we are told

A 5kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant. The mass of the planet is unknown. After 2s, the object has fallen 30m.

Air resistance is considered to be negligible. What is the gravitational force exerted on the 5kg object near the planet’s surface?

Generally the equation for the Motion   is mathematically given as

[tex]s=ut+1/2at^2\\\\Therefore\\\\30=0+1/2(a)(2)^2\\\\a=15m/s^2[/tex]

Therefore

F=ma

F=5*15

F=75N

Hence, the gravitational force exerted on the 5kg object near the planet’s surface

F=75N

For more information on this visit

https://brainly.com/question/23379286

Other Questions
Select the words to make the statements true. Britain defended its colonial policies by arguing that the colonists had actual / virtual representation in Parliament. The colonists insisted they must have actual / virtual representation. Consider a sample of calcium carbonate in the form of a cube measuring 2.805 in. on each edge.If the sample has a density of 2.70 g/cm3 , how many oxygen atoms does it contain? Suppose 0 is an angle in the standard position whose terminal side is in Quadrant 1 and sin 0= 84/85. Find the exact values of the five remaining trigonometric functions of 0 Please Help ASAP!! Which ways can you access the controls for headers and footers? Check all that apply.-in the Print menu-in the Review tab-in the Page Layout view-in the Design contextual tab-right-clicking on any cell A has a mass of 7 kg, object B has a mass of 5 lbm, and object C has a mass of 0.5 slug. (a) Which object has the largest mass? Which object has the smallest mass? (b) Find the weights of objects A, B and C (in both N and lbf) on the surface of Mars. 82/3= a 4b 8 c 162 how did the European explorers influence the development of Louisiana 3. According to Sashas body mass of 32, she is considered _____.BMI Categories:Underweight = Pros and cons social media as a private person Which of the following gives the net ionic reaction for the reaction used in this experiment?H+(aq) + OH-(aq) H2O(l)no net reactionBa2+(aq) + SO42-(aq) BaSO4(s)Ba2+(aq) + 2 OH-(aq) + 2 H+(aq) + SO42-(aq) BaSO4(s) + 2 H2O(l) Connor is stuck in a traffic jam on a single-lane road. The traffic report tells him the traffic jam stretches for 5.5 miles. If Connor assumes each car is about 12.5 feet long, which calculation is most reasonable for Connor to use to find about how many cars are stuck in the traffic jam? Which details best reveal the setting of the passage? Select two options.It is a great Dead Placegreater than any Dead Place we know.Everywhere there are the ruins of the high towers of the gods.I went carefully, my strung bow in my hand, my skin ready for danger.I looked after it, and thought if it had trod me under, at least I would be safely dead.When I had dried my bowstring and re-strung it, I walked forward to the Place of the Gods. The Sixteenth Amendment: a. prohibited the use and sale of alcohol. b. granted women the right to vote. c. instituted the initiative, referendum, and recall. d. called for the direct election of senators. e. authorized Congress to implement a graduated income tax. Characterize the following actions of a firm as financing, investing, or operating activities: Scenario Operating Activity Investing Activity Financing Activity __Sells a tract of land it has held for years __Increases its use of trade credit from suppliers __Improves profit margin and increases net income __Issues new shares of preferred stock __Tightens its credit policy with its customers __Buys back shares of common stock __Buys new equipment and machinery Issues new notes payable There are many different types of hardware devices, different manufacturers, and countless configuration possibilities. Explain why all these combinations of devices, manufacturers, and configurations are able to work together without requiring additional work on the part of technicians. The International Space Station operates at an altitude of 350 km. Plans for the final construction show that material of weight 4.22 106 N, measured at the Earth's surface, will have been lifted off the surface by various spacecraft during the construction process. What is the weight of the space station when in orbit? ASAP PLEASE ASAP!! Somebody please help!! You don't have to do all of them but if you can please do!!-----------------------------------------------------------------------------How are each of the properties important to life?-------------------------------------------------------------------------------Polarity-Cohesive behavior-Adhesion-High specific heat-Expansion upon freezing-Versatility as a solvent Marcie is playing a board game with a friend. She needs 20 points to win. She currently has -10 points. She wants to know the difference between the number of points she needs In the first step of hydroboration mechanism, why is an arrow drawn from the pi bond of the alkene to the B atom of the borane reagent signifying the pi electrons are used to make a new C-B bond? See the background information presented with Part I. A scientist wishes to test a new antibiotic's ability to treat stubborn bacterial infections. He tests his hypothesis that the antibiotic works better than existing treatments by giving bacterial infections to mice and treating them with the antibiotic. He then determines how many of the mice recover from their infections. What is missing from his experimental design? :a. He is missing a control group of mice that received a half dose of the new antibiotic.b. He is missing a control group of mice that did not receive the new antibiotic.c. Nothing is missing he has done everything he needs to do for this to be a successful experiment