Draw the arrow-pushing mechanism of a generic esterification reaction: b) From the spectral data (NMR, IR, MS) you were given, identify the structure of your ester product. c) Based on your answer to part b), what is the structure of your starting alcohol? 2) Critical analysis (6 points): a) Fully assign the 1H NMR spectrum of your product (i.e. determine which peaks in the 1H NMR correspond to which hydrogens in the product). You will not receive full marks for determination of the unknown unless you assign the 1H NMR spectrum completely. b) You will notice that we gave you the m/z value of the M+ ion of your product on the EI (electron impact) mass spectrum, but the actual peak on the spectrum is very small (or even non-existent). Read Solomons chapter 9 and explain why the M+ peak is so small.

Answers

Answer 1

Answer:

See explaination for detailed answer

Explanation:

In the IR spectrum, the broad peak at 3322 cm-1 corresponds to OH stretching while the peaks at 2929-2961 cm-1 correspond to C-H stretching. Thus the presence of alcohol is evident in the IR spectrum.

The 13C NMR suggests the presence of seven C-atoms in this ester. The peak corresponding to carbonyl carbon appear most downfield at ~172 ppm. The other six peaks are in the aliphatic region suggesting an aliphatic ester.

In the 1H NMR, we see a singlet at 2.0 ppm with the integral value of 3. This singlet is characteristic to the protons of the acetate (CH3CO) group as seen in ethyl acetate. This suggests that the acetic acid was employed in this esterification reaction. Using this information along with what we know from 13C NMR we can be certain that the given alcohol contains 5 carbons (total 7 carbon – 2 carbon from acetate group). Therefore the starting material must be pentyl alcohol.

The 1H NMR peaks for the pentyl group are

The most downfield triplet at 4.1 ppm corresponding to OCH2. This is due to deshielding of the CH2 by the electronegative O-atom

The most upfield triplet at 0.9 ppm corresponding to CH3.

A multiplet at 1.3 ppm corresponding to CH2 CH2 which is attached toCH3 moiety

A pentate at 1.6 ppm corresponding to CH2 which is attached toOCH3 moiety

Therefore, the given alcohol is n-pentyl alcohol and the ester is pentyl acetate (Molar mass 130.0994)

See attachment for diagram

Draw The Arrow-pushing Mechanism Of A Generic Esterification Reaction: B) From The Spectral Data (NMR,

Related Questions

Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of carbon tetrachloride would be produced by this reaction if 1.1 mL of chlorine were consumed? Be sure your answer has the correct number of significant digits.

Answers

Answer:

0.55mL of carbon tetrachloride

Explanation:

CH4(g) + 2Cl2(g) -------> CCl4(g) + 2H2(g)

From the balanced reaction equation

44800mL of chlorine produces 22400 ml of carbon tetrachloride

If 1.1mL of chlorine were consumed, volume of carbon tetrachloride= 1.1×22400/44800

=0.55mL of carbon tetrachloride

Note: 1 mole of a gas occupies 22.4L volume or 22400mL

The dehydrogenation of benzyl alcohol to make the flavoring agent benzaldehyde is an equilibrium process described by the equation: C6H5CH2OH(g) ⇆ C6H5CHO(g) + H2(g) At 523 K, the value of its equilibrium constant is K = 0.558. (a) Suppose that 1.20 g of benzyl alcohol is placed into a 2.00 L vessel and heated to 523 K. What is the partial pressure of benzaldehyde when equilibrium is attained? (b) What fraction of benzyl alcohol is dissociated into products at equilibrium?

Answers

Answer:

pC6H5CHO = 0.180 atm

Fraction dissociated = 0.756

Explanation:

Step 1: Data given

Temperature = 523 K

the value of its equilibrium constant is K = 0.558

Mass of benzyl alcohol = 1.20 grams

Molar mass of benzyl alcohol = 108.14 g/mol

Volume = 2.00 L

heated to 523 K

Step 2: The balanced equation

C6H5CH2OH(g) ⇆ C6H5CHO(g) + H2(g)

Step 3: Calculate moles benzyl alcohol

Moles benzyl alcohol = Mass / molar mass

Moles benzyl alcohol = 1.20 grams / 108.14 g/mol

Moles benzyl alcC6H5CH2OHohol = 0.0111 moles

Step 4: Initial moles

Moles C6H5CH2OH = 0.0111 moles

Moles C6H5CHO = 0 moles

Moles H2O = 0 moles

Step 5:  moles at the equilibrium

Moles C6H5CH2OH = 0.0111 - X moles

Moles C6H5CHO = X moles

Moles H2O = X moles

Step 6: Calculate the total number of moles at equilibrium

Total number of moles = (0.0111 - X moles) + X moles + X moles

Total number of moles = 0.0111 + X moles

Step 7: Calculate the total pressure at the equilibrium

p*V = n*R*T

p = (n*R*T) / V

⇒with p = the total pressure at the equilibrium = TO BE DETERMINED

⇒with n = the total number of moles = 0.0111 + X moles

⇒with R = the gas constant = 0.08206 L*atm / mol * K

⇒with T = the temperature = 523 K

⇒with V = the volume of the vessel = 2.00 L

p = (0.0111 - X moles ) * 0.08206*523 / 2.00

p = 21.46(0.0111 - X moles)

Step 8: Define the equilibrium constant K

K = 0.558 =  (pC6H5CHO)*(pH2) / (pC6H5CH2OH)

0.558 = (X / (0.0111 + X)*P)²  /  ((0.0111-X)/(0.0111+X)*P)

0.558 = (X²(21.46 * (0.0111+X))) / ((0.0111 + X) (0.0111-X))

X = 0.00839

Step 9: Calculate the equilibrium partial pressure

pC6H5CHO = X / (0.0111 + X)  * (21.46 * (0.0111 +X))

pC6H5CHO = 0.180 atm

Step 10: What fraction of benzyl alcohol is dissociated into products at equilibrium?

Fraction dissociated = Δn / n°

Fraction dissociated = X / 0.0111

Fraction dissociated = 0.00839 / 0.0111

Fraction dissociated = 0.756

Be sure to answer all parts. One reason spectroscopists study excited states is to gain information about the energies of orbitals that are unoccupied in an atom's ground state. The following electron configuration represents an atom in an excited state. Identify the element and write its condensed ground-state configuration: 1s2 2s2 2p6 3s1 3p1

Answers

Answer:

The element is magnesium

[Ne]3s2

Explanation:

When an atom is excited, electrons move from a lower to a higher energy level. These higher energy levels are called excited states. The ground state is the lowest energy arrangement of electrons.

Excited states are important in spectroscopy. It gives scientists an idea of the unoccupied orbitals in the ground state. This is easily deduced from the fact that the specie has twelve electrons in all.

Magnesium has ground state configuration as shown in the answer but has an excited state as shown in the question.

The pressure in a bicycle tire is __55.0__psi at __30.0__˚C in Phoenix. You take the bicycle up to Flagstaff, where the temperature is _5.0___˚C. What is the pressure, in kPa, in the tire?(Volume and Amount of moles is held constant)

Answers

Answer:

[tex]p_2=347.9kPa[/tex]

Explanation:

Hello,

In this case, we use the Gay-Lussac's law which allows us to understand a gas' pressure-temperature behavior as a directly proportional relationship:

[tex]\frac{p_1}{T_1}= \frac{p_2}{T_2}[/tex]

Whereas it is convenient to use the pressure in kPa and the temperature in kelvins in order to compute the required resulting pressure, therefore:

[tex]p_1=55.0psi*\frac{6.89476kPa}{1psi} =379.2kPa\\T_1=30.0+273.15=303.15K\\T_2=5.0+273.15=278.15K[/tex]

Thus, we obtain:

[tex]p_2= \frac{p_1T_2}{T_1}=\frac{379.2kPa*278.15K}{303.15K}\\ \\p_2=347.9kPa[/tex]

Best regards.

Answer:

The pressure in the tire at 5.0 °C is 347.91 kPa

Explanation:

Step 1: Data given

The pressure in a bicycle tire is 55.0 psi

Temperature = 30.0 °C = 303 K

Temperature decreases to 5.0 °C = 278 K

Volume and Amount of moles are held constant

Step 2: Calculate the pressure at the new temperature

P1/T1 = P2 / T2

⇒with P1 = the initial pressure of the bicycle tire is 55.0 psi

⇒with T1 = the initial temeprature = 303 K

⇒with P2 = the pressure at the new temperature

⇒with T2 = the decreased temperature = 278 K

55.0 psi / 303 K = P2 / 278 K

P2 = (55.0 psi / 303 K) * 278 K

P2 = 50.46 psi

Step 3: Convert pressure from psi to kPa

50.46 psi = 50.46 * 6.895 = 347.91 kPa

The pressure in the tire at 5.0 °C is 347.91 kPa

For the reaction: 2 H2 + 2 NO → N2 + 2 H2O the observed rate expression, under some conditions, is: rate = k[H2][NO]2 Which of the following mechanisms are consistent with these data? Select all that are True. step 1 H2 + 2 NO → N2O + H2O (slow) step 2 N2O + H2 → N2 + H2O (fast) step 1 2 H2 + 2 NO → N2 + H2O step 1 NO + NO ⇌ N2O2 (fast) step 2 N2O2 + H2 → N2 + H2O + O (slow) step 3 O + H2 → H2O (fast) step 1 H2 + NO ⇌ H2ON (fast) step 2 H2ON + NO → N2 + H2O2 (slow) step 3 H2O2→ H2O + O (fast) step 4 O + H2 → H2O (fast)

Answers

Answer:

Step 1 H2 + 2 NO → N2O + H2O (slow)

step 2 N2O + H2 → N2 + H2O (fast)

Explanation:

It is known that the slowest step in a reaction is the rate determining step in a sequence of reactions (reaction mechanism).

We have two important pieces of information in the question to guide our decision making process.

The overall reaction equation, and the rate expression. The two;

2 H2 + 2 NO → N2 + 2 H2O and rate = k[H2][NO]2 all support the answer given above.

Final answer:

The best matching mechanism to the given rate law is 'H2 + 2 NO → N2O + H2O (slow)' followed by 'N2O + H2 → N2 + H2O (fast)'. This mechanism results in first-order dependence on H2 and second-order dependence on NO, matching the observed rate law.

Explanation:

To find a mechanism that matches the given rate law (rate = k[H2][NO]²), we need to find one where NO is involved in the slow (rate-determining) step twice (which will make the overall reaction second-order with respect to NO), and H2 is involved once (making it first-order with respect to H2). From the proposed mechanisms, we can agree that the first one:

H2 + 2 NO → N2O + H2O (slow) N2O + H2 → N2 + H2O (fast)

is most likely because the slow step involves one H2 and two NO molecules.

Learn more about Reaction Mechanism here:

https://brainly.com/question/34268569

#SPJ3

Consider the reaction: NO2(g) + CO(g) ⇌ NO(g) + CO2(g) Kc = 0.30 at some temperature. If the initial mixture has the concentrations below, the system is_______.

Answers

This is an incomplete question, here is a complete question.

Consider the reaction: [tex]NO_2(g)+CO(g)\rightleftharpoons NO(g)+CO_2(g)[/tex]

Kc = 0.30 at some temperature.

If the initial mixture has the concentrations below, the system is_______.

Chemicals   Concentration (mol/L)

- NO₂            0.024

- CO               0.360

- NO               0.180

- CO₂             0.120

Possible answers:

1) not at equilibrium and will remain in an unequilibrated state.

2) not at equilibrium and will shift to the left to achieve an equilibrium state.

3) not at equilibrium and will shift to the right to achieve an equilibrium state.

4) at equilibrium

Answer : The correct option is, (2) not at equilibrium and will shift to the left to achieve an equilibrium state.

Explanation:

Reaction quotient (Qc) : It is defined as the measurement of the relative amounts of products and reactants present during a reaction at a particular time.

First we have to determine the value of reaction quotient (Qc).

The given balanced chemical reaction is,

[tex]NO_2(g)+CO(g)\rightleftharpoons NO(g)+CO_2(g)[/tex]

The expression for reaction quotient will be :

[tex]Q_c=\frac{[NO][CO_2]}{[NO_2][CO]}[/tex]

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Now put all the given values in this expression, we get

[tex]Q_c=\frac{(0.180)\times (0.120)}{(0.024)\times (0.360)}=2.5[/tex]

Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.

There are 3 conditions:

When [tex]Q>K[/tex] that means product > reactant. So, the reaction is reactant favored.

When [tex]Q<K[/tex] that means reactant > product. So, the reaction is product favored.

When [tex]Q=K[/tex] that means product = reactant. So, the reaction is in equilibrium.

The given equilibrium constant value is, [tex]K_c=0.30[/tex]

From the above we conclude that, the [tex]Q>K[/tex] that means reactant < product. So, the reaction is reactant favored that means reaction must shift to the reactant or left to be in equilibrium.

Hence, the correct option is, (2) not at equilibrium and will shift to the left to achieve an equilibrium state.

Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that is a weak acid. mol of is added to of a solution.

Answers

Answer: seen below

Explanation:

HCH3CO2 + NaOH --------------> CH3CO2- + H2O

Acid specie- HCH3CO2

base- NaOH

Neutral- Na+

CH3COOH + KOH ----------> CH3COOK + H20

Acid- CH3COOH

Base- KOH

Neutral- K+

You mix sodium metal with nitric acid. What salt is produced?

Answers

Answer:

By mixing 2 Moles of Sodium Metal with 2 Moles of nitric acid, Sodium Nitrate is formed.

Explanation:

2Na+   +  HNO3   produces    2NaNO3 + H2

Consider the dissociation of strong versus weak acids: HCl(aq)+H2O(l)→H3O+(aq)+Cl−(aq)HF(aq)+H2O(l)⇌H3O+(aq)+F−(aq) The first reaction is not reversible, but the second one is. So, only the conjugate of the weak acid, F−, can react with H3O+. Now consider the solubility of insoluble salts: AgCl(s)⇌Ag+(aq)+Cl−(aq)AgF(s)⇌Ag+(aq)+F−(aq) The addition of acid has no effect on silver chloride. But for the second reaction, H3O+ will react with F−, decreasing its concentration and driving the equilibrium to the right. Thus, salts that contain the conjugate of a weak acid become more soluble as the acidity of the solution increases.

Answers

Answer:

The solubility of those salts increases which contains conjugate of weak acid. Conjugate of weak acid refers to strong base such as sodium hydroxide and potassium hydroxide etc.

Explanation:

The solubility of salts in strong acidic solution increases due to the presence of conjugate of weak acid which is actually a strong base. So if the salts contain strong base, it readily react with strong acid that is present in the solution.

Consider the perbromate anion. What is the central atom? Enter its chemical symbol. How many lone pairs are around the central atom? What is the ideal angle between the bromine-oxygen bonds? Compared to the ideal angle, you would expect the actual angle between the bromine-oxygen bonds to be ...

Answers

Answer:

See explanation

Explanation:

The central atom in the perbromate ion is bromine. The chemical symbol of bromine is Br. There are no lone pairs around the central bromine atom. The ion is tetrahedral in shape hence we expect a bond angle of 109°. 27 which is the ideal tetrahedral bond angle. The actual bond angle of the prebromate ion is 109.5°. The perbromate ion is BrO4^-

The observed bond angle is very close to the ideal value because of the absence of lone pairs of electrons from the central atom in the ion.

Final answer:

The perbromate anion, BrO4-, has Bromine (Br) as its central atom and two lone pairs of electrons. This configuration results in a square planar molecular structure, presenting ideal Bromine-Oxygen bond angles of 90° and 180°. These angles are expected to be virtually accurate due to minimization of lone pair-bonding pair repulsions.

Explanation:

The perbromate anion, represented by the chemical formula BrO4-, has bromine (Br) as its central atom. Based on the octet rule, the central bromine atom is surrounded by four oxygen atoms and has two lone pairs of electrons. Given this arrangement, the perbromate anion exhibits an octahedral electron-pair geometry, but due to the presence of the two lone pairs, its molecular structure is square planar. The ideal angle between the Bromine-Oxygen bonds in a square planar structure is 90° or 180°. Since the lone pairs occupy the positions minimizing their interactions with the bonded oxygen atoms, the actual angle in the perbromate anion is expected to closely match this ideal angle.

Learn more about Perbromate Anion here:

https://brainly.com/question/4919723

#SPJ3

The absorbance features observed in the visible spectrum for curcumin is a result of an allowed optical excitation of an electron from the π-HOMO to the π*-LUMO. What is the energy change for this electronic excitation based on the spectrum? (Hint: Energy and wavelength are related by the equation E = hc/λ.) h = 4.136 × 10-15 eV⋅ s c = 2.998 × 108 m/s

Answers

Answer:

2.3 ev or 3.68 ×10^-19J

Explanation:

The spectrum is shown in the image attached

h= 4.136 × 10-15 eV⋅ s

c = 2.998 × 108 m/s

λmax= 550×10^-9 (from the spectrum attached)

E=hc/λmax

E= 4.136 × 10^-15 × 2.998 × 10^8/550×10^-9

E= 2.3 ev or 3.68 ×10^-19J

The energy change for the electronic excitation is :  3.68 * 10⁻¹⁹J

Given data :

h = 4.136 * 10⁻¹⁵ eV⋅ s

c = 2.998 * 108 m/s

λmax = 550 * 10⁻⁹  ( Obtained from image attached below )

Applying the energy and wavelength relationship equation

E = hc / λmax

  = ( 4.136 * 10⁻¹⁵  * 2.998 * 108  ) /   550 * 10⁻⁹

  =  2.3 ev   ≈ 3.68 * 10⁻¹⁹J.

Hence we can conclude that the energy change for the electronic excitation is 2.3 ev   ≈ 3.68 * 10⁻¹⁹J.

Learn more : https://brainly.com/question/14590672

Missing data related to your question is attached below

Describe at least two factors that can affect the rate of a chemical reaction.

Answers

Answer: Concentration or pressure of a reactant and temperature

Explanation: The two major factors that can affect the rate of a chemical change are concentration or pressure of a reactant  and temperature.

What is the correct formula for the compound formed by CA2+ and NO2-

Answers

Answer:

Ca(NO2)2

Explanation:

A metal salt with the formula MSO4 crystallizes from water to form a solid with the composition MSO4⋅3H2O. At 298 K, the equilibrium vapor pressure of water above this solid is 14.7 Torr. MSO4⋅3H2O(s)↽−−⇀MSO4(s)+3H2O(g) What is the value of ΔG for the reaction when the vapor pressure of water is 14.7 Torr?

Answers

Final answer:

To find the value of ΔG for the reaction MSO4⋅3H2O(s)↽−−⇀MSO4(s)+3H2O(g) at the given vapor pressure of water, use the equation ΔG = -RTln(K), where ΔG is the change in Gibbs free energy, R is the gas constant, T is the temperature in Kelvin, and K is the equilibrium constant.

Explanation:

The reaction can be represented as: MSO4·3H2O(s) <--> MSO4(s) + 3H2O(g)

The equilibrium vapor pressure of water above the solid is 14.7 Torr.

Since we are given the equilibrium condition, we can use the equation ΔG = -RTln(K), where ΔG is the change in Gibbs free energy, R is the gas constant, T is the temperature in Kelvin, and K is the equilibrium constant.

By plugging in the given values, we can calculate the value of ΔG at the equilibrium condition.

The value of [tex]\Delta G[/tex] for the reaction when the vapor pressure of water is 14.7 Torr is approximately 2.005 kJ/mol.

The value of [tex]\Delta G[/tex] for the reaction at 298 K when the vapor pressure of water is 14.7 Torr is given by the equation:

[tex]\[ \Delta G = -RT \ln \left( \frac{P_{H_2O}^3}{P_{H_2O}^{eq}} \right) \][/tex]

where:

- [tex]\( \Delta G \)[/tex] is the change in Gibbs free energy,

- [tex]R[/tex] is the universal gas constant (8.314 J/(mol·K)),

- [tex]T[/tex] is the temperature in Kelvin (298 K in this case),

- \[tex]\( P_{H_2O}^3 \)[/tex] is the partial pressure of water raised to the power of the moles of water in the reaction (which is 3),

- [tex]\( P_{H_2O}^{eq} \)[/tex] is the equilibrium vapor pressure of water (14.7 Torr).

First, we need to convert the equilibrium vapor pressure of water from Torr to atmospheres to match the units of the gas constant [tex]R[/tex]. The conversion factor is 1 atm = 760 Torr.

[tex]\[ P_{H_2O}^{eq} = \frac{14.7 \text{ Torr}}{760 \text{ Torr/atm}} = 0.01934 \text{ atm} \][/tex]

Now we can plug in the values into the equation:

[tex]\[ \Delta G = -(8.314 \text{ J/(mol·K)}) \times (298 \text{ K}) \times \ln \left( \frac{(0.01934 \text{ atm})^3}{(0.01934 \text{ atm})} \right) \][/tex]

[tex]\[ \Delta G = -8.314 \times 298 \times \ln \left( (0.01934)^2 \right) \][/tex]

[tex]\[ \Delta G = -8.314 \times 298 \times \ln \left( 0.000373 \right) \][/tex]

[tex]\[ \Delta G = -8.314 \times 298 \times (-7.936) \][/tex]

[tex]\[ \Delta G = 8.314 \times 298 \times 7.936 \][/tex]

[tex]\[ \Delta G = 2004.8 \text{ J/mol} \][/tex]

[tex]\Delta G = 2.005 kJ/mol[/tex]

To a flask, 15.0 mL of 1.25 M hydrofluoric acid is added. Then, 3.05 M KOH is used to titrate the acid sample. Write the balanced net ionic equation for the acid-base reaction.

Answers

Answer:

HF + OH- = F- + H2O

Explanation:

Since hydrofluoric acid does not ionize in aqueous solution, the fluoride ion is still present as part of the product

Answer:

H+ (aq) + OH-(aq) → H2O(l)

Explanation:

Step 1: Data given

Volume of hydrofluoric acid = 15.0 mL = 0.015 L

Molarity = 1.25 M

Molarity of KOH = 3.05 M

Step 2: The unbalanced equation

HF(aq) + KOH(aq) → KF(aq) + H2O(l)

This equation is already balanced

Step 3: The net ionic equation

The net ionic equation  shows only those elements, compounds, and ions that are directly involved in the chemical reaction.

The elements, compounds, and ions that do not take part in the chemical reaction are called spector ions.

H+ (aq) + F-(aq) + K+(aq) +  OH-(aq)→ K+(aq) +F-(aq) + H2O(l)

We'll remove all the spector ions.

H+ (aq) + OH-(aq) → H2O(l)

A papermaking factory releases waste into a local lake. Soon, many fish in the lake begin to die. How might this hurt the economy of the area?

a Local fishermen will lose their jobs.

B. The papermaking factory will make less paper.

C. This won’t harm the economy in any way.

Answers

Answer:

Local fishermen will lose their jobs

If the vapor pressure of an aqueous solution containing 6.00 moles of a nonvolatile solute has a vapor pressure of 19.8 torr, and given that the vapor pressure of water at room temperature is 23.7 torr, how many total moles are present in solution? Your answer should have three significant figures.

Answers

Answer:

36.5 mol

Explanation:

The vapor pressure of a solution of a non volatile solute in  water is given by Raoult´s law:

P H₂O = χ H₂O x P⁰ H₂O

where  χ H₂O  is the mole fraction of water in the solution and P⁰ H₂O

In the turn the mole fraction is given by

χ H₂O = mol H₂O / total # moles = mol H₂O /ntot

Thus

P H₂O = mole H₂O / n tot  x   P⁰ H₂0

now the mol of H₂O is equal n tot - 6  mol solute

Plugging the values given in the question and  solving the resultant equation

19.8 torr = ( ntot - 6 ) x 23.7 torr / n tot

19.8 ntot  = 23.7 ntot - 142.2

ntot = 36.5 ( rounded to 3 significant figures )

: If a 250. mL sample of the above buffer solution initially has 0.0800 mol H2C6H5O7 - and 0.0600 mol HC6H5O7 2- , what would be the new concentration of HC6H5O7 2- after 25.0 mL of 0.125 M NaOH is added to the buffer?

Answers

Answer: New concentration of [tex]HC_{6}H_{5}O^{2-}_{7}[/tex] is 0.23 M.

Explanation:

The given data is as follows.

     Moles of [tex]HC_{6}H_{5}O^{2-}_{7}[/tex] = 0.06 mol

     Moles of [tex]H_{2}C_{6}H_{5}O_{7}[/tex] = 0.08 mol

Therefore, moles of [tex]OH^{-}[/tex] added are as follows.

    Moles of [tex]OH^{-}[/tex] = [tex]0.125 \times \frac{25}{1000}[/tex]

                          = 0.003125 mol

Now, new moles of [tex]HC_{6}H_{5}O^{2-}_{7}[/tex] = 0.06 + 0.003125

                     = 0.063125

Therefore, new concentration of [tex]HC_{6}H_{5}O^{2-}_{7}[/tex] will be calculated as follows.

       Concentration = [tex]\frac{0.063125}{0.275}[/tex]

                               = 0.23 M

Thus, we can conclude that new concentration of [tex]HC_{6}H_{5}O^{2-}_{7}[/tex] is 0.23 M.

Which of the following acid/base pairs would be best for making a buffer with a pH of 8.00?

1.Acid Formula Ka1 Ka2 Ka3 Acetic acid CH3COOH 1.8×10-5
2.Ascorbic acid H2C6H6O6 7.9×10-5 1.6×10-12
3.Carbonic acid H2CO3 4.2×10-7 4.8×10-11
4.Hydrocyanic acid HCN 4.0×10-10
5.Hydrofluoric acid HF 7.2×10-4
6.Hypochlorous acid HClO 3.5×10-8
7.Phosphoric acid H3PO4 7.5×10-3 6.2×10-8 4.8×10-13
8.Sulfurous acid H2SO3 1.7×10-2 6.4×10-8

Answers

Answer:

7. Phosphoric acid H₃PO₄ 7.5×10⁻³ 6.2×10⁻⁸ 4.8×10⁻¹³

3. Carbonic acid H₂CO₃ 4.2×10⁻⁷ 4.8×10⁻¹¹

Explanation:

Their blend will result to the closest pH of 8.00

Analyze and solve this partially completed galvanic cell puzzle. There are 4 electrodes each identified by a letter of the alphabet, A through D. The values in the partially completed grid are measured cell potentials for a cell consisting of electrode #1 and electrode #2. You may assume that each galvanic cell was properly constructed with the appropriate metals and solutions and that all the measured values in the grid are accurate.

electrode #1 ?

C

B

D

A

electrode #2?

Ecell(volts)

Ecell(volts)

Ecell(volts)

Ecell(volts)

C

0

0.91

0.62

0.26

B

0.91

0

1.53

D

0.62

1.53

0

0.36

0 volts

0.10 volts

0.26 volts

0.36 volts

0.55 volts

0.62 volts

0.65 volts

0.88 volts

0.98 volts

1.17 volts

1.27 volts

1.79 volts

1.89 volts

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

The correct option is  [tex]E_{cell}__{AC}} = 0.94[/tex]

Explanation:

  From the question we are told that

          the cell voltage for AD is  [tex]E_{cell}__{AD}} = 1.56V[/tex]

From the data give we can see that

               [tex]E_{cell}__{AD}} - E_{cell}__{BD}} = E_{cell}__{AB}}[/tex]

i.e           [tex]1.56 - 1.53 = 0.03[/tex]

   In the same way we can say that

              [tex]E_{cell}__{AD}}-E_{cell}__{CD}} = E_{cell}__{AC}}[/tex]

=>        [tex]E_{cell}__{AC}}=1.56- 0.62[/tex]

                       [tex]E_{cell}__{AC}} = 0.94[/tex]

       

             

Galvanic cells are the voltaic cells that generate an electric current from redox reactions. The cell potential of cells A and C will be 0.94 volts.

What are the cell potentials?  

The cell potential is the estimation of the gained or lost electrons by the species on the electrode of the electrochemical cell.

Given, the cell voltage for cells A and D is 1.56 V.

Cell potential between A and B cells is calculated as:

[tex]\begin{aligned} \rm E_{cell}_{(AB)} &= \rm E_{cell}_{(AD)} - \rm E_{cell}_{(BD)}\\\\&= 1.56 - 1.53\\\\&= 0.03 \end{aligned}[/tex]

Similarly, cell potential between A and C cells is calculated as:

[tex]\begin{aligned} \rm E_{cell}_{(AC)} &= \rm E_{cell}_{(AD)} - \rm E_{cell}_{(CD)}\\\\&= 1.56 - 0.62\\\\&= 0.94 \end{aligned}[/tex]

Therefore, the cell potential between A and C cell is 0.94 volts.

Learn more about galvanic cells here:

https://brainly.com/question/17238183

Using the complex based titration system: 50.00 mL 0.00250 M Ca2+ titrated with 0.0050 M EDTA, buffered at pH 11.0 determine (i) first pCa first before initiating the titration process and then (ii) at equivalence when all the Ca2+ is titrated to CaY2-. Please, use your text books and/or lecture notes to find potentially missing information about constants needed to solve the problem.

Answers

Answer:

i) The pCa before initiating the titration is 2.6

ii) The pCa is 6.67

Explanation:

please look at the solution in the attached Word file

Statements: (1) In the tripeptide Gly-Ala-Ser, the amino acid at the N-terminal end is Ser. (2) More than one polypeptide chain may be present in a conjugated protein but not in a simple protein. (3) In solution at physiological pH, the side chain of a polar basic amino acid bears a negative charge. a. All three statements are true. b. Two of the three statements are true. c. Only one of the statements is true. d. None of the statements are true.

Answers

I think your answer is c not sure
Final answer:

In the tripeptide Gly-Ala-Ser, the amino acid at the N-terminal end is Ser. More than one polypeptide chain may be present in a conjugated protein but not in a simple protein. In solution at physiological pH, the side chain of a polar basic amino acid does not bear a negative charge.

Explanation:

A tripeptide is a chain consisting of three amino acid units. In the tripeptide Gly-Ala-Ser, the amino acid at the N-terminal end is Ser. This is because the N-terminal end is the end of a peptide or protein whose amino group is free, while the C-terminal end has a free carboxyl group. Therefore, statement (1) is true.

Conjugated proteins can consist of more than one polypeptide chain, while simple proteins consist of only one polypeptide chain. Therefore, statement (2) is true.

In solution at physiological pH, the side chain of a polar basic amino acid does not bear a negative charge. Instead, it is positively charged. Therefore, statement (3) is false.

17-61 Nucleophilic aromatic substitution provides one of the common methods for making phenols. (Another method is discussed in Section19-17 .) Show how you would synthesize the following phenols, using benzene or toluene as your aromatic starting material, and explain why mixtures of products would be obtained in some cases. p-nitrophenol 2,4,6-tribromophenol

Answers

Answer:

Explanation:

find the solution below

If 1 mol of gas is placed into a balloon under standard temperature and pressure (273 K and 1 atm), what volume would the balloon be?

Answers

Answer:

[tex]V=22.4L[/tex]

Explanation:

Hello,

In this case, considering the ideal gas equation:

[tex]PV=nRT[/tex]

It is possible to compute the volume the gas would have for the given STP conditions as:

[tex]V=\frac{nRT}{P}[/tex]

[tex]V=\frac{1mol*0.082\frac{atm*L}{mol*K}*273K}{1atm}\\\\V=22.4L[/tex]

Which correspond to the standard volume as well.

Best regards.

Answer:

The volume of the balloon would be 22.386 L

Explanation:

An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:

P * V = n * R * T

In this case:

P= 1 atmV= ?n= 1 molR= 0.082 [tex]\frac{atm*L}{mol*K}[/tex]T= 273 K

Replacing:

1 atm* V= 1 mol* 0.082 [tex]\frac{atm*L}{mol*K}[/tex]*273 K

Solving:

[tex]V=\frac{1 mol*0.082\frac{atm*L}{mol*K} *273 K}{1 atm}[/tex]

V=22.386 L

The volume of the balloon would be 22.386 L

You have a friend who wants to move to Hawaii because, "Hawaii has better weather". Based on your knowledge from the text, is this an accurate statement? Why or why not?

Answers

Answer:

"Hawaii has better weather" is an opinion.

Therefore, you would need to support it with facts in order to deem it accurate or not.

If the text suggests that Hawaii has nice weather, then the statement would be accurate.

If the text hints that Hawaii does not have ideal weather, the statement would be inaccurate.

Final answer:

The statement that 'Hawaii has better weather' is subjective; Hawaii has a tropical type A climate with wet and dry areas due to the rain shadow effect. While it's warm, Kauai receives over 460 inches of rain annually, and snow can occur on mountain peaks in winter.

Explanation:

Whether or not Hawaii has 'better weather' is subjective and depends on personal preferences. However, based on the text provided, the statement that Hawaii has better weather because it has a tropical type A climate may not be entirely accurate for everyone. While Hawaii does have a warm and tropical climate, there are variations across the islands. For example, the island of Kauai is one of the wettest places on Earth, receiving over 460 inches of rain per year. Moreover, the rain shadow effect caused by Mount Wai'ale'ale leads to heavy rainfall on the windward side and dry conditions on the leeward side, creating a semi-desert environment. Additionally, it's noteworthy that snow can be found on the tops of Hawaii's highest mountains in the winter.

The diverse climate conditions in Hawaii mean that the weather can vary significantly from one part of the island to another, which might be pleasant for some but not for others. Therefore, whether Hawaii has 'better weather' is based on an individual's weather preferences and what they consider to be better.

How does the molecular motion of a sustance change when it goes from liquid to solid?

A) The molecules lose energy, and their relative motion decreases
B) The molecules gain energy,and their relative motion decreases
C)The molecules gain energy, and their relative motion increases
D) The molecules lose energy, and their relative motion increases

Answers

Answer:

B) The molecules gain energy, and their relative motion decreases

The change in the molecular motion should be option B.

Change in molecular motion:

The molecular motion refers to the movement of constituent particles or molecules in a specific direction. It should be impacted by heat and temperature. When there is the transformation from liquid to solid so the change in the molecular motion of the substance should be that the molecular gained the energy and there should be a decrease in the relative motion.

learn more about motion here; https://brainly.com/question/21319821

The decarboxylation of lysine catalyzed by lysine decarboxylase has a kcat value of 500 s-1 at 298K, and loss of CO2 is the rate-determining step. What is the free energy of activation for the CO2 loss step? The half-life for the uncatalyzed reaction under the same conditions is 4 billion years (1017 seconds). How much does the enzyme lower the free energy of activation for this reaction? Show your work.

Answers

Answer:

The decrease in free energy is 113.299kJ

Explanation:

K for enzyme catalyzed reaction = 500s^-1

Temperature (T) =298k

ΔG =?

ΔG = - 2.303 RT log k

ΔG = (-2.303)(8.314)(298) log 500

ΔG = - 15399.9 J

ΔG catalyzed = - 15. 399kJ

The first order reaction is given as:

t1/2= 0.693/k

or k= 0.693/t1/2

0.693/10^17

Therefore,

K= 0.693 × 10^-17

Now,

K= 0.693 × 10^-17

T= 298k

ΔG uncatalyzed =?

ΔG uncatalyzed = - 2.303 RT log k

ΔG uncatalyzed = (-2.303)(8.314)(298) log0.693 × 10^-17

= 97908.1J

ΔG uncatalyzed = 97.9081kJ

Therefore,

The decrease in free energy is:

ΔG uncatalyzed - ΔG catalyzed

97.908 - (-15.399)

= 113.299KJ

The decrease in free energy is 113.299kJ

Final answer:

The free energy of activation for the CO2 loss step can be calculated using the Arrhenius equation. The enzyme lowers the free energy of activation by comparing the activation energies of the catalyzed and uncatalyzed reactions.

Explanation:

The free energy of activation for the CO2 loss step can be calculated using the Arrhenius equation:

k = Ae^(-Ea/RT)

Where k is the rate constant, A is the frequency factor, Ea is the activation energy, R is the gas constant (8.314 J/mol·K), and T is the temperature in Kelvin.

Since the rate-determining step is the loss of CO2, we can use the kcat value (500 s-1) as the rate constant for this step. To find the activation energy, we need to rearrange the Arrhenius equation:

Ea = -RT ln(k/A)

Now we can substitute the given values into the equation:

Ea = -(8.314 J/mol·K)(298 K) ln(500 s-1/A)

To calculate the value of A, we can use the half-life for the uncatalyzed reaction:

t1/2 = ln(2)/(kuncat)

Replacing kuncat with the appropriate value, we can solve for A:

A = e^(ln(2)/(kuncat) - ln(2)/(kcat))/t1/2 = e^(ln(kcat/kuncat))/t1/2

Finally, we can substitute the values of kcat, kuncat, and t1/2 into the equation to find A.

To calculate how much the enzyme lowers the free energy of activation, we can compare the activation energies of the uncatalyzed and catalyzed reactions:

∆∆G (ΔEa) = ∆Ga - ∆Ga,uncat

Where ∆Ga is the activation energy of the catalyzed reaction and ∆Ga,uncat is the activation energy of the uncatalyzed reaction.

research to obtain more information about where we get our fuel supply.Evaluate and communicate how technology affects the supplies of nonrenewable resource.

Answers

Answer:

hola como estas

Explanation:

Draw the mechanism of the slow step that occurs in both first-order substitution and first-order elimination reactions for (R)-3-bromo-2,3-dimethylpentane in methanol with heat applied. Provide curved arrows in Box 1 to depict the flow of electrons and draw the intermediate in Box 2.

Answers

Answer:

see explaination

Explanation:

We are given the (R)-3-bromo-2,3-dimethylpentane and asking to draw the curved arrow which is the showing the mechanism for first-order substitution and first-order elimination reactions. We know the formation of carbocation is the rate determining step in the first-order substitution and first-order elimination reactions.

So in the (R)-3-bromo-2,3-dimethylpentane there is –Br gets removed and formed the tertiary carbocation which is more stable, so the curved arrows in Box 1 to depict the flow of electrons and intermediate in Box 2.

Check attachment

Which statement below correctly describes how amino acids join?


Amino acids join by linking the amino groups of the two compounds together.

Amino acids join by formation of amino bonds between them.

Amino acids join by forming an ester linkage.

Amino acids form bonds via E1 elimination reactions.

Amino acids join by linking the acid group of one amino acid to the amino group of another.

Answers

Answer:

Amino acids join by linking the acid group of one amino acid to the amino group of another.

Explanation:

Amino acids are organic molecules that form the basic molecules for making proteins and there are. An amino acid comprises of an acidic carboxyl (-COOH) functional group and an amino group (-NH2)  as well as a side an organic side chain (R group).

In the formation of proteins, several amino acids join together by the formation of peptide bonds between each amino acids to form a long polypeptide. These peptide bods are formed by the linking of the acidic carboxyl group of one amino acid to the amino group of another amino acid, during this process water is removed.

Other Questions
How could genetic engineering be used to produce a more successful crop in a hot,dry climate?Non-essential DNA could be removed from the genomes of the crop plants.ODNA from plants adapted to dry areas could be added to the genomes of thecrop plants.RNA from a variety of nonagricultural plants could be added to the genomes ofthe crop plants.OmRNA transcripts of genes from dry weather crops could be added to thefertilizer used on the crop plants. Jones figures that the total number of thousands of miles that an auto can be driven before it would need to be junked is an exponential random variable with parameter .fn. Smith has a used car that he claims has been driven only 10,000 miles. If Jones purchases the car, what is the probability that she would get at least 20,000 additional? What is the circumference of a circle with a diameter of 8 feet?Use 3.14 for . Two wave pulses with equal positive amplitudes pass each other on a string, one is traveling toward the right and the other toward the left. At the point that they occupy the same region of space at the same time constructive interference occurs destructive interference occurs. a standing wave is produced. a traveling wave is produced. a wave pulse is produced. Rory Company has a machine with a book value of $75,000 and a remaining five-year useful life. A new machine is available at a cost of $112,500, and Rory can also receive $60,000 for trading in its old machine. The new machine will reduce variable manufacturing costs by $12,000 per year over its five-year useful life. Calculate the incremental income. The line study conducted by asch is a prime example of what process? A scale factor of 2 is used to enlarge a figure as shown below. A rectangle with an area of 18 inches squared. How many square inches is the area of the enlarged figure? 27 36 54 72 ldentify the three main reasons why peace has not been reached between the Palestinian Arabs and the Israelis. lmagine you are the leader of a third country that is trying to help these two groups reach peace. What steps could you take to help solve the three issues preventing peace? Robin and Evelyn are playing a target game. The objectof the game is to get an object as close to the center aspossible. Each player's score is the number ofcentimeters away from the center. Robin's mean is 107,and Evelyn's mean is 138. Compare the means. Explainwhat this comparison indicates in the context of the data.Who is winning the game? Why?S The null and alternative hypotheses for a test are given, as well as some information about the actual sample and the statistic that is computed for each randomization sample. Indicate where the randomization distribution will be centered. Hypotheses: H0:p=0.5 vs Ha:p>0.5 Sample: p^=0.7 , n=30 Randomization statistic =p^ Enter your answer in accordance to the question statement A container holds 20.4 L of CO2 at 1.58 atm, what is the volume at STP? What is the coefficient of the variable in the expression 6 4x 8 + 2?a. 6b. 2c. 4d. 8 An 6-sided die is rolled four times. What is the probability of rolling a six on all four rolls? Valerie mixes 5 parts liquid fertilizer for every 9 parts water to make fertilizer for her garden. How many quarts of water and fertilizer does she need to make 20 quarts solution? Five Kilograms of continuous boron fibers are introduced in a unidirectional orientation into of an 8kg aluminum matrix. Calculate: a. the density of the composite. b. the modulus of elasticity parallel to the fibers. c. the modulus of elasticity perpendicular to the fibers. For the data set: 12, 8, 6, 6, 9, 8, 7, 11, 6, 6 is the value for which measure? 9x - 13 = 23what does x = Both animals and plants require energy to perform their daily life functions. Animals generally consume food and drink water through their mouths to gain energy. Which plant structure most similarly serves the function of a mouth Which of the following is true regarding glycolysis?Choose 1 answer:A. It requires glucose as a reactant.B) It produces 36 ATP.C It occurs in the mitochondria.D It is an acrobic process. A truck can be rented from company A for $80 a day plus $0.60 per mile. Company B charges 30$ a day plus $0.80 per mile to rent the same truck. How many miles must be driven in a day to make the rental cost for Company A a better deal than Comoany B's? For company A to have a better deal, the truck must be driven more than __ miles per day.