Eliminate the parameter.

x = 3 cos t, y = 3 sin t

Answers

Answer 1

Answer:

x^2+y^2 = 3^2

Step-by-step explanation:

We need to eliminate the parameter t

Given:

x = 3 cos t

y = 3 sin t

Squaring the above both equations

(x)^2=(3 cos t)^2

(y)^2 =(3 sin t)^2

x^2 = 3^2 cos^2t

y^2=3^2 sin^2t

Now adding both equations

x^2+y^2=3^2 cos^2t+3^2 sin^2t

Taking 3^2 common

x^2+y^2=3^2 (cos^2t+sin^2t)

We know that cos^2t+sin^2t = 1

so, putting the value

x^2+y^2=3^2(1)

x^2+y^2 = 3^2

Hence the parameter t is eliminated.

Answer 2
Final answer:

To eliminate the parameter in the given equations x = 3 cos t and y = 3 sin t, we can substitute cos(t) and sin(t) in terms of x and y to eliminate the parameter. The resulting equations represent the line y = x.

Explanation:

To eliminate the parameter in the given equations x = 3 cos t and y = 3 sin t, we need to express x and y in terms of each other without the parameter 't'. Using the identity cos^2(t) + sin^2(t) = 1, we can solve for cos(t) and sin(t), and substitute them into the equations to eliminate the parameter.

Using the fact that cos(t) = x/3 and sin(t) = y/3, we can rewrite the equations as x = 3 cos(t) = 3(x/3) = x and y = 3 sin(t) = 3(y/3) = y. Therefore, eliminating the parameter results in x = x and y = y, which simply means that the equations represent the line y = x.

Learn more about Eliminating parameters from equations here:

https://brainly.com/question/32043775

#SPJ3


Related Questions

Suppose that you invest S1,100 in stock. Four years later, your investment yields $1,775. What is the rate of return of your investment? The rate of return is %. (Round to one decimal place.)

Answers

Answer:

The rate of return is 61.3%.

Step-by-step explanation:

Rate of return is given by:

[tex]\frac{current price - original price}{original price}\times100[/tex]

= [tex]\frac{1775-1100}{1100} \times100[/tex]

= [tex]\frac{675}{1100} \times100[/tex]

= 61.36% ≈ 61.3%

Hence, the rate of return is 61.3%.

You buy a family-size box of laundry detergent that contains 48 cups. If your washing machine calls for 1 and 1/5 cups per wash load, how many loads of wash can you do?

Answers

Answer:

40 loads

Step-by-step explanation:

To find how many loads of wash you can do you need to divide 48 by 1 1/5.

There are two ways you can divide this, the first way is converting 48 to a fraction and dividing them.

48/1 divided by 1 1/5

convert 1 1/5 to an improper fraction

48/1 divided 6/5

change the division to multiplication and find the reciprocal of the second fraction.

48/1*5/6 = 240/6

Simplify to 40/1 or 40

The second way is changing 1 1/5 to a decimal, so its 1.2

Then divide 48 by 1.2 and you get 40.

Final answer:

By dividing the total amount of detergent by the amount required per load, you can determine that a 48-cup family-size box of laundry detergent can do 40 loads of wash.

Explanation:

To find out how many loads of wash can be done with a family-size box of laundry detergent, you need to divide the total amount of detergent, 48 cups, by the amount required per load, which is 1 and 1/5 cups.

Firstly, we need to convert the mixed fraction into an improper fraction. 1 and 1/5 = 5/5 + 1/5 = 6/5.

Then, we do the division: 48 ÷ (6/5) = 48 * (5/6) = 40. This operation is equivalent to multiplying by the reciprocal of the fraction.

So, with a 48-cup family-size box of laundry detergent, you could do 40 loads of wash, assuming each load requires 1 and 1/5 cups of detergent.

Learn more about laundry detergent here:

https://brainly.com/question/11320176

#SPJ

How many 2 card hands are possible with a 52​-card ​deck?

Answers

Answer:

2,652

Step-by-step explanation:

51*52=2652


A business firm produces and sells a particular product. Variable cost is P30 per unit. Selling price is P40 per unit.
Fixed cost is P60,000. Determine the following:

a. Profit when sales are 10,000 units
b. The break-even point quantity and revenue
c. Sales when profits are at P9,000
d. The amount by which fixed is cost will have to be decreased or increased, to allow the firm to break even at sales volume of 500 units. Variable cost and selling price per unit remain constant.
e. The volume of sales to cover the fixed cost
f. Suppose that the firm want to break-even at a lower number of units, assuming that Fixed cost and Variable cost remain constant, how is the selling price affected?

Answers

Answer:

a.The profit is 40000 when sales are 10000 units.

b.Break-even point quantity and revenue=6000

c.When profits are at P9,000, sales are 6900

d.Fixed cost must decrease

e.The volume of sales to cover the fixed cost is 1500 units

f.If the firm want to break-even at a lower number of units, then the price will rice

Step-by-step explanation:

a.Profit is the difference between sales and cost

Profit= price* sales -((Variable cost * sales) +Fixed cost)

Profit when sales are 10000 units must be

P=40*10000-((30*10000)+60000)

P=400000-(300000+60000)=400000-360000

Profit=40000

The profit is 40000 when sales are 10000 units.

b.The break-even point quantity and revenue is when profit=0

So,  Profit= price* sales -((Variable cost * sales) +Fixed cost)

If profit is 0, then (Variable cost * sales) +Fixed cost =price* sales

30x +60000=40x

10x=60000

x=60000/10=6000

Break-even point quantity and revenue=6000

c. Profit= price* sales -((Variable cost * sales) +Fixed cost)

9000=40x -(30x +60000)=40x -30x -60000)

9000 +60000=40x-30x

69000=10x

x=6900 units

d. break even at sales volume of 500 units

(Variable cost * sales) +Fixed cost =price* sales

30*500+FC=40*500

1500+FC=2000

FC=2000-1500

FC=500 Fixed cost must decrease

e.The volume of sales to cover the fixed cost

To only cover fixed cost, sales have to be 60000

Fixed cost =price* sales

Sales=Fixed cost/price

Sales 60000/40=1500 units

f. If the firm want to break-even at a lower number of units, then the price will rice

Remember that break-even formula is

(Variable cost * sales) +Fixed cost =price* sales

Variable an fixed cost remain constant, if sales go down,  then price must go up.

True or false. If a is any odd integer, then a^2 + a is even. Explain this.

Answers

Answer:

True.

Step-by-step explanation:

We can represent an odd number by 2n + 1 where n = 0, 1, 2, 3, 5 etc.

Substituting:

a^2 + a = (2n + 1)^2 + 2n + 1

=  4n^2 + 4n + 1 + 2n + 1

= 4n^2 + 6n + 2

= 2(2n^2 + 3n + 1)

which is even because any integer multiplied by an even number is even.

This is also true if we use a negative odd integer:

We have 4n^2 + 4n + 1  - 1 - 2n

= 4n^2 + 2n

=  2(2n^2 + n(.

Final answer:

The statement is true. For any odd integer 'a', the expression 'a² + a' will always be even. This is because when 'a' (in the form of 2n+1 where n is any integer) is squared and added to 'a', the result is a number that is divisible by two, hence an even number.

Explanation:

Your statement is true. If a is any odd integer, then a² + a is indeed even. Here's why:

Any odd number can be expressed in the form 2n+1, where n is any integer. So, when you square this you get (2n+1)² = 4n² + 4n + 1, which simplifies to 2(2n² + 2n) + 1. This is an odd number.

Then, if you add a (which is 2n+1), you get 2(2n² + 2n) + 1 + 2n + 1, which simplifies to 2(2n² + 3n + 1). This is divisible by 2, which means it's an even number. Therefore, the expression a² + a represents an even number.

Learn more about Odd and Even Numbers here:

https://brainly.com/question/2057828

#SPJ3

6+√-80 ?

A.6+16√5i
B.6+4i√5
C.6+16i√5
D.6+4√5i

√-121 ?

A.-11i
B.11i
C.-11
D.11

√-48 ?

A.-4√3
B.4√-3
C.4i√3
D.4√3i

Answers

The answers are
1. B
2. B
3. C

An electronic product takes an average of 8 hours to move through an assembly line. If the standard deviation of 0.4 hours, what is the probability that an item will take between 8.4 and 9.1 hours to move through the assembly line?

Answers

Answer:   0.1557

Step-by-step explanation:

Given : Mean : [tex]\mu=\ 8[/tex]

Standard deviation : [tex]\sigma= 0.4[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

Let the random variable x (number of hours) is normally distributed .

For x= 8.4

[tex]z=\dfrac{8.4-8}{0.4}=1[/tex]

For x= 9.1

[tex]z=\dfrac{9.1-8}{0.4}=2.75[/tex]

The p-value =[tex] P(8.4<x<9.1)=P(1<z<2.75)[/tex]

[tex]=P(z<2.75)-P(z<1)= 0.9970202-0.8413447\\\\=0.1556755\approx0.1557[/tex]

Consider the differential equation below. (You do not need to solve this differential equation to answer this question.) y' = y^2(y + 4)^3 Find the steady states and classify each as stable, semi-stable, or unstable. Draw a plot showing some typical solutions. If y(0) = -2 what happens to the solution as time goes to infinity?

Answers

We have [tex]y'=0[/tex] when [tex]y=0[/tex] or [tex]y=-4[/tex], so we need to check the sign of [tex]y'[/tex] on 3 intervals:

Suppose [tex]-\infty<y<-4[/tex]. In particular, let [tex]y=-5[/tex]. Then [tex]y'=(-5)^2(-5+4)^3=-25<0[/tex]. Since [tex]y'[/tex] is negative on this interval, we have [tex]y(t)\to-\infty[/tex] as [tex]t\to\infty[/tex].Suppose [tex]-4<y<0[/tex], say [tex]y=-1[/tex]. Then [tex]y'=(-1)^2(-1+4)^3=-27<0[/tex], so that [tex]y(t)\to-4[/tex] as [tex]t\to\infty[/tex].Suppose [tex]0<y<\infty[/tex], say [tex]y=1[/tex]. Then [tex]y'=1^2(1+4)^3=125>0[/tex], so that [tex]y(t)\to\infty[/tex] as [tex]t\to\infty[/tex].

We can summarize this behavior as in the attached plot. The arrows on the [tex]y[/tex]-axis indicate the direction of the solution as [tex]t\to\infty[/tex]. We then classify the solutions as follows.

[tex]y=0[/tex] is an unstable solution because on either side of [tex]y=0[/tex], [tex]y(t)[/tex] does not converge to the same value from both sides.[tex]y=-4[/tex] is a semi-stable solution because for [tex]y>-4[/tex], solutions tend toward the line [tex]y=-4[/tex], while for [tex]y<-4[/tex] solutions diverge to negative infinity.

A simple random sample of 10 households, the number of TV's that each household had is as follows: 2 , 0 , 2 , 2 , 2 , 2 , 1 , 5 , 3 , 2 Assume that it is reasonable to believe that the population is approximately normal and the population standard deviation is 0.55 . What is the lower bound of the 95% confidence interval for the mean number of TV's?

Answers

Answer: 1.758 is the lower bound of the 95% confidence interval for the mean number of TV's.

Step-by-step explanation:

Given that,

n = 10

Number of TV each household have = {2 , 0 , 2 , 2 , 2 , 2 , 1 , 5 , 3 , 2}

Standard Deviation(SD) = 0.55

95% Confidence Interval,  = 0.05

Follows normal distribution,

Mean = [tex]\bar{X} = \frac{2+0+2+2+2+2+1+5+3+2}{10}[/tex]

= [tex]\frac{21}{10}[/tex]

= 2.1

Therefore, 95% Confidence Interval are as follows:

[tex]\bar{X}\pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}[/tex]

[tex]2.1\pm 1.96 \times \frac{\0.55}{\sqrt{10}}[/tex]

Hence,

Lower bound = 2.1- 1.96 ×  [tex]\frac{\0.55}{\sqrt{10}}[/tex]

                      = 2.1- 1.96 × 0.174

                      = 1.758

A fair die is rolled fourfour times. A 2 is considered​ "success," while all other outcomes are​ "failures." Find the probability of 4 successessuccesses.

Answers

Answer:

Hence, the probability is:

            [tex]\dfrac{1}{6^4}\ or\ 0.000772[/tex]

Step-by-step explanation:

It is given that:

A fair die is rolled four times. A 2 is considered​ "success," while all other outcomes are​ "failures."

This means that the probability of 4 successes is the outcome such that each of the four die will result in the outcome 2.

Also, the probability of 2 in each of the die is: 1/6

( since, there are total 6 outcomes in a die {1,2,3,4,5,6} and out of which there is only one '2' )

Also, we know that the outcome on one die is independent on the other this means that  the probability of 4 successes is:

[tex]=\dfrac{1}{6}\times \dfrac{1}{6}\times \dfrac{1}{6}\times \dfrac{1}{6}\\\\\\\\=\dfrac{1}{6^4}\\\\\\=0.000772[/tex]

Final answer:

The probability of rolling a 2 four times in a row on a fair six-sided die is found by multiplying the probability of a single 2 (which is 1/6) four times, giving us a final probability of 1/1296 or approximately 0.0008.

Explanation:

To find the probability of rolling a 2 on a six-sided die four times in a row, we consider each roll as an independent event. The probability of rolling a 2 on each individual roll is 1/6, since there are six faces on the die and only one face with a 2 on it.

Since these events are independent, the joint probability of all four events occurring is the product of the individual probabilities:

Probability of 4 successes (rolling a 2 four times) = (1/6) * (1/6) * (1/6) * (1/6) = 1/1296.

This is computed by multiplying the probability of a single success, 1/6, four times since the dice rolls are independent events. Therefore, the probability of obtaining four successes is quite low at approximately 0.0008 when rounded to four decimal places.

Supposed you invested in $10,000, part at 6% annual interest and the rest at 9% annual interest. If you received a total of $684 in interest after one year, how much did you invest at each rate?

Anyone got a way to remember how to set up these word problems, or any other Algebra-Pre/Calc word problems. It's been 20 years since I learned and taught it. And word problems have always been an issue for me.

Answers

Answer:

$2,800 was invested at 9%.

$7,200 was invested at 6%.

Step-by-step explanation:

Usually, you need to assign variables to the unknowns you are looking for. Then follow the statements you are given to write equations. Then solve the equation  or system of equations.

What are we being asked? The amount invested at each rate.

Assign variables:

Let x = amount invested at 6%

Let y = amount invested at 9%

Since we have two unknowns, we need two equations.

Now we follow the statements to write equations.

"you invested in $10,000, part at 6% annual interest and the rest at 9% annual interest."

The total investment is $10,000, so the sum of our two investments, each at an interest rate is $10,000.

First equation:

x + y = 10,000

We have dealt with the two amounts that were invested. Now we deal with the interest earned.

x amount invested at 6% yields 6% of x in interest in 1 year.

6% of x as a decimal is 0.06x.

y amount invested at 9% yields 9% of y in interest in 1 year.

9% of y as a decimal is 0.09y.

The total interest earned at the two rates is 0.06x + 0.09y.

We are told the total interest is $684, so that gives us the second equation.

0.06x + 0.09y = 684

We now have a system of two equations in two unknowns.

x + y = 10,000

0.06x + 0.09y = 684

Let's use the substitution method to solve the system of equations.

We solve the first equation for x:

x = 10,000 - y

Now we replace x of the seconds equation by 10,000 - y.

0.06x + 0.09y = 684

0.06(10,000 - y) + 0.09y = 684

Distribute the 0.06.

600 - 0.06y + 0.09y = 684

0.03y + 600 = 684

0.03y = 84

y = 2,800

$2,800 was invested at 9%.

x + y = 10,000

x + 2,800 = 10,000

x = 7,200

$7,200 was invested at 6%.

Check:

Let's see if 6% of $7,200 plus 9% of $2,800 adds up to $684.

0.06(7200) + 0.09(2800) = 432 + 252 = 684

Yes it does, so our answer is correct.

Voting age

17-29 30-44 45-64 65+
9 8 32 15
What is the probability that a voter is younger than 45?

Answers

Answer:

[tex]\frac{17}{64}\approx 0.27[/tex]

Step-by-step explanation:

We have been given a table to voters and their ages. We are asked to find the probability that a voter is younger than 45.

Voting age         Voters

17-29                       9

30-44                      8

45-64                    32

65+                        15

We can see from our given table that age of 17 (9+8) voters is between 17 to 44 years.

To find the probability that a voter is younger than 45, we will divide 17 by total number of voters.

[tex]\text{Total voters}=9+8+32+15=64[/tex]

[tex]\text{Probability that a voter is younger than 45}=\frac{17}{64}[/tex]

[tex]\text{Probability that a voter is younger than 45}=0.265625[/tex]

[tex]\text{Probability that a voter is younger than 45}\approx 0.27[/tex]

Therefore, the probability that a voter is younger than 45 is 0.27.

Prove that if BA=I then BA=AB.

Answers

Answer with Step-by-step explanation:

Since we have given that

[tex]BA=I[/tex]

As we know that

AA⁻¹ = I (A is invertible matrix)

Multiplying A⁻¹ on the both the sides:

[tex]BAA^{-1}=IA^{-1}\\\\B=A^{-1}[/tex]

Using the above result, we get that

[tex]BA=I=AA^{-1}\\\\BA=AB[/tex]

Therefore, BA = AB

Hence, proved.

A typical person has an average heart rate of 71.0 beats/min. Calculate the given questions. How many beats does she have in 3.0 years? How many beats in 3.00 years? And finally, how many beats in 3.000 years? Pay close attention to significant figures in this question.

Answers

Answer:

111,952,800 beats in 3 years

Step-by-step explanation:

71 beats/minute, 60 minutes/hour ~ 71x60=4,260 beats/hour

24 hours/day ~ 4,260x24=102,240 beats/day

365 days/year ~ 102,240x365=37,317,600 beats/ year

37,317,600x3=111,952,800 beats in 3 years

The heart beats 111952800 times in 3 years

From the given question, we just have to find the rate at which the heart beats.

Given;

71 beats in 1 minutes

Rate at which the heart beats

we can start by solving how many minutes are in 1 year.

To do that, we have to multiply 60 minutes by 24 hours by 365 days

[tex]60*24* 365=525600\\ [/tex]

We have 525600 minutes in 1 year

Now, we can multiply this value by 71 to know the number of beats in 1 year.

[tex]525600 * 71 = 37317600[/tex]

The heart beats for 37317600 times in a year.

Let's multiply this value by 3 to know how many times it beats in 3 years.

[tex]37317600 * 3 = 11952800[/tex]

The heart beats 11952800 times in 3 years.

Significant figures

We are also asked to calculate 3.0, 3.00 and 3.000 years

In this case, 3.0 = 3.00 = 3.000  and the rate at which the heart beats is uniform or equal across the three times given.

learn more about rates here;

https://brainly.com/question/12242745

A sample of 230 observations is selected from a normal population for which the population standard deviation is known to be 22. The sample mean is 17. a. Determine the standard error of the mean.

Answers

Final answer:

The standard error of the mean can be calculated by dividing the population standard deviation, which is 22, by the square root of the number of observations, which is 230.

Explanation:

In mathematics, the standard error of the mean is calculated by dividing the population standard deviation by the square root of the number of observations in the sample. In this case, the population standard deviation is given as 22, and the sample size is 230 observations.

The formula to calculate the standard error of the mean is:

Standard Error of the Mean = Population Standard Deviation / √(Number of Observations)

Plugging in the given values, this translates as:

Standard Error of the Mean = 22 / √230

Therefore, the standard error of the mean of this sample can be calculated as above. This represents the measure of statistical accuracy of the estimate of the sample mean, providing an indication of the precision of your results.

Learn more about Standard Error of the Mean here:

https://brainly.com/question/14524236

#SPJ3

The standard error of the mean is 1.449.

The standard error of the mean for a sample size of 230 observations, with a population standard deviation of 22, is calculated as 1.449.

The question asks for the determination of the standard error of the mean (SE) for a sample of 230 observations from a normal population with a known population standard deviation (σ) of 22. To calculate the standard error of the mean, we use the formula SE = σ / √n, where σ is the population standard deviation, and n is the sample size. In this case, n = 230.

So, SE = 22 / √230. Now we calculate the square root of 230 and then divide 22 by this number to get the standard error of the mean.

Therefore, the standard error of the mean is 1.449.

g Use the counting principle to determine the number of elements in the sample space. The possible ways to complete a multiple-choice test consisting of 20 questions, with each question having four possible answers (a, b, c, or d).

Answers

Answer:

[tex](4)^{20}[/tex]

Step-by-step explanation:

Total number of questions = 20

Possible options for each question = 4

Sample space contains the total number of possible outcomes.

For every question there are 4 possible ways to select an answer. This holds true for all 20 questions. Selecting an answer for a question is independent of other questions/answers,

According to the counting principle, the total number of possible outcomes will be the product of the number of possible outcomes of individual events. Possible outcomes for each of the 20 questions is 4. This means we have to multiply 4 twenty times to find the total number of possible outcomes.

So, the number of elements in the sample space would be:

[tex](4)^{20}[/tex]

In 2005, there were 18,400 students at college A, with a projected enrollment increase of 500 students per year In the same year, there were 37,650 students at college B, with a projected enrollment dec line of 1250 students per year According to these projections, when will the colleges have the same enrollment? What will be the enrolliment in each college at that time? In the yearthe enrolment at both colleges will be the same The total enrolment at each college will bestudents

Answers

Answer:

all parts has been answered

Step-by-step explanation:

Let us assume

after T years both colleges have same enrollment

Enrollment at college A after T years = 18400+500*T

Enrollment at college B after T years = 37650-1250*T

 Both the colleges will have same enrollment after T years

Hence  

18400+500*T=37650-1250*T

1750*T=19250

T=11 years

Present year would be =2005+11=2016

In the year 2016, the enrollment of both the colleges will be same.

 

Total enrollment at each college = 18400+11*500=37650-1250*11=23900

The total enrollment at each college will be 23900 students

18. Polar Bear Frozen Foods manufactures frozen French fries for sale to grocery store chains. The final package weight is thought to be a uniformly distributed random variable. Assume X, the weight of French fries, has a uniform distribution between 50 ounces and 68 ounces. What is the mean weight for a package? What is the standard deviation for the weight of a package? Round your answers to four decimal places, if necessary.

Answers

Answer:

μ = 59, σ = 5.1962

Step-by-step explanation:

For a uniform distribution, where a is the minimum and b is the maximum, the mean (or average) is:

μ = (a + b) / 2

And the standard deviation is:

σ = (b − a) / √12

Here, a = 50 and b = 68.

The mean is:

μ = (50 + 68) / 2

μ = 59

And the standard deviation is:

σ = (68 − 50) / √12

σ = 5.1962

Final answer:

The mean weight of a package of French fries produced by Polar Bear Frozen Foods is 59 ounces. The standard deviation of the weight is approximately 5.1962 ounces.

Explanation:

The question pertains to understanding the mean and standard deviation of a uniformly distributed variable, specifically the weight of French fries produced by Polar Bear Frozen Foods. A uniform distribution is a type of probability distribution that has constant probability.

The formula for the mean (or average) of a uniform distribution is (a + b) / 2 where 'a' is the minimum value and 'b' is the maximum value. Given in the question a = 50 ounces and b = 68 ounces, we obtain the mean as (50+68)/2 = 59 ounces.

The formula for the standard deviation of a uniform distribution is sqrt[(b-a)^2 /12 ]. Thus, substituting values we get sqrt[(68-50)^2 / 12] = sqrt[324/12] = sqrt[27] = 5.1962 ounces (rounded to four decimal places).

Learn more about Uniform Distribution here:

https://brainly.com/question/33143435

#SPJ3

To offer scholarships to children ofâ employees, a company invests 10,000 at the end of every three months in an annuity that pays 8.5% compounded quarterly.

a. How much will the company have in scholarship funds at the end of tenâ years?

b. Find the interest.

a. The company will have $... in scholarship funds.

Answers

Answer:

a. $633 849.78; b. $233 849.78

Step-by-step explanation:

a. Value of Investment

The formula for the future value (FV) of an investment with periodic deposits (p) is

FV =(p/i)(1 + i)[(1 + i)^n -1)/i]

where

 i = interest rate per period

n = number of periods

Data:

    p = $10 000

APR = 8.5 % = 0.085

     t = 10 yr

Calculations:

Deposits are made every quarter, so

i = 0.085/4 = 0.02125

There are four quarters per year, so

n = 10 × 4 = 40

FV = (10 000/0.02125)(1 + 0.02125)[(1 + 0.02125)^40  - 1)]

= 470 588.235 × 1.02125 × (1.02125^40 - 1)

= 480 588.235(2.318 904 06 - 1)

= 480 588.235 × 1.318 904 06

= 633 849.78

The company will have $633 849.78 in scholarship funds.

b. Interest

Amount accrued =                                                                  $633 849.78

Amount invested = 40 payments × ($10 000/1 payment) =   400 000.00

Interest =                                                                                 $233 849.78

The scholarship fund earned $233 849.78 in interest.

Final answer:

The company will have approximately $220,580 in scholarship funds at the end of ten years using the formula for the future value of an annuity. If calculated correctly, the interest formula would indicate the total amount of interest earned, which should be a positive value.

Explanation:

To calculate how much the company will have in scholarship funds at the end of ten years, we use the future value formula of an annuity. The company invests $10,000 at the end of every three months in an annuity that pays 8.5% interest compounded quarterly. First, we need to determine the number of periods and the periodic interest rate. Since the investments are made quarterly, there are 4 periods in a year. Over ten years, there are 4 * 10 = 40 periods. The periodic interest rate is 8.5% per year, or 8.5%/4 = 2.125% per period.

Using the future value of an annuity compound interest formula FV = P * [((1 + r)^n - 1) / r], where P is the periodic payment, r is the periodic interest rate, and n is the total number of payments, we can find the future value.

In this case, P = $10,000, r = 2.125% (or 0.02125 as a decimal), and n = 40. Plugging these values into the formula, we get:

FV = $10,000 * [((1 + 0.02125)^40 - 1) / 0.02125]

FV = $10,000 * [(1.02125^40 - 1) / 0.02125]

FV = $10,000 * [2.2058...]

FV = $220,580...

Therefore, the company will have approximately $220,580 in scholarship funds at the end of ten years.

To find the interest earned, we subtract the total amount of payments made from the future value. The total amount of payments is $10,000 * 40 = $400,000. So the interest earned is $220,580 - $400,000 = $-179,420. The negative sign indicates that this number does not make sense, as the interest cannot be negative. This is an error, and we should re-calculate:

Total investments = $10,000 * 40 = $400,000

Interest = Future Value - Total Investments

Interest = $220,580 - $400,000 = $-179,420 (This is incorrect)

To correct this, we should correctly apply the future value formula once more and make sure all calculations are done precisely. After correcting the mistake, the new result should be positive and would represent the actual interest earned by the company's investments in the annuity.

Find and simplify the expression if f(x)=x^2-10.

f(4+h)-f(4)=

Answers

[tex]f(4+h)-f(4)=(4+h)^2-10-(4^2-10)\\f(4+h)-f(4)=16+8h+h^2-10-16+10\\f(4+h)-f(4)=h^2+8h[/tex]

Answer:

[tex]f (4 + h) -f (4) = h ^ 2 + 8h[/tex]

Step-by-step explanation:

We have the following quadratic function.

[tex]f (x) = x ^ 2-10[/tex]

We must find the following expression

[tex]f (4 + h) -f (4) =[/tex]

First we must find [tex]f (4 + h)[/tex]

Then substitute [tex]x = (4 + h)[/tex] in the quadratic equation:

[tex]f (4 + h) = (4 + h) ^ 2 -10\\\\f (4 + h) = 16 + 8h + h ^ 2 -10\\\\f (4 + h) = h ^ 2 + 8h +6[/tex]

Now we find [tex]f(4)[/tex]. Replace [tex]x = 4[/tex] in the function [tex]f (x)[/tex]

[tex]f (4) = (4) ^ 2-10\\\\f (4) = 16-10\\\\f (4) = 6[/tex]

Finally we have to:

[tex]f (4 + h) -f (4) = h ^ 2 + 8h +6 - 6[/tex]

[tex]f (4 + h) -f (4) = h ^ 2 + 8h[/tex]

Find the density in lbs/cbf, round to nearest tenth...... please urgent request i have 30 minutes left

180 pounds; 15” x 15” x 20” __________________________ lbs/cbf

150 cf; 90 kg = _______________________________ lbs/cbf

Answers

Answer:

d1=69.12 lbs/cbf, d2=1.32 lbs/cbf

Step-by-step explanation:

Hello

to make the conversion we will need

1" = 1 inch

12 inch = 1 feet

1 kg= 2. 20 lbs

Point 1, step 1

convert inch to feet

[tex]15"=15 inch*(\frac{1 feet}{12 in})=\frac{5}{4} ft\\ 20"=20 inch*(\frac{1 feet}{12 in})=\frac{5}{3}ft\\d=\frac{m(lbs)}{v(cbf)}\\ d=\frac{180 lbs}{\frac{5}{4} ft*\frac{5}{4} ft*\frac{5}{3} ft}\\ d=69.12\ lbs/cbf[/tex]

Point 2, step 2

[tex]90kg=90kg*\frac{2.2 lbs}{1 kg} =198 lbs\\\\d=\frac{m}{v}\\ d=\frac{198 lbs}{150 cbf}\\d=1.32\ lbs/cbf[/tex]

I hope it helps

Suppose you have the formula =$D$5*E5 in cell F5. When you copy the formula into cell F6 what will the new formula be?

a. =$D$5*E5

b. =D5*E6

c. =$D$5*E6

d. =$D$6*E6

Answers

Answer:

C. =$D$5*E6

Step-by-step explanation:

In excel Columns are A, B, C, D, .....

And, rows are, 1, 2, 3, ....

Also, the intersection of column and row is called cell,

eg : A1 is a cell,

When we copy a function formula from a cell A1 to B2,

Then in the formula we replace A1 by B2 or vice versa,

But the row or column which comes after the dollar sign is anchored or absolute.

That is, when we copy an excel formula with $ sign they will copy cells referred in that formula relative to the position where they are being copied to.

Thus, if we have the formula =$D$5*E5 in cell F5,

Then, $D$5*E6 must be the new formula into cell 6.

Option 'C' is correct.

A recent article in the paper claims that business ethics are at an​ all-time low. Reporting on a recent​ sample, the paper claims that 41​% of all employees believe their company president possesses low ethical standards. Suppose 20 of a​ company's employees are randomly and independently sampled. Assuming the​ paper's claim is​ correct, find the probability that more than eight but fewer than 12 of the 20 sampled believe the​ company's president possesses low ethical standards.

Answers

Answer:

P=0.3726 or 37.26%

Step-by-step explanation:

The success, with 41% of probability of occurring, is that the employee believes the ​ company's president possesses low ethical standards. For more than 8 and less than 12 successes, it means the probability of having  9, 10 or  11 successes (all these summed).

The formula is:

[tex]b(x;n,p)= \ _nC_x*p^x*(1-p)^{n-x}[/tex]

Where x is the number of successes,n the number of trials, p the probability of success,[tex]_nC_x[/tex] refers to the combinations that can occur,  and it's formula is:

[tex]_nC_x=\frac{n!}{x!(n-x)!}[/tex]

Calculating each case:

[tex]b(9,20,0.41)=\frac{20!}{9!(20-9)!}*0.41^9*(1-0.41)^{20-9}=0.1658[/tex]

[tex]b(10,20,0.41)=\frac{20!}{10!(20-10)!}*0.41^{10}*(1-0.41)^{20-10}=0.1267[/tex]

[tex]b(11,20,0.41)=\frac{20!}{11!(20-11)!}*0.41^{11}*(1-0.41)^{20-11}=0.0801[/tex]

Adding each case:

[tex]P=0.1658+0.1267+0.0801= 0.3726[/tex]

Final answer:

To find the probability that more than eight but fewer than twelve employees believe the company's president possesses low ethical standards, use the binomial probability formula. Calculate the probabilities for each value of k, and then sum them up to find the final probability.

Explanation:

To find the probability that more than eight but fewer than twelve of the 20 sampled employees believe the company's president possesses low ethical standards, we need to use the binomial probability formula. The formula is:

P(X = k) = C(n, k) * p^k * (1-p)^(n-k)

where:

P(X = k) is the probability that exactly k employees believe the president possesses low ethical standardsC(n, k) is the number of ways to choose k employees from n employeesp is the probability that one employee believes the president possesses low ethical standards (in this case, p = 0.41)n is the total number of employees sampled (in this case, n = 20)

In this case, we want to find the probability that more than eight but fewer than twelve employees believe the president possesses low ethical standards. So we need to calculate the probabilities for k = 9, 10, and 11 and then sum them up:

P(X > 8 and X < 12) = P(X = 9) + P(X = 10) + P(X = 11)

Calculating each probability:

P(X = 9) = C(20, 9) * 0.41^9 * (1-0.41)^(20-9)

P(X = 10) = C(20, 10) * 0.41^10 * (1-0.41)^(20-10)

P(X = 11) = C(20, 11) * 0.41^11 * (1-0.41)^(20-11)

Once we have the individual probabilities, we can sum them up to find the final probability.

Learn more about Binomial probability here:

https://brainly.com/question/39666605

#SPJ3

Solve the Differential equation (x^2 + y^2) dx + (x^2 - xy) dy = 0

Answers

Answer:

[tex]\frac{y}{x}-2ln(\frac{y}{x}+1)=lnx+C[/tex]

Step-by-step explanation:

Given differential equation,

[tex](x^2 + y^2) dx + (x^2 - xy) dy = 0[/tex]

[tex]\implies \frac{dy}{dx}=-\frac{x^2 + y^2}{x^2 - xy}----(1)[/tex]

Let y = vx

Differentiating with respect to x,

[tex]\frac{dy}{dx}=v+x\frac{dv}{dx}[/tex]

From equation (1),

[tex]v+x\frac{dv}{dx}=-\frac{x^2 + (vx)^2}{x^2 - x(vx)}[/tex]

[tex]v+x\frac{dv}{dx}=-\frac{x^2 + v^2x^2}{x^2 - vx^2}[/tex]

[tex]v+x\frac{dv}{dx}=-\frac{1 + v^2}{1 - v}[/tex]

[tex]v+x\frac{dv}{dx}=\frac{1 + v^2}{v-1}[/tex]

[tex]x\frac{dv}{dx}=\frac{1 + v^2}{v-1}-v[/tex]

[tex]x\frac{dv}{dx}=\frac{1 + v^2-v^2+v}{v-1}[/tex]

[tex]x\frac{dv}{dx}=\frac{v+1}{v-1}[/tex]

[tex]\frac{v-1}{v+1}dv=\frac{1}{x}dx[/tex]

Integrating both sides,

[tex]\int{\frac{v-1}{v+1}}dv=\int{\frac{1}{x}}dx[/tex]

[tex]\int{\frac{v-1+1-1}{v+1}}dv=lnx + C[/tex]

[tex]\int{1-\frac{2}{v+1}}dv=lnx + C[/tex]

[tex]v-2ln(v+1)=lnx+C[/tex]

Now, y = vx ⇒ v = y/x

[tex]\implies \frac{y}{x}-2ln(\frac{y}{x}+1)=lnx+C[/tex]

The probability that a randomly selected individual in a certain community has made an online purchase is 0.35 . Suppose that a sample of 12 people from the community is selected, what is the probability that at most 3 of them has made an online purchase?

Answers

Answer:

The required probability is approximately 0.3467.

Step-by-step explanation:

Let X represents the event of making an online purchase,

Given,

The probability of making an online purchase, p = 0.35,

While, the probability of not making the online purchase, q = 1 - p = 0.65,

Hence, by the binomial distribution formula,

[tex]P(x) = ^nC_x p^x q^{n-x}[/tex]

Where, [tex]^nC_x=\frac{n!}{x!(n-x)!}[/tex]

Hence, the probability that at most 3 of them has made an online purchase is,

P(x ≤ 3) =P(x=0) + P(X=1) + P(X=2) + P(x=3)

[tex]= ^{12}C_0 p^0 q^{12-0}+^{12}C_1 p^1 q^{12-1}+^{12}C_2 p^2 q^{12-2}+^{12}C_3 p^3 q^{12-3}[/tex]

[tex]=(0.65)^{12}+12(0.35)(0.65)^{11}+66(0.35)^2(0.65)^{10}+220(0.35)^3(0.65)^9[/tex]

[tex]=0.346652696179[/tex]

[tex]\approx 0.3467[/tex]

Final answer:

To find the probability that at most 3 people in a sample of 12 have made an online purchase, use the binomial probability formula.

Explanation:

To find the probability that at most 3 people in a sample of 12 have made an online purchase, we can use the binomial probability formula. The formula is P(X ≤ k) = Σ{k=0}^{k} (nCk) * p^k * (1-p)^(n-k), where n is the sample size, k is the number of successes, p is the probability of success, and (nCk) is the combination.

In this case, n = 12, k ≤ 3, p = 0.35. So, the probability is:

P(X = 0) = (12C0) * (0.35)^0 * (0.65)^(12-0)P(X = 1) = (12C1) * (0.35)^1 * (0.65)^(12-1)P(X = 2) = (12C2) * (0.35)^2 * (0.65)^(12-2)P(X = 3) = (12C3) * (0.35)^3 * (0.65)^(12-3)

Then, you can sum up these probabilities to find the total probability that at most 3 people have made an online purchase.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Suppose that a company will select 3 people from a collection of 15 applicants to serve as a regional manager, a branch manager, and an assistant to the branch manager. In how many ways can the selection be made? Explain how you got your answer.

Answers

Answer: 2730

Step-by-step explanation:

Given : The number of applicants  =15

The number of posts for which candidates have been applied = 3

To find the number of selections we use permutations since here order matters.

The permutations of n things taking m at a time is given by :-

[tex]^nP_m=\dfrac{n!}{(n-m)!}[/tex]

Then , the required number of ways is given by [Put n = 15 and m = 3] :-

[tex]^{15}P_3=\dfrac{15!}{(15-3)!}\\\\=\dfrac{15\times14\times13\times12!}{12!}\\\\15\times14\times13=2730[/tex]

Hence, the number of ways the selection can be made = 2730

The scores on the entrance exam at a well-known, exclusive law school are normally distributed with a mean score of 200 and a standard deviation equal to 50. At what value should the lowest passing score be set if the school wishes only 2.5 percent of those taking the test to pass? (Round your answer to nearest whole number.)

Answers

Answer:

the lowest passing score would be x = 298

Step-by-step explanation:

School wishes that only 2.5 percent of students taking test pass

We are given

mean= 200,

standard deviation = 50

We need to find x

The area under the curve can be found by:

2.5 % = 0.025

So, 1- 0.025 = 0.975

We need to find the value of z for which the answer is 0.975

Looking at the z-score table, the value of z is: 1.96

Now, using the formula:

z = x - mean/standard deviation

1.96 = x - 200/50

=> 1.96 * 50 = x-200

98 = x - 200

=> x = 200+98

x = 298

So, the lowest passing score would be x = 298

The lowest passing score should be set at 102 to ensure that only 2.5 percent of the test takers pass.

Understand the Problem Context:
  - Mean score [tex](\(\mu\))[/tex] = 200
  - Standard deviation [tex](\(\sigma\))[/tex] = 50
  - Desired passing percentile = 2.5% (or 0.025 in decimal form)

Identify Relevant Statistical Concept:
  - We need to find the score corresponding to the 2.5th percentile in a normal distribution. This requires finding the z-score for this percentile.

Find the Z-Score for the 2.5th Percentile:
  - The z-score corresponding to the 2.5th percentile is approximately -1.96. This means that scores at this percentile are 1.96 standard deviations below the mean.

Convert Z-Score to a Raw Score:
  - The raw score can be calculated using the formula for converting z-scores to raw scores:
    [tex]\[ X = \mu + Z\sigma \][/tex]
    Where [tex]\( X \)[/tex] is the raw score, [tex]\( \mu \)[/tex] is the mean score, [tex]\( Z \)[/tex] is the z-score, and [tex]\( \sigma \)[/tex] is the standard deviation.

    Plugging in our values, we get:
    [tex]X = 200 + (-1.96) \times 50\\ X = 200 - 98\\ X = 102[/tex]

Suppose that in a senior college class of 500 students itis found that 210 smoke, 258 drink alcoholic beverages, 216 eatbetween meals, 122 smoke and drink alcoholic beverages, 83 eatbetween meals and drink alcoholic beverages, 97 smoke and eatbetween meals, and 52 engage in all three of these bad healthpractices. If a member of this senior class is selected at random,find the probability that the studenta.) smokes but does not drink alcoholic beverages;b.) eats between meals and drinks alcoholic beverages but doesnot smoke;c.) neither smokes nor eats between meals.Please show all steps to solve, not in books listed

Answers

Answer:

a)Smoke but doesn't drink alcoholic beverages

P=0.176  or 17.6%

b)eats between meals and drinks alcoholic beverages but doesn't smoke

P=0.062  or 6.2%

c.) neither smokes nor eats between meals

P=0.342  or 34.2%

Step-by-step explanation:

Using a Venn diagram with three circles, one for each bad health habit. Let us [tex]a[/tex] for the students that only smoke, [tex]b[/tex] for only drink alcoholic beverages, and [tex]c[/tex] for only eat between meals. Following this logic, [tex]d[/tex] represents smoke and drink alcoholic beverages but not eat between meals,  [tex]e[/tex] drink alcoholic beverages and eat between meals but not smoke,[tex]f[/tex] eat between meals and smoke but not drink alcoholic beverages. Finally [tex]g[/tex] for having all the three, this means [tex]g=52[/tex].

To find [tex]f[/tex], subtract 52 (the three problems) from 97 because this last number represents all the students that smoke and eat between meals, including the students that have the three bad habits. The same goes for 'd' and 'e'.

[tex]f=97-52=45[/tex]

[tex]e=83-52=31[/tex]

[tex]d=122-52=70[/tex]

To find [tex]a[/tex], subtract [tex]e[/tex], [tex]f[/tex], and [tex]g[/tex] from the total of smokers. This is because [tex]e[/tex], [tex]f[/tex], and [tex]g[/tex] represent smoke and at least another bad habit and [tex]a[/tex] represents only smoking.

[tex]a=210-d-f-g=210-70-45-52=43[/tex]

The same goes for [tex]b[/tex] and [tex]c[/tex].

[tex]b=258-d-e-g=258-70-31-52=105[/tex]

[tex]c=216-e-f.-g=216-31-45-52=88[/tex]

Adding all letters and subtract from the total to see if there is any healthy student:

[tex]500-a+b+c+d+e+f+g =500-43+105+88+70+31+45+52=500- 434=66[/tex]

a)Smoke but doesn't drink alcoholic beverages

This will be 'a' (only smokes) and 'f'  ( smokes and eats between meals but doesn't drink) divided by the total of students.

[tex]P=(43+45)/500=0.176[/tex]

b)eats between meals and drinks alcoholic beverages but doesn't smoke

This probability is 'e' divided by the total of students.

[tex]P=31/500=0.062[/tex]

c.) neither smokes nor eats between meals

This will be 'b' (only drinks) plus the healthy students (66) divided by the total of students.

[tex]P=(105+66)/500=0.342[/tex]

Final answer:

The probability a randomly selected student smokes but does not drink is 0.176, eats between meals and drinks alcohol but does not smoke is 0.062, and neither smokes nor eats between meals is 0.286.

Explanation:

To solve this, we need to break down the information into three categories: those who smoke (S), those who drink alcoholic beverages (D), and those who eat between meals (E). We’re told that there are 210 smokers, 258 drinkers, and 216 who eat between meals. We also know that some students fall into multiple categories.

a) Find those who smoke but do not drink. We know that 122 students both smoke and drink, so the number who smoke but do not drink is 210 (total smokers) - 122 (smokers and drinkers) = 88. The probability is then 88 out of 500, or 0.176.

b) To find those who eat between meals and drink alcoholic beverages but do not smoke, we subtract those who do all three (52) from those who eat between meals and drink (83) to get 31. The probability is then 31 out of 500, or 0.062.

c) To find those who neither smoke nor eat between meals, we subtract those who do either from the total. We add together the numbers who smoke, drink, or eat between meals (210+258+216), then subtract off twice the number who do two activities (122+83+97) since they were counted twice in the first total, then add back in the number who do all three (52) since they were subtracted too many times. Subtracting this from 500 gives us the number who do neither. So, 500 - ((210+258+216)-(2*(122+83+97))+52) = 143. The probability is then 0.286.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

On a certain​ exam, Tony corrected 2020 papers and found the mean for his group to be 6060. Alice corrected the remaining 1010 papers and found that the mean for her group was 8080. What is the mean of the combined group of 3030 ​students

Answers

Answer:

The mean is 66.667 ( approx )

Step-by-step explanation:

Let x be the sum of Tony's group and y be the sum of Alice's group,

We know that,

[tex]Mean = \frac{\text{Total sum of observations}}{\text{Number of observations}}[/tex]

According to the question,

In Tony's group,

Students = 20,

Mean = 60,

[tex]\implies \frac{x}{20}=60\implies x = 1200[/tex]

In Alice's group,

Students = 10,

Mean = 80,

[tex]\implies \frac{y}{10}=80\implies y = 800[/tex]

Thus, the total sum of combined group of 30 students = 1200 + 800 = 2000,

Hence, the mean of the combined group = [tex]\frac{2000}{30}[/tex]

[tex]\approx 66.667[/tex]

What is the converse of the following: "If I am hungry then l eat an apple." A. If I eat an apple then I am hungry. B. If I am hungry then I eat an apple. C. If I eat an apple then I am not hungry. D. If I'm not hungry then I don't eat an apple E. If I don't eat an apple then I'm not hungry. F. If I'm hungry then I eat an apple.

Answers

Answer:

Option A. If I eat an apple then I am hungry.

Step-by-step explanation:

we know that

To form the converse of the conditional statement, interchange the hypothesis and the conclusion.

In this problem

The hypothesis is "If I am hungry"

The conclusion is "l eat an apple."

therefore

interchange the hypothesis and the conclusion

The converse of "If I am hungry then l eat an apple." is

"If  l eat an apple then I am hungry"

Answer:the 1 one, A. " If I am hungry then I eat an apple"

Step-by-step explanation:

Other Questions
If they had enough money,________________________________________________A.They would buy a new flat.B.They buy a new flat.C.They are going to buy a new flat.D.They were going to buy a new flat.E.They will be buying a new flat. imagery quote for the book The Count of Monte Cristo Which of the following people would be considered a naturalized American citizen A. A person who was born in the United States to noncitizen parentsB. A person born outside the United States to American parents C. A person born abroad who has successfully applied for American citizenship D. A person born within the United States who now lives overseas A square has side length of 9 in. If the area is doubled, what happens to the side length? How can the Clean Water Act best promote health You have been hired to do a study of the cooking process at a restaurant. The manager has hired your consulting firm because he has heard that you specialize in work measurement studies. You arrive at the restaurant, and your first task is to observe the steak cooking station. The cooks pretty much stand in one location while cooking but have a lot of hand motion. The process is they reach for a steak, throw it on the grill, reach for the spices, sprinkle the spices on the steaks, turn the steak over at the proper moment, again sprinkle with spices, and finally put on the plate.What is the best methods analysis to use to identify wasted motion and idle time of the chefs cooking steaks? __________ PLEASE.Where are nonmetals located in the periodic table?along the upper right sidealong the bottomalong the upper left sidein the middle Use the work energy theorem to solve each of these problems and neglect air resistance in all cases. a) A branch falls from the top of a 98.0 m tall redwood tree, starting from rest. How fast is it moving when it reaches the ground? b) A volcano ejects a boulder directly upward 545 m into the air. How fast was the boulder moving just as it left the volcano? Hector was employed by a machine shop. One day he made a delivery for his employer and proceeded back to the shop. When he was four miles from the shop and on the road where it was located, he turned left onto another road to visit a friend. The friend lived five miles off the turnoff. On the way to the friends house, Hector caused an accident. The injured person sued Hectors employer. Is the employer liable? Discuss. What do you write for Introduction in a biology lab report? Which of the following sentences is a compound sentence? A. The line was significantly shorter than usual which was a relief. B. The coffee shop was usually full, but today there were many open tables. C. Although I was in a hurry, I still wanted to get a hot latte to go. D. Both the barista and the cashier gave me a huge, welcoming smile Given that the area of a triangle is given by the formula A = 12bh, what is the value of A if b = 4 cm and h = 6 cm? What are the zeros of f(x) = x2 - x - 30? What is the best way to increase the juiciness of meat and improve its flavor, texture, and aroma?A. Rub it with a dry marinade before cooking.B. Soak it in high-acid marinade before cooking.c. let it rest after it has cooked, but before it's sliced.D. Use an egg wash and seasoned breading before cooking. The students were writing a play According to the following balanced reaction, how many moles of NO are formed from 12.66 moles of NO2 if there is plenty of water present? 3 NO2(g) + H2O(l) 2 HNO3(aq) + NO(g 4. A study of 30 fathers was completed in which the fathers were asked the highest level of education they had completed. 10 completed only elementary school, 10 completed elementary school and high school; 7 completed elementary school, high school and college; 3 completed elementary school, high school, college and graduate school. What was the cumulative percentage of fathers who completed only elementary school? Sarah had been working with a personal trainer as she got started on a new fitness program. The first time Sarah went to the gym alone to work out she tried to remember all the safety tips her trainer gave her. Right away she started with the bench press exercise. She chose light weights and breathed in and out throughout the exercise. As Sarah finished her third set of bench presses, she realized she'd remembered everything right except to ________. Hormone secretion is often regulated through a negative feedback mechanism, which means that once a hormone is secreted it will cause the hypothalamus and pituitary to shut down the production of signals necessary to secrete the hormone in the first place. Most oral contraceptives are made of small doses of estrogen and/or progesterone. Why would this be an effective means of contraception? solve the equation -12=q-17