Enter your answer in the provided box. Calcium hydroxide may be used to neutralize (completely react with) aqueous hydrochloric acid. Calculate the number of g of hydrochloric acid that would be neutralized by 0.685 mol of solid calcium hydroxide. g HCI

Answers

Answer 1

Answer:

49.95 g of HCl

Explanation:

Let's formulate the chemical equation involved in the process:

Ca(OH)2 + 2 HCl → CaCl2 + 2 H2O

This means that we need 1 mole of Calcium hydroxide to neutralize 2 moles of hydrochloric acid. From this, we calculate the quantity of HCl moles that would be neutralized by 0.685 moles of Ca(OH)2

1 mole Ca(OH)2 ---- 2 moles HCl

0.685 moles Ca(OH)2 ---- x = 1.37 moles HCl

Now that we know the quantity of HCl moles that would react, let's calculate the quantity of grams this moles represent:

1 mole of HCl ---- 36.46094 g

1.37 moles ------ x = 49.95 g of HCl


Related Questions

Trinitrotoluene (C-H5N306, 227.1 g/mol) is easily detonated. How many grams of carbon are in 57.6 grams of TNT? Avogadro's Number: 1 mole = 6.02 x 1023 species A. 403 g B. 57.6 g C. 21.3 g D. 1.78 g E. None of the above

Answers

Answer: The correct answer is Option C.

Explanation:

The chemical formula for trinitrotoluene is [tex]C_7H_5N_3O_6[/tex]

In 1 mole of TNT, 7 moles of carbon atom, 5 moles of hydrogen atom, 3 moles of nitrogen atom and 6 moles of oxygen atom are present.

We know that:

Mass of trinitrotoluene = 227.1 g/mol

Mass of carbon = 12.01 g/mol

We are given:

Mass of TNT = 57.6 grams

To calculate the mass of carbon in given amount of TNT, we apply unitary method:

In 227.1 grams of TNT, amount of carbon present is = [tex](7\times 12.01)=84.07g[/tex]

So, in 57.6 grams of TNT, the amount of carbon present is = [tex]\frac{84.07g}{227.1g}\times 57.6g=21.3g[/tex]

Hence, the correct answer is Option C.

Define ""point source pollution"" and ""non-point pollution"".

Answers

Answer:

Point source pollution:

 If pollution comes from a fix source then is called point source pollution.It have a specific location where pollution comes.

Ex: Air pollution ,water pollution.

Non point source pollution:

 If pollution comes from number of sources then is called point source pollution.This pollution does not have a specific point of source.

Ex: Spills ,leaks ,Sewage over flow etc.

Answer:

Defined as under.

Explanation:

A point source pollution is a single identifiable source of pollutants like air, water, thermal and light. And has a negligible extent, distinguishes from other geometric or area sources of nonpoint, etc. While nonpoint source pollution is derived from various sources. Such as results of land runoff. atmospheric drainage and seepage they may affect a body of water such as from the agricultural areas draining to a river. Various pathogens and viruses found in the body of water, also the presence of poorly managed livestock, pets, and other these problems is also elated to the urban and rural asphalt and concrete, highway runoff and mining activities.

Not only due trees "fix" carbon but so do green vegetables. Photosynthesis in spinach leaves produces glucose via the Calvin cycle which involves the fixation of CO2 with ribulose 1-5 bisphosphate to form 3-phosphoglycerate via C3H8P2011(aq) + H2O(aq) + CO2(g) → 2 CzH4PO3(aq) + 2 H+(aq) If 15.0 g of 3-phosphoglycerate is formed by this reaction at T = 298 K and P = 1.00 atm what volume of CO2 is fixed? [1.00 L]

Answers

Answer : The volume of [tex]CO_2[/tex] gas is 1.00 L

Explanation :

First we have to determine the moles of [tex]C_3H_4PO_7^{3-}[/tex].

Molar mass of [tex]C_3H_4PO_7^{3-}[/tex] = 182.9 g/mole

[tex]\text{ Moles of }C_3H_4PO_7^{3-}=\frac{\text{ Mass of }C_3H_4PO_7^{3-}}{\text{ Molar mass of }C_3H_4PO_7^{3-}}=\frac{15.0g}{182.9g/mole}=0.0820moles[/tex]

Now we have to calculate the moles of [tex]CO_2[/tex].

The given balanced chemical reaction is:

[tex]C_5H_8P_2O_{11}^{4-}(aq)+H_2O(aq)+CO_2(g)\rightarrow 2C_3H_4PO_7^{3-}(aq)+2H^+(aq)[/tex]

From the reaction we conclude that,

As, 2 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from 1 mole of [tex]CO_2[/tex]

So, 0.0820 moles of [tex]C_3H_4PO_7^{3-}[/tex] produce from [tex]\frac{0.0820}{2}=0.041moles[/tex] of [tex]CO_2[/tex]

Now we have to calculate the volume of [tex]CO_2[/tex] gas.

Using ideal gas equation:

[tex]PV=nRT[/tex]

where,

P = pressure of gas = 1.00 atm

V = volume of gas = ?

T = temperature of gas = 298 K

n = number of moles of gas = 0.041 mole

R = gas constant = 0.0821 L.atm/mole.K

Now put all the given values in the ideal gas equation, we get:

[tex](1.00atm)\times V=(0.041mole)\times (0.0821L.atmK^{-1}mol^{-1})\times (298K)[/tex]

[tex]V=1.00L[/tex]

Therefore, the volume of [tex]CO_2[/tex] gas is 1.00 L

Question 10 0 / 3.5 points Many high temperature studies have been carried out on the equilibrium of the reaction: 2SO2(g) + O2(g) = 2 SO3(g) In one study the reaction vessel initially contained (5.000x10^-3) M SO2, (2.50x10^-3) MO2, and no SO3. If it was determined that at equilibrium the SO2 concentration was (2.8x10^-3) M, determine Kc at this temperature for the reaction as written. • Answers must be written in scientific notation • Write your answer using ONE decimal place (TWO significant figures), even if this is not the correct number of significant figures (e.g., 3.4E-6 or 3.4 x 10-6). • Do NOT use spaces. • Do NOT include units.

Answers

Answer: [tex]4.4\times 10^{2}[/tex]

Explanation:

The chemical reaction follows the equation:

     [tex]2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)[/tex]

t = 0 [tex]5.000\times 10^{-3}[/tex] [tex]2.50\times 10^{-3}[/tex]    0

At eqm [tex](5.000\times 10^{-3}-2x)[/tex] [tex](2.50\times 10^{-3}-x)[/tex]   (2x)      

The expression for [tex]K_c[/tex] for the given reaction follows:

[tex]K_c=\frac{[SO_3]^2}{[SO_2]^2[O_2]}[/tex]

[tex]K_c=\frac{[2x]^2}{[5.000\times 10^{-3}-2x]^2[2.50\times 10^{-3}-x]}[/tex]

Given : [tex][SO_2]_{eqm}=2.80\times 10^{-3}[/tex]

[tex]5.000\times 10^{-3}-2x=2.80\times 10^{-3}[/tex]

[tex]x=1.1\times 10^{-3}[/tex]

Putting the values we get:

[tex]K_c=\frac{[2\times 1.1\times 10^{-3}]^2}{[5.000\times 10^{-3}-2\times 1.1\times 10^{-3}]^2[2.50\times 10^{-3}-1.1\times 10^{-3}]}[/tex]

[tex]K_c=4.4\times 10^2[/tex]

Therefore, the equilibrium concentration [tex]4.4\times 10^{2}[/tex]

The weight of the body in the air is .... the weight of the submerged body
a) equal
b) more than
c) lower than
d) Not related

Answers

Answer:

the correct answer is option 'b': More than

Explanation:

The 2 situations are represented in the attached figures below

When an object is placed in air it is acted upon by force of gravity of earth which is measured as weight of the object.

While as when any object is submerged partially or completely in any fluid the fluid exerts a force in upward direction and this force is known as force of buoyancy and it's magnitude is given by Archimedes law as equal to the weight of the fluid that the body displaces, hence the effective force in the downward direction direction thus the apparent weight of the object in water decreases.

Which of the following regions of the periodic table tends to prefer a –1 charge and occupies Group 17?

a. Alkaline earth metals.
b. Halogens.
c. Noble gases.

Answers

Answer:

b. halogens

Explanation:

The elements of group 17 are called halogens. These are six elements Fluorine, Chlorine, Bromine, Iodine, Astatine. Halogens are very reactive these elements cannot be found free in nature. Their chemical properties are resemble greatly with each other. As we move down the group in periodic table size of halogens increases that's way fluorine is smaller in size as compared to other halogens elements. Their boiling points also increases down the group which changes their physical states.  

a sample of an oxide of antimony (sb) contain 19.75 g of antimony combine with 6.5 g of oxygen . what is the simplest formula for the oxide

Answers

Explanation:

The given data is as follows.

      Mass of antimony = 19.75 g

      Molar mass of Sb = 121.76 g/mol

Therefore, calculate number of moles of Sb as follows.

                    Moles of Sb = [tex]\frac{mass}{\text{molar mass}}[/tex]

                                         = [tex]\frac{19.75 g}{121.76 g/mol}[/tex]

                                         = 0.162 mol

Mass of oxygen given is 6.5 g and molar mass of oxygen is 16 g/mol. Hence, moles of oxygen will be calculated as follows.

           Moles of oxygen = [tex]\frac{mass}{\text{molar mass}}[/tex]

                                         = [tex]\frac{6.5 g}{16 g/mol}[/tex]

                                         = 0.406 mol

Hence, ratio of moles of Sb and O will be as follows

                          Sb : O

                      [tex]\frac{0.162}{0.162} : \frac{0.406}{0.162}[/tex]

                           1 : 2.5

We multiply both the ratio by 2 in order to get a whole number. Therefore, the ratio will be 2 : 5.

Thus, we can conclude that the empirical formula of the given oxide is [tex]Sb_{2}O_{5}[/tex].

Which of the following gives the net ionic reaction for the reaction used in this experiment?

H+(aq) + OH-(aq) → H2O(l)

no net reaction

Ba2+(aq) + SO42-(aq) → BaSO4(s)

Ba2+(aq) + 2 OH-(aq) + 2 H+(aq) + SO42-(aq) → BaSO4(s) + 2 H2O(l)

Answers

Answer: Option (d) is the correct answer.

Explanation:

The given reaction will be as follows.

       [tex]Ba(OH)_{2}(aq) + H_{2}SO_{4}(aq) \rightarrow BaSO_{4}(s) + 2H_{2}O(l)[/tex]

In the ionic form, the equation will be as follows.

           [tex]Ba^{2+}(aq) + SO^{2-}_{4}(aq) \rightarrow BaSO_{4}(s)[/tex] ........ (1)

           [tex]H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(l)[/tex] ............ (2)

Hence, for the net ionic equation we need to add both equation (1) and (2). Therefore, the net ionic equation will be as follows.

     [tex]Ba^{2+}(aq) + SO^{2-}_{4}(aq) + H^{+}(aq) + OH^{-}(aq) \rightarrow BaSO_{4}(s) + H_{2}O(l)[/tex]        

Now, balancing the atoms on both the sides we get the net ionic equation as follows.

         [tex]Ba^{2+}(aq) + SO^{2-}_{4}(aq) + 2H^{+}(aq) + 2OH^{-}(aq) \rightarrow BaSO_{4}(s) + 2H_{2}O(l)[/tex]          

Final answer:

The correct net ionic reaction for the experiment is H+(aq) + OH-(aq) → H2O(l), an example of an acid-base neutralization reaction. The other options included the formation of a precipitate, which is not part of the net ionic reaction.

Explanation:

Based on the provided options, the correct net ionic reaction for the experiment seems to be H+(aq) + OH-(aq) → H2O(l). This reaction is a classic example of an acid-base neutralization reaction, where an acid (H+) and a base (OH-) react to form water. The other two reactions involve the formation of a precipitate (BaSO4), but the full reaction is simplified to leave out the precipitate ions on either side. This does not occur in the first reaction. Hence, the first reaction is the correct net ionic reaction for this experiment.

Learn more about Net Ionic Reaction here:

https://brainly.com/question/29656025

#SPJ3

What is the pH of a solution containing 0.049 M of formic acid and 0.055 M of sodium formate?

Answers

Answer:

pH of solution is 3.80

Explanation:

Formic acid an weak acid and formate is conjugate base of formic acidHence solution containing formic acid and formate acts as a buffer.According to Henderson-Hasselbalch equation for a buffer consist of an weak acid (formic acid) and it's conjugate base (formate)-

[tex]pH=pK_{a}(formic acid)+log(\frac{C_{formate}}{C_{formic acid}})[/tex]

where, C stands for concentration

[tex]pK_{a}[/tex] of formic acid 3.75

So, [tex]pH=3.75+log(\frac{0.055}{0.049})=3.80[/tex]

Calculate the freezing point of a solution made from 220g of octane (C Hua), molar mass = 114,0 gmol dissolved in 1480 g of benzene. Benzene freezes at 5.50"C and its Kvalue is 5.12C/m. -1.16°C 0.98°C 666"C 12 2°C 5.49°C 10 12 AM A A 2019 Backspace yuo Pill но кL

Answers

Answer: Freezing point of a solution will be [tex]-1.16^0C[/tex]

Explanation:

Depression in freezing point is given by:

[tex]\Delta T_f=i\times K_f\times m[/tex]

[tex]\Delta T_f=T_f^0-T_f=(5.50-T_f)^0C[/tex] = Depression in freezing point

i= vant hoff factor = 1 (for non electrolyte)

[tex]K_f[/tex] = freezing point constant = [tex]5.12^0C/m[/tex]

m= molality

[tex]\Delta T_f=i\times K_f\times \frac{\text{mass of solute}}{\text{molar mass of solute}\times \text{weight of solvent in kg}}[/tex]

Weight of solvent (benzene)= 1480 g =1.48 kg

Molar mass of solute (octane) = 114.0 g/mol

Mass of solute (octane) = 220 g

[tex](5.50-T_f)^0C=1\times 5.12\times \frac{220g}{114.0 g/mol\times 1.48kg}[/tex]

[tex](5.50-T_f)^0C=6.68[/tex]

[tex]T_f=-1.16^0C[/tex]

Thus the freezing point of a solution will be [tex]-1.16^0C[/tex]

Use the References to access important values if needed for this question. The radius of a potassium atom is 231 pm. How many potassium atoms would have to be laid side by side to span a distance of 2.91 mm? atoms Submit Answer Try Another Version 1 item attempt remaining

Answers

Answer:

6298702 potassium atoms would have to be laid side by side to span a distance of 2,91 mm

Explanation:

If the radius of a potassium atom is 231 pm, then the diameter would be:

d = 2r = 2*(231) = 462 pm

So each potassium atom occupies a space of 462 pm, we can express this relationship as follows:

[tex]\frac{1 potassium atom}{462 pm}[/tex]

To solve this problem, we'll use the following conversion factors:

1 pm = 1×E−12 m

1000 mm = 1 m

We begin to accommodate all our relationships starting from that numerical expression that is not written as a relationship (usually the one in the question), and in such a way that the units are eliminated between them.

[tex]2, 91 mm * \frac{1 m}{1000 mm}*\frac{ 1 pm}{1*10^{-12}m }*\frac{1 potassium atom}{462 pm}= 6298701.3[/tex] potassium atoms

So, we'll need 6298702 potassium atoms to span a distance of 2,91 mm

Be sure to answer all parts. The thermal decomposition of phosphine (PH3) into phosphorus and molecular hydrogen is a first-order reaction: 4PH3(g) → P4(g) + 6H2(g) The half-life of the reaction is 35.0 s at 680°C. Calculate the first-order rate constant for the reaction: s−1 Calculate the time required for 77.0 percent of the phosphine to decompose: s

Answers

Answer:

k = 0.0198 s⁻¹

t = 74.25 seconds

Explanation:

Given that:

Half life = 35.0 s

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac {ln\ 2}{35.0}\ s^{-1}[/tex]

The rate constant, k = 0.0198 s⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given:

77.0 % is decomposed which means that 0.77 of [tex][A_0][/tex] is decomposed. So,

[tex]\frac {[A_t]}{[A_0]}[/tex] = 1 - 0.77 = 0.23

t = ?

[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]

[tex]0.23=e^{-0.0198\times t}[/tex]

t = 74.25 seconds

When in a reaction heat is a reactant then the reaction is called thermal decomposition reaction. The first-order rate constant is 0.0198 per second and the time required is 74.25 seconds.

What is a rate constant?

The rate constant is the specific rate that is the proportionality constant in a reaction and depicts the relation between the chemical reaction rate and the concentration of the reactants.

Rate constant can be given as,

[tex]\rm t\dfrac{1}{2} = \dfrac{ln 2}{k}[/tex]

The half-life of the reaction is 35 seconds.

Substituting values in the above equation:

[tex]\begin{aligned}\rm k &= \rm \dfrac{ln\;2}{t\frac{1}{2}}\\\\&= \dfrac{\rm ln\2}{35}\\\\&= 0.0198 \;\rm s^{-1}\end{aligned}[/tex]

The time taken can be calculated by the rate law for first order:

[tex]\rm [A_{t}] = [A_{o}]e^{-kt}[/tex]

Here,

Concentration at time t = [tex]\rm [A_{t}][/tex]The initial concentration = [tex]\rm [A_{o}][/tex]

Solving for time (t):

[tex]\begin{aligned}\rm \dfrac {[A_{t}]}{[A_{o}]} &= 1 - 0.77\\\\0.23 &= \rm e ^{-0.0198 \times t}\\\\\rm t &= 74.25\;\rm seconds\end{aligned}[/tex]

Therefore, the rate constant is 0.0198 per second and the time taken is 74.25 seconds.

Learn more about rate constant here:

https://brainly.com/question/16611725

How many atoms are found in 3.45g of CO2?

Answers

Answer: The number of carbon and oxygen atoms in the given amount of carbon dioxide is [tex]4.72\times 10^{22}[/tex] and [tex]9.44\times 10^{22}[/tex] respectively

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass of carbon dioxide gas = 3.45 g

Molar mass of carbon dioxide gas = 44 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of carbon dioxide gas}=\frac{3.45g}{44g/mol}=0.0784mol[/tex]

1 mole of carbon dioxide gas contains 1 mole of carbon and 2 moles of oxygen atoms.

According to mole concept:

1 mole of a compound contains [tex]6.022\time 10^{23}[/tex] number of molecules

So, 0.0784 moles of carbon dioxide gas will contain [tex]1\times 0.0784\times 6.022\times 10^{23}=4.72\times 10^{22}[/tex] number of carbon atoms and [tex]2\times 0.0784\times 6.022\times 10^{23}=9.44\times 10^{22}[/tex] number of oxygen atoms

Hence, the number of carbon and oxygen atoms in the given amount of carbon dioxide is [tex]4.72\times 10^{22}[/tex] and [tex]9.44\times 10^{22}[/tex] respectively

You make 1 Liter of an aqueous solution containing 9.20 ml of 57.8 mM acetic acid and 56.2 mg of sodium acetate (MW = 82.0 g/mole). a. How many moles of acetic acid did you add? b. How many moles of sodium acetate did you add? c. What is the appropriate formula for calculating the pH of the above solution? d. What is the pH of the above solution? Is it acidic or basic? Slightly or strongly so? (Use the same scale as on HW 1)

Answers

Answer:

a) 5,3176x10⁻⁴ moles

b) 6,85x10⁻⁴ moles

c) The appropriate formula to calculate is Henderson-Hasselbalch.

d) pH = 4,86. Acidic solution but slighty

Explanation:

a) moles of acetic acid:

9,20x10⁻³L × 57,8x10⁻³M = 5,3176x10⁻⁴ moles

b) moles of sodium acetate:

56,2x10⁻³g ÷ 82,0 g/mole = 6,85x10⁻⁴ moles

c) The appropriate formula to calculate is Henderson-Hasselbalch:

pH= pka + log₁₀ [tex]\frac{[A^-]}{[HA]}[/tex]

d) pH= 4,75 + log₁₀ [tex]\frac{[6,85x10_{-4}]}{[5,3176x10_{-4}]}[/tex]

pH = 4,86

3 < pH < 7→ Acidic solution but slighty

I hope it helps!

Various members of a class of compounds, alkenes, react with hydrogen to produce a corresponding alkane. Termed hydrogenation, this type of reaction is used to produce products such as margarine. A typical hydrogenation reaction is C10H20() + H2(g) → C10H22(5) Decene Decane How much decane can be produced in a reaction of excess decene with 2.45 g hydrogen? Give your answer in scientific notation. O *10 g decane

Answers

Answer: The mass of decane produced is [tex]1.743\times 10^2g[/tex]

Explanation:

To calculate the number of moles, we use the equation:  

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]       ......(1)

Mass of hydrogen gas = 2.45 g

Molar mass of hydrogen gas = 2 g/mol

Putting values in equation 1:, we get:

[tex]\text{Moles of }H_2=\frac{2.45g}{2g/mol}=1.225mol[/tex]

The chemical equation for the hydrogenation of decene follows:

[tex]C_{10}H_{20}(l)+H_2(g)\rightarrow C_{10}H_{22}(s)[/tex]

As, decene is present in excess. So, it is considered as an excess reagent.

Thus, hydrogen gas is a limiting reagent because it limits the formation of products.

By Stoichiometry of the reaction:

1 mole of hydrogen gas produces 1 mole of decane.

So, 1.225 moles of hydrogen gas will produce = [tex]\frac{1}{1}\times 1.225=1.225mol[/tex] of decane

Now, calculating the mass of decane by using equation 1, we get:

Moles of decane = 1.225 mol

Molar mass of decane = 142.30 g/mol

Putting values in equation 1, we get:

[tex]1.225mol=\frac{\text{Mass of decane}}{142.30g/mol}\\\\\text{Mass of carbon dioxide}=(1.225mol\times 142.30g/mol)=174.3g=1.743\times 10^2g[/tex]

Hence, the mass of decane produced is [tex]1.743\times 10^2g[/tex]

Blood substitute. As noted in this chapter, blood contains a total concentration of phosphate of approximately 1 mM and typically has a pH of 7.4. You wish to make 100 liters of phosphate buffer with a pH of 7.4 from NaH 2 PO 4 (molecular weight, 119. 98 g mol 1) and Na 2 HPO 4 (molecular weight, 141. 96 g mol 1). How much of each (in grams) do you need? Berg, Jeremy M.. Biochemistry (p. 25). W. H. Freeman. Kindle Edition.

Answers

Answer:

Mass of NaH₂PO₄ = 4.707 gMass of Na₂HPO₄ = 8.627 g

Explanation:

The equilibrium relevant for this problem is:

H₂PO₄⁻ ↔ HPO₄⁻² + H⁺

The Henderson–Hasselbalch (H-H) equation is needed to solve this problem:

pH= pka + [tex]log\frac{[A^{-} ]}{[HA]}[/tex]

In this case, [A⁻] = [HPO₄⁻²], [HA] = [H₂PO₄⁻], pH = 7.4; from literature we know that pka=7.21.

We use the H-H equation to describe [HPO₄⁻²] in terms of  [H₂PO₄⁻]:

[tex]7.4=7.21+log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]} \\0.19=log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]} \\10^{0.19}= \frac{[HPO4^{-2} ]}{[H2PO4^{-} ]} \\1.549*[H2PO4^{-} ]=[HPO4^{-2} ][/tex]

The problem tells us that the concentration of phosphate is 1 mM, which means:

[HPO₄⁻²] + [H₂PO₄⁻] = 1 mM = 0.001 M

In this equation we can replace [HPO₄⁻²] with the term expressed in the H-H eq:

1.549 * [H₂PO₄⁻] + [H₂PO₄⁻] = 0.001 M

2.549 * [H₂PO₄⁻] = 0.001 M

[H₂PO₄⁻] = 3.923 * 10⁻⁴ M

With the value of [H₂PO₄⁻] we can calculate [HPO₄⁻²]:

[HPO₄⁻²] + 3.923 * 10⁻⁴ M = 0.001 M

[HPO₄⁻²] = 6.077 * 10⁻⁴ M

With the concentrations, the molecular weight, and the volume, we calculate the mass of each reagent:

Mass of NaH₂PO₄ = 3.923 * 10⁻⁴ M * 100 L * 119.98 g/mol = 4.707 gMass of Na₂HPO₄ = 6.077 * 10⁻⁴ M * 100 L * 141.96 g/mol = 8.627 g

Why are the electronegativities of the 5d elements so high?

Answers

Explanation:

The electronegativity values of the 5d series are very high because the size of the 5d orbitals are much larger as compared to the size of the 3d and 4d orbitals. As a consequence of this, the shielding capacity of 5d elements are low or these elements are not effective at shielding the nuclear charge . Thus, this causes the increase in the effective nuclear charge which makes the electronegativity values to increase steeply from the Lutetium (1.27) to the Gold (2.54).

What should be done in case of acid spills and mercury spills? Explain

Answers

Explanation:

Acid spills

These types of spills should be neutralized with base like sodium bicarbonate and then must be cleaned up by using paper towel or  sponge. Strong base like sodium hydroxide must not be used to neutralize. Best base to use is sodium bicarbonate which has much less chance of the injury.

Mercury spills

Mercury is found commonly in  the thermometers. If one have mercury spill, it must be cleaned up immediately with  either commercial product like Hg Aborb ™ or by using elemental sulfur. Mercury sponges  can also be purchased that form amalgam with liquid mercury and thus trapping it on surface of sponge.

A 25.0-mL solution of 0.100 M CH3COOH
istitrated with a 0.200 M KOH solution. Calculate thepH
after the following additions of the KOH solution : (a) 0.0 mL,(b)
5.0 mL, (c) 10.0 mL, (d) 12.5 mL, (e) 15.0 mL.

Answers

Answer:

a) pH = 2,88

b) pH = 4,58

c) pH = 5,36

d) pH = 8,79

e) pH = 12,10

Explanation:

In a titration of a strong base (KOH) with a weak acid (CH₃COOH) the reaction is:

CH₃COOH + KOH → CH₃COOK + H₂O

a) Here you have just CH₃COOH, thus:

CH₃COOH ⇄ CH₃COO⁻ + H⁺ where ka =1,74x10⁻⁵ and pka = 4,76

When this reaction is in equilibrium:

[CH₃COOH] = 0,100 -x

[CH₃COO⁻] = x

[H⁺] = x

Thus, equilibrium equation is:

1,74x10⁻⁵ = [tex]\frac{[x][x] }{[0,100-x]}[/tex]

The equation you will obtain is:

x² + 1,74x10⁻⁵x - 1,74x10⁻⁶ = 0

Solving:

x = -0,0013278193 ⇒ No physical sense. There are not negative concentrations

x = 0,0013104193

As x = [H⁺] and pH = - log [H⁺]

pH = 2,88

b) Here, it is possible to use:

CH₃COOH + KOH → CH₃COOK + H₂O

With adition of 5,0 mL of 0,200M KOH solution the initial moles are:

CH₃COOH = [tex]0,025 L.\frac{0,100 mol}{L} =[/tex] = 2,5x10⁻³ mol

KOH = [tex]0,005 L.\frac{0,200 mol}{L} =[/tex] = 1,0x10⁻³ mol

CH₃COOK = 0.

In equilibrium:

CH₃COOH = 2,5x10⁻³ mol - 1,0x10⁻³ mol = 1,5x10⁻³ mol

KOH = 0 mol

CH₃COOK = 1,0x10⁻³ mol

Now, you can use Henderson–Hasselbalch equation:

pH = 4,76 + log [tex]\frac{1,0x10^{-3} }{1,5x10^{-3} }[/tex]

pH = 4,58

c) With adition of 10,0 mL of 0,200M KOH solution the initial moles are:

CH₃COOH = [tex]0,025 L.\frac{0,100 mol}{L} =[/tex] = 2,5x10⁻³ mol

KOH = [tex]0,010 L.\frac{0,200 mol}{L} =[/tex] = 2,0x10⁻³ mol

CH₃COOK = 0.

In equilibrium:

CH₃COOH = 2,5x10⁻³ mol - 2,0x10⁻³ mol = 0,5x10⁻³ mol

KOH = 0 mol

CH₃COOK = 2,0x10⁻³ mol

Now, you can use Henderson–Hasselbalch equation:

pH = 4,76 + log [tex]\frac{2,0x10^{-3} }{0,5x10^{-3} }[/tex]

pH = 5,36

d) With adition of 12,5 mL of 0,200M KOH solution the initial moles are:

CH₃COOH = [tex]0,025 L.\frac{0,100 mol}{L} =[/tex] = 2,5x10⁻³ mol

KOH = [tex]0,0125 L.\frac{0,200 mol}{L} =[/tex] = 2,5x10⁻³ mol

CH₃COOK = 0.

Here we have the equivalence point of the titration, thus, the equilibrium is:

CH₃COO⁻ + H₂O ⇄ CH₃COOH + OH⁻ kb = kw/ka where kw is equilibrium constant of water = 1,0x10⁻¹⁴; kb = 5,75x10⁻¹⁰

Concentrations is equilibrium are:

[CH₃COOH] = x

[CH₃COO⁻] = 0,06667-x

[OH⁻] = x

Thus, equilibrium equation is:

5,75x10⁻¹⁰ = [tex]\frac{[x][x] }{[0,06667-x]}[/tex]

The equation you will obtain is:

x² + 5,75x10⁻¹⁰x - 3,83x10⁻¹¹ = 0

Solving:

x = -0.000006188987⇒ No physical sense. There are not negative concentrations

x = 0.000006188

As x = [OH⁻] and pOH = - log [OH⁻]; pH = 14 - pOH

pOH = 5,21

pH = 8,79

e) The excess volume of KOH will determine pH:

With 12,5mL is equivalence point, the excess volume is 15,0 -12,5 = 2,5 mL

2,5x10⁻³ L × [tex]\frac{0,200 mol}{1L}[/tex] ÷ 0,040 L = 0,0125 = [OH⁻]

pOH = - log [OH⁻]; pH = 14 - pOH

pOH = 1,90

pH = 12,10

I hope it helps!

Answer:

The pH of solution on addition of 0.0, 5.0, 10.0 12.5 and 15 ml of KOH will be 2.87, 4.56, 5.34, 4.74,  and 12.09 respectively.

Explanation:

pH can be calculated by the evaluation of Hydronium ions in the solution.

[tex]\rm K_a[/tex] of [tex]\rm CH_3COOH[/tex] is 1.8 [tex]\rm \times10^-^5[/tex]

(a) Hydrogen ion concentration = [tex]\rm \sqrt{K_a\;\times\;CH_3COOH\;concentartion}[/tex]

Hydrogen ion concentration = [tex]\rm \sqrt{1.8\;\times\;10^-^5\;\times\;0.1}[/tex]

Hydrogen ion concentration = 1.34 [tex]\times\;10^-^3[/tex] M

pH of solution = log [Hydrogen ion concentration]

pH = log [[tex]\rm 1.34\;\times10^-^5[/tex]]

pH = 2.87

(b) On addition of 5 ml of KOH of 0.200 M, the moles of KOH added are:

moles of KOH = [tex]\rm \frac{volume\;(ml)}{1000}\;\times\;\frac{molarity}{L}[/tex]

moles of KOH = [tex]\rm \frac{5}{1000}\;\times\;\frac{0.200}{L}[/tex]

moles of KOH = [tex]\rm 1\;\times\;10^-^3[/tex] M

The initial moles of [tex]\rm CH_3COOH[/tex] are:

moles of [tex]\rm CH_3COOH[/tex] = [tex]\rm \frac{25}{1000}\;\times\;\frac{0.100}{L}[/tex]

moles of [tex]\rm CH_3COOH[/tex] = [tex]\rm 2.5\;\times\;10^-^3[/tex]

At equilibrium, the concentration of [tex]\rm CH_3COOH[/tex] = [tex]\rm 2.5\;\times\;10^-^3[/tex] - [tex]\rm 1\;\times\;10^-^3[/tex] mol

concentration of [tex]\rm CH_3COOH[/tex] = [tex]\rm 1.5\;\times\;10^-^3[/tex] moles.

The concentration of [tex]\rm CH_3COOK[/tex] = [tex]\rm 1\;\times\;10^-^3[/tex] moles

pH = [tex]\rm pK_a\;+\;log\;\frac{salt}{acid}[/tex]

pH = 4.76 + log [tex]\rm \frac{1\;\times\;10^-^3}{1.5\;\times\;10^-^3}[/tex]

pH = 4.58

(c) On addition of 10 ml of KOH,

moles of KOH = [tex]\rm \frac{10}{1000}\;\times\;\frac{0.200}{L}[/tex]

moles of KOH = [tex]\rm 2\;\times\;10^-^3[/tex] moles

moles of [tex]\rm CH_3COOH[/tex] = [tex]\rm 2.5\;\times\;10^-^3[/tex] moles

moles of [tex]\rm CH_3COOK[/tex] = [tex]\rm 2\;\times\;10^-^3[/tex] moles

pH = 4.76 + log [tex]\rm \frac{2\;\times\;10^-^3}{0.5\;\times\;10^-^3}[/tex]

pH = 5.36

(d) On addition of 12.5 ml of KOH,

moles of KOH = [tex]\rm \frac{12.5}{1000}\;\times\;\frac{0.200}{L}[/tex]

moles of KOH = [tex]\rm 2.5\;\times\;10^-^3[/tex]

moles of  [tex]\rm CH_3COOH[/tex] = [tex]\rm 2.5\;\times\;10^-^3[/tex] moles

moles of [tex]\rm CH_3COOK[/tex] = [tex]\rm 2.5\;\times\;10^-^3[/tex] moles

pH = 4.76 + log [tex]\rm \frac{2\;\times\;10^-^3}{0}[/tex]

pH = 4.74

(e) On addition of 15.0 ml of KOH,

The excess point is reached after the addition of 12.5 ml of KOH. After further addition of KOH, the pOH will be there.

The OH concentration on addition of KOH = [tex]\rm \frac{(\frac{15}{1000}\;\times0.200\;moles)\;-\;(\frac{25}{1000}\;\times0.100\;moles) }{\frac{25}{1000}\;+\;\frac{15}{1000} }[/tex]

= 0.0125 M

pOH = -log [OH concentration]

pOH = -log [0.0125]

pOH = 1.903

pH = 14 - pOH

pH = 14 - 1.903

pH = 12.097

The pH of solution on addtion of KOH will be :

O ml KOH = 2.87

5 ml KOH= 4.56

10 ml KOH = 5.36

12.5 ml KOH = 4.74

15 ml KOH = 12.907.

For more information, refer the link:

https://brainly.com/question/15289714?referrer=searchResults

Calculate the terminal velocity of a droplet (radius =R, density=\rho_d) when its settling in a stagnant fluid (density=\rho_f).

Answers

Answer:

[tex]V=\dfrac{2}{9\ \mu}R^2g(\rho_d-\rho_f)[/tex]

Explanation:

Given that

Radius =R

[tex]Density\ of\ droplet=\rho_d[/tex]

[tex]Density\ of\ fluid=\rho_f[/tex]

When drop let will move downward then so

[tex]F_{net}=F_{weight}-F_{b}-F_d[/tex]

Fb = Bouncy force

Fd = Drag force

We know that

[tex]F_b=\dfrac{4\pi }{3}R^3\ \times \rho_f\times g[/tex]

[tex]F_{weight}=\dfrac{4\pi }{3}R^3\ \times \rho_d\times g[/tex]

[tex]F_{d}=6\pi \mu\ R\ V[/tex]

μ=Dynamic viscosity of fluid

V= Terminal velocity

So at the equilibrium condition

[tex]F_{net}=F_{weight}-F_{b}-F_d[/tex]

[tex]0=F_{weight}-F_{b}-F_d[/tex]

[tex]F_{weight}=F_{b}+F_d[/tex]

[tex]\dfrac{4\pi }{3}R^3\ \times \rho_d\times g=\dfrac{4\pi }{3}R^3\ \times \rho_f\times g+6\pi \mu\ R\ V[/tex]

So

[tex]V=\dfrac{2}{9\ \mu}R^2g(\rho_d-\rho_f)[/tex]

This is the terminal velocity of droplet.

7. For the system PCls(g) → PC13(g) + Cl2(g) Kis 26 at 300°C. In a 5.0-L flask, a gaseous mixture consists of all three gases with partial pressure as follows: Ppcis = 0.012 atm, Pc2=0.45 atm, Ppci3 -0.90 atm. a) Is the mixture at equilibrium? Explain. b) If it is not at equilibrium, which way will the system shift to establish equilibrium?

Answers

Answer:

a) Reaction is not at equilibrium

b) Reaction will move towards backward direction

Explanation:

[tex]PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)[/tex]

Equilibrium constant = 26

[tex]Reaction\ quotient (Q) = \frac{[p_{PCl_3}]\times [p_{Cl_2}]}{[p_{PCl_5}]}[/tex]

[tex][p_{PCl_5}] = 0.012 atm[/tex]

[tex][p_{PCl_3}]= 0.90 atm[/tex]

[tex][p_{Cl_2}]= 0.45 atm[/tex]

[tex]Reaction\ quotient (Q) = \frac{[p_{PCl_3}]\times [p_{Cl_2}]}{[p_{PCl_5}]}[/tex]

[tex]Reaction quotient (Q) =\frac{0.90\times 0.45} {0.012} = 33.75[/tex]

As reaction quotient (Q) is more than equilibrium constant, so reaction is not at equilibrium and reaction will move towards backward direction.

For which of these is there an increase in entropy? KCI(aq)+AgNO3(aq)KNO3(aq)+AgCI(s) NaCl(s)NaCl(aq) 2NaOH(aq)+CO2(g)Na2CO3(aq)+H20(1) C2H5OH(g)C2H5OH(I)

Answers

Answer: NaCl (s) → NaCl (aq)

Explanation:

Entropy is often associated with the disorder or randomness of a system. Therefore, in each reaction, it is necessary to evaluate if the disorder increases or decreases to understand what happens to the entropy:

1) KCl (aq) + AgNO₃ (aq) → KNO₃ (aq) + AgCl (s) - In this reaction, we have only aqueous reactants in the beginning and in the product we have a precipitate. The solid state is more organised than the liquid, consequently, the entropy decreases.

2) NaCl (s) → NaCl (aq) - In this case, oposite to the first one, we go from a solid state to an aqueous state. The solvation of the ions Na⁺ and Cl⁻ is random while the solid state is very organised. Therefore, in this reaction the entropy increases.

3) 2NaOH (aq) + CO₂ (g) → Na₂CO₃ (aq) + H₂O (l) - In this reaction, the reactants have higher entropy because of the gas CO₂. Therefore, the entropy decreases.

4) C₂H₅OH (g) → C₂H₅OH (l) -  In this reaction, the reactant is a gas and the product a liquid. Therefore, the entropy decreases.

How do you know when the central atom in a lewis structure will have more than 8 electrons?

One particular example in mind is BrO3F. The structure should have 32 electrons, and it does when Br has a single bond with the other atoms and their formal charge cancels out to have a formal charge of zero.

Answers

Answer:

To know when a central atom in a lewis structure will have more than 8 electrons it is important to know where is the element at the periodic table and the orbital configuration of the atom.

Explanation:

The octet rule establishes that an atom could win, lose, or share electrons with other atoms till every atom have eight valence electrons. However exist exceptions to the octet rule. Some elements like Be, B and Al are stable with only six valence electrons because these three elements are small and with low electronegativity. On the other hand, some elements from the 3d orbital could expand their octet and still be stable, like S in SF6. This happens because elements from 3d orbital have enough space to suit more electrons.

A temperature difference of 15°C is impressed across a brick wall of a house which is 15 cm in thickness. The thermal conductivity of the brick is 1.0 W/m °C. The face of the wall is 6 meters high and 12 meters long. Compute both the heat flux and the heat transfer rate through the wall. Why aren't these numerical values the same?

Answers

Answer:

Q=7200 W

q=7200/72=100 [tex]W/m^2[/tex]

Explanation:

Given that

ΔT=15° C

Thickness ,t=15 cm

Thermal conductivity ,K=1 W/m.°C

Height,h=6 m

Length ,L=12 m

As we know that heat conduction through wall given as

[tex]Q=\dfrac{KA}{t}\Delta T[/tex]

Now by putting the values

A= 6 x 12 =72 [tex]m^2[/tex]

[tex]Q=\dfrac{KA}{t}\Delta T[/tex]

[tex]Q=\dfrac{1\times 72}{0.15}\times 15\ W[/tex]

Q=7200 W

Q is the total heat transfer.

Heat flux q

 q=Q/A [tex]W/m^2[/tex]

q=7200/72=100 [tex]W/m^2[/tex]

q is the heat flux.

As w know that heat flux(q) is the heat transfer rate from per unit area and on the other hand heat transfer(Q) is the total heat transfer from the surface.

Heat flux q=Q/A

That is why these both are different.

What is the pH of a 0.18 M CH3NH3+Cl– aqueous solution? The pKb ofCH3NH2 is 3.44

Answers

Answer:

5.65

Explanation:

Given that:

[tex]pK_{b}\ of\ CH_3NH_2=3.44[/tex]

[tex]K_{b}\ of\ CH_3NH_2=10^{-3.44}=3.6308\times 10^{-4}[/tex]

[tex]K_a\ of\ CH_3NH_3^+Cl^-=\frac {K_w}{K_b}=\frac {10^{-14}}{3.6308\times 10^{-4}}=2.7542\times 10^{-11}[/tex]

Concentration = 0.18 M

Consider the ICE take for the dissociation as:

                              [tex]CH_3NH_3^+[/tex]   ⇄     H⁺ +  [tex]CH_3NH_2[/tex]

At t=0                           0.18                 -                            -

At t =equilibrium        (0.18-x)                x                         x            

The expression for dissociation constant of acetic acid is:

[tex]K_{a}=\frac {\left [ H^{+} \right ]\left [CH_3NH_2 \right ]}{[CH_3NH_3^+]}[/tex]

[tex]2.7542\times 10^{-11}=\frac {x^2}{0.18-x}[/tex]

x is very small, so (0.18 - x) ≅ 0.18

Solving for x, we get:

x = 0.2227×10⁻⁵  M

pH = -log[H⁺] = -log(0.2227×10⁻⁵) = 5.65

DrugDigest is a website that is owned and hosted by a. Food and Drug Administration c. Express Scripts b. National Library of Medicine d. Blue cross/Blue Shield

Answers

Answer:

The answer is c. Express Scripts Company

Explanation:

DrugDigest is a website tool that helps you to find information about medicaments  you consume or you see for example you introduce the first three letters of the drug in the website and you will have a detailed description of brands, supplied information eg. if the medicament comes by pills or by syrup and also the concentration of the medicament and recommendations ( under which case you can take the medicine, effects, side effects)  

Liquid X has a density of 0.834 g/mL. What is the volume, in ml, of 205 g of liquid X? Please report your answer to the nearest whole mL.

Answers

Answer: The volume of liquid X is 246 mL

Explanation:

To calculate volume of a substance, we use the equation:

[tex]\text{Density of a substance}=\frac{\text{Mass of a substance}}{\text{Volume of a substance}}[/tex]

We are given:

Mass of liquid X = 205 g

Density of liquid X = 0.834 g/mL

Putting values in above equation, we get:

[tex]0.834g/mL=\frac{205g}{\text{Volume of liquid X}}\\\\\text{Volume of liquid X}=246mL[/tex]

Hence, the volume of liquid X is 246 mL

QUESTION 1 1.041 points If a 50.00 ml aliquot of a 0.12 M NaCl solution is added to 30.00 mL of a 0.18 M CaCl solution, what is the concentration of calcium ion in the mixture? 0.10M 0.086 M 0,068 M 0.36 M 0.090 M

Answers

Answer:

[Ca²⁺] = 0.068 M

Explanation:

The concentration of the calcium ion will be equal to the amount of calcium in CaCl₂, divided by the total volume:

C = n/V

When CaCl₂ dissociates in water, one mole of calcium ion is produced for every mole of CaCl₂, so the molar ratio of CaCl₂ to Ca²⁺ is 1:1. The moles of Ca²⁺ are calculated as follows:

(0.18 mol/L)(30.00 mL) = 5.4 mmol CaCl₂ = 5.4 mmol Ca²⁺

The total volume is (50.00 mL + 30.00 mL) = 80.00 mL

Thus, the concentration of Ca²⁺ is:

C = n/V = (5.4 mmol)/(80.00 mL) = 0.068 M

A gram of gasoline produces 45.0kJ of energy when burned. Gasoline has a density of 0.77/gmL. How would you calculate the amount of energy produced by burning 5.2L of gasoline? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols.

Answers

Answer:

Math expression: [tex]=\frac{0.77\ g/ml*5200\ ml}{1\ g} *45.0\ kJ[/tex]

Explanation:

Given:

Energy produced per gram of gasoline = 45.0 kJ

Density of gasoline = 0.77 g/ml

Volume of gasoline = 5.2  L=5200 ml

To determine:

The amount of energy produced by burning 5.2 L gasoline

Calculation set-up:

1. Calculate the mass (m) of gasoline given the density (d) and volume (v)

[tex]m = d*v\\\\m = 0.77 g/ml*5200 ml[/tex]

2. Calculate the amount of energy produced

[tex]=\frac{0.77\ g/ml*5200\ ml}{1\ g} *45.0\ kJ=180180 kJ[/tex]

which higher heat transfer ?

a)Fan with air

b)boiling water

c)cooled liquid

Answers

Answer:

b)boiling water

Explanation:

High heat is transferred with the thermal conduction process, also called diffusion. Always occurs from a region of higher temperatures to a region of lower temperatures. The flow of fluid may be forced into external processes. As the particles rapidly move and vibrate and the transfer of heat from one state to the other by the interaction of particles and rate of heat lost has to be the same as absorbed heat during vaporization at the same fluid pressure. A component of heat transfer can be seen as a heat sink in which transfers the heat generated within any medium. Thus evaporative cooling happens after the vapor is added to the surrounding air.
Other Questions
Which pair of fractions are proportional? A)36/54 and 6/9 B)6/7and 16/21 C) 21/36and 21/42 D) 14/35 and 21/42 Select the correct answer. Which word correctly completes this conversation? Elena: De dnde vienes? Diana: Yo _________ de Argentina. A. Vienes B. Son C. Es D. Soy I am a number between 7 000 000 and 8 000 000 all my digits are odd all the digits in my thousands period are the same all the digits in my units period are the same the sum of my digits is 31 what number am i ? Nine increased by the product of a number and 2 is less than or equal to 27.Use the variable w for the unknown number. A line is drawn so that it passes through the points (3, 4) and (4,1).What is the slope of the line An automobile accelerates from rest at 1.7 m/s 2 for 22 s. The speed is then held constant for 29 s, after which there is an acceleration of 5.8 m/s 2 until the automobile stops. What total distance was traveled? Answer in units of km. Charlie jogs 3 miles south and then 4 miles west. If Charlie were to jog straight home, without changing direction, how far would he have to jog? Urea (CH4N2O) is a common fertilizer that can be synthesized by the reaction of ammonia (NH3) with carbon dioxide as follows: 2NH3(aq)+CO2(aq)CH4N2O(aq)+H2O(l) In an industrial synthesis of urea, a chemist combines 132.0 kg of ammonia with 211.4 kg of carbon dioxide and obtains 172.7 kg of urea. determine the limiting reactant Subatomic particles that do not provide any charge are called _____. The poster shows a message from the Centers for DiseaseControlwhich best describes the purpose of this poster?to encourage people to get their children the flu vaccineto encourage people to vaccinate their children ingeneralto inform people that the flu can cause children to behospitalizedto inform people that children are most susceptible tothe flu The total cost C (in dollars) to participate in a ski club is given by the literal equation C=85x+60, where x is the number of ski trips you take. A. Solve the equation for x. A nurse working in the intensive care unit (ICU) refers to the Institute for Healthcare Improvement (IHI) Ventilator Bundle prior to planning patient care. The nurse realizes nursing interventions outlined in the bundle will improve patients outcomes. Which of the following statement best describes how IHI-established nursing interventions should be included in each bundle?a) Nursing interventions found within the IHI bundles were selected based on the ability to provide optimal time management for the nurseb) Best practice derived from valid and reliable research studies guided nursing interventions being added to the IHI bundlesc) Nurse case managers serving as patient advocates recommended nursing interventions to be included in the IHI bundles based on patient preferenced) Hospitals, physicians, and nurses worked collaboratively to design patient care activities included in IHI bundles A company has determined that it must increase production of a certain line of goods by 112 times last years production. The new output will be 2885 items. What was last year's output? A companys total revenue from manufacturing and selling x units of their product is given by: y = 3x2 + 900x 5,000. How many units should be sold in order to maximize revenue, and what is the maximum revenue "Old Man Denman call all us together and stand on the steps and make he speech. 'You is free to go where you wants but I is beggin' yous to stay by me till us git the crops laid by.' The mens talk it over a-twixt theyselves and includes to stay. They says us might as well stay there as go somewhere else, and us got no money and no place to go." "My husband rents a little piece of land and us raise a corn crop and that's the way us do. Us raises our own victuals. I has chillen through the year(s) and they done scatter to the four winds. Some of them is dead." --Julia Francis Daniels Which of the following was probably true about Julia Francis Daniels? She and her husband left their former master's property to start a new life. She and her husband bought their own property from their former owner. She and her husband signed a farming contract with their former master. She and her husband agreed to supervise the workers and their children. Suppose that coin 1 hasprobability 0.7 of coming upheads, and coin 2 has probability 0.6of coming up heads. If thecoin flipped today comes up heads, thenwe select coin 1 to fliptomorrow, and if it comes up tails, thenwe select coin 2 to fliptomorrow. If the coin initially flipped isequally likely to be coin1 or coin 2, then what is the probabilitythat the coin flipped onthe 3rd day after the initial flip is coin1? In searching the bottom of a pool at night, a watchman shinesanarrow beam of light from his flashlight, 1.3 m above thewaterlevel, onto the surface of the water at a point 2.7 m from theedgeof the pool (Figure 23-50). Where does the spot of light hitthebottom of the pool, measured from the wall beneath his foot, ifthepool is 2.1 m deep? 1. Make a 100 mL volume of 100 mM acetic acid (HAC) HAC (glacial, 100%, 17.4 M, 1.05 g/ml, MW 60.05) ddh,0 ML add to 100 mL Measure 250 ml beaker. Add mL of ddH20 using a 100-ml graduated cylinder and transfer this volume to a ul of 100 mM HAC to the water. Mix with a stir bar. Calculate: (Round two decimal places for final answer) 3gallons (gal) =_____liters (L) 3. What happens and what results from an Earth's precession?