Factor completely 5x2 − 50x + 120.
Select one:
a. 5(x − 3)(x − 8)
b. (5x − 15)(x − 8)
c. (x − 4)(5x − 30)
d. 5(x − 4)(x − 6)


Question 2
Factor completely 64x2 − 1
Select one:
a. (8x − 1)(8x − 1)
b. (8x − 1)(8x + 1)
c. (1 − 8x)(1 − 8x)
d. (1 − 8x)(1 + 8x)

Answers

Answer 1

Answer:

Q1. d. 5(x - 4)(x - 6)Q2. b. (8x - 1)(8x + 1)

Step-by-step explanation:

[tex]\bold{Q1}\\\\5x^2-50x+120=5(x^2-10x+24)=5(x^2-6x-4x+24)\\\\=5\bigg(x(x-6)-4(x-6)\bigg)=5(x-6)(x-4)\\\\\bold{Q2}\\\\64x^2-1=(8x)^2-1^2=(8x-1)(8x+1)\\\\\text{Used}\ a^2-b^2=(a-b)(a+b)[/tex]

Answer 2

Answer:

see explanation

Step-by-step explanation:

1

Given

5x² - 50x + 120 ← factor out 5 from each term

= 5(x² - 10x + 24)

To factor the quadratic

Consider the factors of the constant term (+ 24) which sum to give the coefficient of the x- term ( - 10)

The factors are - 4 and - 6, since

- 4 × - 6 = 24 and - 4 - 6 = - 10, hence

x² - 10x + 24 = (x - 4)(x - 6) and

5x² - 50x + 120 = 5(x - 4)(x - 6) → d

2

64x² - 1 ← is a difference of squares and factors in general as

a² - b² = (a - b)(a + b)

64x² = (8x)² ⇒ a = 8x and b = 1

64x² - 1

= (8x)² - 1² = (8x - 1)(8x + 1) → b


Related Questions

In a right triangle, the measure of one of the acute angles is 60 degrees more than the measure of the smallest angle. Find the measures of all three angles.

Answers

Answer:

90°, 75°, and 15°

Step-by-step explanation:

In a right triangle, one of the angles is 90°.

           Let x = the smallest angle

Then 60 + x = the third angle

The sum of the three angles is 180°.

90 + 60 + x + x = 180

          150 + 2x = 180

                    2x =  30

                      x =   15

      Measure of right angle              = 90°

Measure of smallest angle = x         =  15°

     Measure of third angle = 60 + x = 75°  

The measures of the angles are 90°, 75°, and 15°.

Solve 3x^2 + x + 10 = 0 round solutions to the nearest hundredth

A. X= -2.83 and x=0.83

B. No real solutions

C. X= -2.01 and x= 1.67

D. X= -1.67 and x=2.01

Answers

Answer:

C. X= -2.01 and x= 1.67

Step-by-step explanation:

[tex]3x {}^{2} + x + 10 = 0 \\ 3x {}^{2} + 6x - 5x + 10 = 0 \\ 3x(x + 2) - 5(x + 2) \\ (x + 2)(3x - 5 )\\ x + 2 = 0 \: \: or \: \: 3x - 5 = 0 \\ x = - 2 \: \: or \: \: x = \frac{5}{3} [/tex]

ANSWER

B. No real solutions

EXPLANATION

The given equation is

[tex]3 {x}^{2} + x + 10 = 0[/tex]

By comparing to

[tex]a {x}^{2} + bx + c= 0[/tex]

We have a=3,b=1 and c=10.

We substitute these values into the formula

[tex]D = {b}^{2} - 4ac[/tex]

to determine the nature of the roots.

[tex]D = {1}^{2} - 4(3)(10)[/tex]

[tex]D = 1 - 120[/tex]

[tex]D = - 119[/tex]

The discriminant is negative.

This means that the given quadratic equation has no real roots.

The variable z is inversely proportional to x. When x is 16, z has the value 0.5625. What is the value of z when x= 25?

Answers

Answer:

0.36

Step-by-step explanation:

z is inversely proportional to x:

z = k / x

When x is 16, z has the value 0.5625.

0.5625 = k / 16

k = 9

What is the value of z when x= 25?

z = 9 / 25

z = 0.36

Answer:

The answer is 9/25 or .36 if you prefer it in decimal form.

Step-by-step explanation:

inversely proportional means there is a constant that we are going to divide by.

So z is inversely proportional to x means z=k/x where k is a constant.

We are given when x=16, z=0.5625.  This information will be used to find our constant value k.

0.5625=k/16

Multiply both sides by 16:

16(0.5625)=k

Simplify:

9=k.

This means no matter what (x,z) pair we have the constant k in z=k/x will always be 9.

The equation we have is z=9/x.

Now we want to find z when x=25.

z=9/25

z=.36

You are hiking and are trying to determine how far away the nearest cabin is, which happens to be due north from your current position. Your friend walks 200 yards due west from your position and takes a bearing on the cabin of N 30.7°E. How far are you from the cabin?

Answers

Answer:

336.7 yards away from the cabin....

Step-by-step explanation:

The angle 30.7° is also the angle of the upper interior angle of the triangle (near the cabin)

Use the tan function:

opposite = 200 yards

adjacent = x

tan(30.7°) = (opposite / adjacent)

tan(30.7°) = 200 yards/x

x * tan(30.7°) = 200 yards

x = 200 yards/ tan(30.7°)

x= 200/ 0.594

x = 336.7 yards.

336.7 yards away from the cabin....

Answer: 337

Step-by-step explanation: you have to round up

Draw a diagram for this statement.
one sixth of the 48 vegetable plants were tomato plants.
use your diagram to determine how many of the vegetable plants were tomato plants

Answers

Answer:

8

Step-by-step explanation:

one sixth of 48 is 8 therefore you have eight tomato plants

Suppose that the length of a certain rectangle is four centimeters more than three times its width. If the area of the rectangle is 95 square centimeters, find its length and width.

Answers

Answer:  The length and width of the rectangle are 19 cm and 5 cm respectively.

Step-by-step explanation:  Given hat the length of a rectangle is four centimeters more than three times its width and the area of the rectangle is 95 square centimeters.

We are to find the length and width of the rectangle.

Let W and L denote the width and the length respectively of the given rectangle.

Then, according to the given information, we have

[tex]L=3W+4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

Since the area of a rectangle is the product of its length and width, so we must have

[tex]A=L\times W\\\\\Rightarrow 95=(3W+4)W\\\\\Rightarrow 3W^2+4W-95=0\\\\\Rightarrow 3W^2+19W-15W-95=0\\\\\Rightarrow W(3W+19)-5(3W+19)=0\\\\\Rightarrow (W-5)(3W+19)=0\\\\\Rightarrow W-5=0,~~~~~3W+19=0\\\\\Rightarrow W=5,~-\dfrac{19}{3}.[/tex]

Since the width of the rectangle cannot be negative, so we get

[tex]W=5~\textup{cm}.[/tex]

From equation (i), we get

[tex]L=3\times5+4=15+4=19~\textup{cm}.[/tex]

Thus, the length and width of the rectangle are 19 cm and 5 cm respectively.

The length of the rectangle is 19 and the width is 5 and it can be determined by using the formula of area of the rectangle.

Given that,

The length of a certain rectangle is four centimeters more than three times its width.

If the area of the rectangle is 95 square centimeters,

We have to determine,

The length and width of the rectangle.

According to the question,

Let the length of the rectangle be L,

And the width of the rectangle is W.

The length of a certain rectangle is four centimeters more than three times its width.

The perimeter of a square is the sum of the length of all its four sides.

The perimeter formulas of different two-dimensional shapes:

Then,

[tex]\rm L = 3W+4[/tex]

And If the area of the rectangle is 95 square centimeters,

The area of any polygon is the amount of space it occupies or encloses.

It is the number of square units inside the polygon.

The area is a two-dimensional property, which means it contains both length and width

[tex]\rm Area \ of \ the \ rectangle = length \times width\\\\L\times W = 95[/tex]

Substitute the value of L from equation 1,

[tex]\rm L\times W = 95\\\\(3W+4) \times W = 95\\\\3W^2+4W=95\\\\3W^2+4W-95=0\\\\3W^2+19W-15W-95=0\\\\W(3W+19) -5(3W+19) =0\\\\(3W+19) (W-5) =0\\\\W-5=0, \ W=5\\\\3W+19=0, \ W = \dfrac{-19}{3}[/tex]

The width of the rectangle can not be negative than W = 5.

Therefore,

The length of the rectangle is,

[tex]\rm L = 3W+4\\\\L = 3(5)+4\\\\L=15+4\\\\L=19[/tex]

Hence, The length of the rectangle is 19 and the width is 5.

To know more about Rectangle click the link given below.

https://brainly.com/question/12895249

A boater travels 532 miles. Assuming the boat averages 6.3 miles per gallon, how many gallons of gasoline(to the nearest then of gallon) were used? plz show work

Answers

Answer:

84.4 gallons to the nearest tenth.

Step-by-step explanation:

Average usage = miles travelled  / gallons used  so:

6.3 = 532 / gallons used

Gallons used  =   532 / 6.3

= 84.44.

Final answer:

To find the gallons of gasoline used, divide the total miles (532) by the average miles per gallon (6.3). This calculation results in approximately 84.4444 gallons, which can be rounded to 84.4 gallons of gasoline used.

Explanation:

To calculate the amount of gasoline used by the boater who traveled 532 miles averaging 6.3 miles per gallon, you need to divide the total miles traveled by the average miles per gallon. The formula to use is:

Gallons used = Total miles traveled ÷ Average miles per gallon
Plugging in the values given:

Gallons used = 532 miles ÷ 6.3 miles/gallon
This gives us:

Gallons used = 84.4444... gallons
To round to the nearest tenth of a gallon, we would round 84.4444... to 84.4 gallons. Thus, the boater used approximately 84.4 gallons of gasoline.

A​ 90% confidence interval for the mean percentage of airline reservations being canceled on the day of the flight is ​(1.4​,4.3​). What is the point estimator of the mean percentage of reservations that are canceled on the day of the​ flight?

Answers

Answer: 2.85

Step-by-step explanation:

Given : A​ 90% confidence interval for the mean percentage of airline reservations being canceled on the day of the flight is ​(1.4​, 4.3​) .

We know that the the confidence interval for population mean [tex]\mu[/tex] is given by :-

[tex]\mu\pm E[/tex], where E is the margin of error.

Lower limit of confidence interval = [tex]\mu-E=1.4[/tex]          (1)

Upper limit of confidence interval =  [tex]\mu+E=4.3[/tex]        (2)

Adding (1) and (2), we get

[tex]2\mu=5.7\\\\\Rightarrow\ \mu=2.85[/tex]

Hence, the point estimator of the mean percentage of reservations that are canceled on the day of the​ flight = 2.85

The point estimator for the mean percentage of airline reservations being canceled on the day of the flight is 2.85%, found by averaging the lower and upper bounds of the given 90 percent confidence interval.

The point estimator of the mean percentage of reservations that are canceled on the day of the flight can be determined from the confidence interval given as (1.4, 4.3).

The point estimator is simply the mean of the lower and upper bounds of the confidence interval. To find this, we add the lower and upper limits together and divide by two.

The calculation is as follows:

[tex]\frac{1.4 + 4.3}{2} = 2.85[/tex]

Therefore, the point estimator for the mean percentage of airline reservations being canceled on the day of the flight is 2.85%.

I need help on understanding this one! Thank you!

Answers

Answer:

(6^⅕) (cos(-24°) + i sin(-24°))

Step-by-step explanation:

First, we convert from Cartesian to polar:

r = √((-3)² + (-3√3)²)

r = √(9 + 27)

r = 6

θ = atan( (-3√3) / (-3) ), θ in the third quadrant

θ = atan(√3)

θ = 240° + 360° k

Notice that θ can be 240°, 600°, 960°, etc.

Therefore:

-3 − 3√3 i = 6 (cos(240° + 360° k) + i sin(240° + 360° k))

Now we take the fifth root:

[ 6 (cos(240° + 360° k) + i sin(240° + 360° k)) ]^⅕

(6^⅕) [ (cos(240° + 360° k) + i sin(240° + 360° k)) ]^⅕

Applying de Moivre's Theorem:

(6^⅕) (cos(⅕ × 240° + ⅕ × 360° k) + i sin(⅕ × 240° + ⅕ × 360° k))

(6^⅕) (cos(48° + 72° k) + i sin(48° + 72° k))

If we choose k = -1:

(6^⅕) (cos(-24°) + i sin(-24°))

State the domain and range of the function f(x) =2[[x]]
A. reals Even integers.
B. reals odd integers.
C. reals all integers.
D. reals positive integers.

Just to let you guys know, people thought the answer was C, but the correct answer was A. i don't know why it is A, please explain:(

Answers

Answer:

A real Even integers

Step-by-step explanation:

Answer:

A.

Step-by-step explanation:

It's all down the the double parentheses. They mean 'round down to the nearest integer'. Also because of the 2 the integer will be even.

You bought a guitar 6 years ago for $400. If its value decreases by

about 13% per year, how much is your guitar worth now?

$351.23

$226.55

$322

$173.45

Answers

Answer:

$173.45

Step-by-step explanation:

the beginning value is $400. if it loses 13%, that means it keeps 87% of its value. so you multiply by 0.87 6 times for each year

your answer should be $173.45

URGENT PLEASE HELP ME WITH THIS MATH QUESTION

Answers

Answer:

The image is (0 , -6)

Step-by-step explanation:

* Lets explain some important facts

- When a point reflected across a line the perpendicular

 distance from the point to the line equal the perpendicular  

 distance from its image to the same line

- If the line of the reflection is horizontal then the perpendicular

 distance between the point and the line is y - y1 , and the

 perpendicular distance between the image and the line is y2 - y

- If point (x , y) reflected across the x- axis, then its image is (x , -y)

* Lets solve the problem

∵ Point (0 , 0) reflected across the line y = 3

∴ y = 3 and y1 = 0

∴ The distance between the point and the line is 3 - 0 = 3

∴ The distance between the image and the line also = 3

∴ y2 - 3 = 3 ⇒ add 3 to both sides

∴ y2 = 6

∴ The y-coordinate of the image is  6

∴ The image of point (0 , 0) after reflection across the line y = 3 is (0 , 6)

- The image of the point reflected across the x-axis, then change the

  sign of the y-coordinate

∴ The final image of point (0 , 0) is (0 , -6)

* The image is (0 , -6)

Which of the following statements is(are) NOT applicable to typologies? a. They are typically nominal composite measures. b. They involve a set of categories or types. c. They may be used effectively as independent or dependent variables. d. They are often used when researchers wish to summarize the intersection of two or more variables.e. All of these choices apply to typologies.

Answers

Answer: The following statements is not applicable to typologies, "They may be used effectively as independent or dependent variables."

Typology is a complex measurement that affect the categorization of observations in terms of their property on multiple variables.They are typically nominal composite measures.They involve a set of categories or types. They are often used when researchers wish to summarize the intersection of two or more variables.

The annual salary of each employee at an automobile plant was increased by 6% cost of living raise and then $2000 productivity raise. A) Write a function that transforms old annual salary, S, into the new one, N. B) state any transformations done on the old salary to get to new one.

Answers

Answer:

a)  N = 1.06S +2000

b)  the old salary is scaled by a factor of 1.06 and translated upward by 2000.

Step-by-step explanation:

a) a 6% raise means the new salary is 100% + 6% = 106% of the old one. A raise of an additional dollar amount simply adds to the scaled salary.

__

b) The translations are "math speak" for the English description of "increased by 6% and then raised by 2000". "Increased by 6%" means that .06 of the amount is added to the amount, effectively multiplying it by 1.06. "Raised by 2000" means 2000 is added.

Find the coordinates of P so that P partitions the segment AB in the ratio 1:3 if A(5,8) and B(−1,4).

A. (3.5, 7)
B. (-6.5, -9)
C. (-4, -6)
D. (-1.5, -1)

Answers

Answer:

The answer is A(3.5,7)

Point of partition refers that a point intersect a particular line or curve at a fixed ratio. The coordinates of P so that P partitions the segment AB in the ratio 1:3 if A(5,8) and B(−1,4) is (3.5,7).

Given information-

The coordinates of the A is (5,8).

The coordinates of the B is (-1,4).

P partitions the segment AB in the ratio 1:3.

Point of Partition

Point of partition refers that a point intersect a particular line or curve at a fixed ratio.

When a point [tex]p(x,y)[/tex] intersect a line which has the coordinates [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] at a ratio l and m then this point can be represent as,

[tex]p(x,y)=\left ( \dfrac{lx_2+mx_1}{l+m} , \dfrac{ly_2+my_1}{l+m} \right )[/tex]

Put the values,

[tex]p(x,y)=\left ( \dfrac{1\times(-1)+3\times 5}{1+3} , \dfrac{1\times 4+3\times8}{1+3} \right )[/tex]

[tex]p(x,y)=\left ( \dfrac{-1+15}{4} , \dfrac{4+24}{4} \right )[/tex]

[tex]p(x,y)=\left ( \dfrac{14}{4} , \dfrac{28}{4} \right )[/tex]

[tex]p(x,y)=(3.5,7)[/tex]

Hence the coordinates of P so that P partitions the segment AB in the ratio 1:3 if A(5,8) and B(−1,4) is (3.5,7).

Learn more about the point of partitions of a line here;

https://brainly.com/question/3148758

Louis kicked a football during the opening play of a high school football game. Which type of function could model the height of the football after the kick?

Answers

Answer:

Ballistic motion is usually modeled by a quadratic function.

Step-by-step explanation:

The usual assumption is that the only force acting on the object is that due to gravity, and that it is constant and directed downward. With this assumption, along with the assumption of a flat Earth, the resulting model is a downward-opening quadratic function.

Answer:

quadratic function.

Step-by-step explanation: "

ballistic motion is modeled with a quadratic function"

Elijah drove 45 miles to his job in an hour and ten minutes in the morning. On the way home: however, traffic was much heavier and the same trip took an hour and half. What was his average speed in miles per hour for the round trip?

Answers

Answer:

33.75

Step-by-step explanation:

You first need to determine the total distance of the round trip. This is twice the 45 mile trip in the morning, which is 90 miles. In order to determine the total amount of time spent on the round trip, convert the time travel to minutes.

1 hr + 10 mins = 70 mins

1hr + 30 = 90 mins

So his total travel time would equal to 90+70=160 minutes

his average speed is:

90mi/160min * 60min/1hr = 90*60/160

= 33.75

Elijah's average speed for the round trip is approximately 31.76 miles per hour.

To calculate the average speed for the round trip, we need to determine the total distance traveled and the total time taken.

In the morning, Elijah drove 45 miles in 1 hour and 10 minutes. To convert the minutes to hours, we divide 10 minutes by 60, which gives us 10/60 = 1/6 hours. Therefore, his morning travel time is 1 hour + 1/6 hour = 7/6 hours.

On the way home, the same trip took him 1 hour and 30 minutes. Converting the minutes to hours, we divide 30 minutes by 60, which gives us 30/60 = 1/2 hours. Therefore, his return travel time is 1 hour + 1/2 hour = 3/2 hours.

To calculate the total distance traveled, we sum the distance from the morning trip and the return trip: 45 miles + 45 miles = 90 miles.

The total time taken for the round trip is the sum of the morning travel time and the return travel time: 7/6 hours + 3/2 hours = 17/6 hours.

To calculate the average speed, we divide the total distance by the total time: 90 miles / (17/6 hours).

Dividing 90 miles by 17/6 hours is the same as multiplying 90 miles by 6/17, which gives us (90 * 6) / 17 = 540/17.

Therefore, Elijah's average speed for the round trip is approximately 31.76 miles per hour.

To know more about speed:

https://brainly.com/question/30461913


#SPJ2

The edge of a cube was found to be 15 cm with a possible error in measurement of 0.4 cm. Use differentials to estimate the maximum possible error, relative error, and percentage error in computing the volume of the cube and the surface area of the cube. (Round your answers to four decimal places.)

Answers

 The maximum error on volume = 270cm³

The relative error on the volume =0.08

The percentage error on volume = 8%.

How to calculate the volume of a given cube?

To calculate the volume of a given cube, the following steps should be taken as follows:

Formula for volume of a cube = a³

where;

a = 15 cm

Volume(V) = 15³ = 3375cm³

The maximum error on volume(dV);

= 3×side²×dx

= 3×15²×0.4cm

= 270cm³

The relative error on the volume;

= dV/V

= 270/3375

= 0.08

The percentage error on volume;

=Relative error × 100

= 0.08× 100

= 8%

A nontoxic furniture polish can be made by combining vinegar and olive oil. The amount of oil should be three times the amount of vinegar. How much of each ingredient is needed in order to make 18 oz of furniture​ polish?

To make 18 oz of furniture​ polish, ___ oz of vinegar and

_______ oz of olive oil are needed.

Answers

Answer:

  To make 18 oz of furniture​ polish, 4.5 oz of vinegar and 13.5 oz of olive oil are needed.

Step-by-step explanation:

The ratio of ingredients is ...

  oil : vinegar = 3 : 1

So vinegar is 1 of the 3+1 = 4 parts of the polish mix. The amount of vinegar required for 18 oz of polish is ...

  (1/4)×(18 oz) = 4.5 oz

The remaining quantity is olive oil:

  18 oz - 4.5 oz = 13.5 oz

Final answer:

To make 18oz of furniture polish, 4.5 oz of vinegar and 13.5 oz of olive oil are needed. These quantities are found by setting up an equation based on the problem's conditions and solving for x.

Explanation:

To begin solving the problem we need to understand that both the vinegar and the olive oil are together making up the 18oz of furniture polish. Since the amount of olive oil is three times the amount of vinegar, we can denote the quantity of vinegar as 'x'. Thus, the quantity of olive oil will be '3x'.

Adding these together gives us the total ounces, thus, we have our equation: x + 3x = 18. Solving this, we get 4x = 18. Dividing by 4 gives us x = 18/4 = 4.5.

Therefore, to make 18oz of furniture polish, you will need 4.5 oz of vinegar and 13.5 oz (3 times 4.5) of olive oil.

Learn more about Proportional Quantities here:

https://brainly.com/question/33747792

#SPJ2

Need help big time...please explain how you got the answer.

Answers

Answer:

Step-by-step explanation:

This is a right triangle with the 90 degree angle identified at D and the 60 degree angle identified at B. Because of the triangle angle sum theorem, the angles of a triangle all add up to equal 180 degrees, so angle C has to be a 30 degree angle.

There is a Pythagorean triple that goes along with a 30-60-90 triangle:

( x , x√3 , 2x )

where each value there is the side length across from the

30 , 60 , 90 degree angles.

We have the side across from the 90 degree angle, namely the hypotenuse. The value for the hypotenuse according to the Pythagorean triple is 2x. Therefore,

2x = 2√13

and we need to solve for x. Divide both sides by 2 to get that

x = √13

Now we can solve the triangle.

The side across from the 30 degree angle is x, so since we solved for x already, we know that side DB measures √13.

The side across from the 60 degree angle is x√3, so that is (√13)(√3) which is √39.

And we're done!



There are 24,000 square miles of forest in a western state. Forest fires decrease this area by 9.2% each year. The state needs to have more than 15,000 square miles of forest to keep their funding from a nonprofit wildlife organization.


Which inequality represents this situation, and if the fires continue to decrease the area of the forests at the same rate, will the state be able to keep their funding from the nonprofit wildlife organization in 5 years?



24,000(1.092)t > 15,000; no


24,000(0.092)t > 15,000; yes


24,000(0.908)t > 15,000; no


24,000(1.098)t > 15,000; yes

Answers

Answer:

  24,000(0.908)^t > 15,000; no

Step-by-step explanation:

The multiplier each year is 100% - 9.2% = 90.8% = 0.908. There is only one answer choice with this as the yearly multiplier.

_____

In order to answer the yes/no question, we chose to rewrite the inequality as ...

  24000·0.908^t -15000 > 0

The graph shows that is true for t < 4.87. In 5 years, the forest area will be below the minimum.

19. Solve sin O+ 1 = cos 20 on the interval 0≤x < 2xpi

Answers

Answer:

[tex]\theta=\frac{\pi}{2},\frac{3\pi}{2},\frac{2\pi}{3},\frac{4\pi}{3}[/tex]

Step-by-step explanation:

If I'm interpreting that correctly, you are trying to solve this equation:

[tex]sin(\theta )+1=cos(2\theta)[/tex]

for theta.  To do this, you will need a trig identity sheet (I'm assuming you got one from class) and a unit circle (ditto on the class thing).

We need to solve for theta.  If I look to my trig identities, I will see a double angle one there that says:

[tex]cos(2\theta)=1-2sin^2(\theta)[/tex]

We will make that replacement, then we will have everything in terms of sin.

[tex]sin(\theta)+1=1-2sin^2(\theta)[/tex]

Now get everything on one side of the equals sign to solve for theta:

[tex]2sin^2(\theta)+sin(\theta)=0[/tex]

We can factor out the common sin(theta):

[tex]sin\theta(2sin\theta+1)=0[/tex]

By the Zero Product Property, either

[tex]sin\theta=0[/tex] or

[tex]2sin\theta+1=0[/tex]

Now look at your unit circle and find that the values of theta where the sin is 0 are located at:

[tex]\theta=\frac{\pi }{2},\frac{3\pi}{2}[/tex]

The next one we have to solve for theta:

[tex]2sin\theta+1=0[/tex] simplifies to

[tex]2sin\theta=-1[/tex] and

[tex]sin\theta=-\frac{1}{2}[/tex]

Look at the unit circle again to find the values of theta where the sin is -1/2:

[tex]\theta=\frac{2\pi}{3},\frac{4\pi}{3}[/tex]

Those ar your values of theta!

Nathaniel writes the general form of the equation gm = cm + rg for when the equation is solved for m. He uses the general form to solve the equation –3m = 4m – 15 for m. Which expression shows what Nathaniel will actually evaluate? 4 + 15 – 3 4 – 15 + 3 –15 –

Answers

Answer:

The required expression is [tex]m=\frac{-15}{-3-4}[/tex].

Step-by-step explanation:

The general form of the equation is

[tex]gm=cm+rg[/tex]             .... (1)

We need to solve this equation for m.

Subtract cm from both the sides.

[tex]gm-cm=rg[/tex]

Taking out the common factor.

[tex]m(g-c)=rg[/tex]

Divide both sides by (g-c).

[tex]\frac{m(g-c)}{g-c}=\frac{rg}{g-c}[/tex]

[tex]m=\frac{rg}{g-c}[/tex]               ..... (2)

The given equation is

[tex]-3m=4m-15[/tex]            ..... (3)

From (1) and (3), we get

[tex]g=-3,c=4,rg=-15[/tex]

Substitute g=-3, c=4, rg=-15 in equation (2).

[tex]m=\frac{-15}{-3-4}[/tex]

Therefore the required expression is [tex]m=\frac{-15}{-3-4}[/tex].

Answer:

the corect answer on edge is c

Step-by-step explanation:

Use the system of equations to answer the questions. 2x + 3y = 3 y = 8 – 3x The value of y from the second equation is substituted back into the first equation. What is the resulting equation? What is the value of x? What is the value of y?

Answers

Answer:

2x +3(8 -3x) = 3x = 3y = -1

Step-by-step explanation:

The second equation tells you ...

  y = 8 -3x

Using this expression in the first equation gives you ...

  2x +3(8 -3x) = 3

  2x +24 -9x = 3 . . . . . eliminate parentheses

  21 = 7x . . . . . . . . . . .  add 7x -3

  3 = x . . . . . . . . . . . . . . divide by 7

  y = 8 -3×3 = -1 . . . . . . use the second equation to find y

The solution is (x, y) = (3, -1).

Answer:

the correct answers for edu are 2x+3(8-3x)=3 than 3 and last -1

Step-by-step explanation:

The midpoint of a segment is (−2,−3) and one endpoint is (3,0) . Find the coordinates of the other endpoint.

A. (8, 3)
B. (-7, 3)
C. (8, -6)
D. (-7, -6)

Answers

The midpoint can be defined using formula,

[tex]M(x_m=\dfrac{x_1+x_2}{2},y_m=\dfrac{y_1+y_2}{2})[/tex]

So by knowing [tex]x_m, x_1[/tex] and [tex]y_m, y_1[/tex] we can calculate [tex]x_2, y_2[/tex]

First we must derive two equations,

[tex]x_m=\dfrac{x_1+x_2}{2}\Longrightarrow x_2=2x_m-x_1[/tex]

and

[tex]y_m=\dfrac{y_1+y_2}{2}\Longrightarrow y_2=2y_m-y_1[/tex]

Then just put in the data,

[tex]x_2=2\cdot(-2)-3=-7[/tex]

[tex]y_2=2\cdot(-3)-0=-6[/tex]

So the other endpoint has coordinates [tex](x,y)\Longrightarrow(-7, -6)[/tex] therefore the answer is D.

Hope this helps.

r3t40

To work out the mid point of two points you, add the x coordinates and divide by 2, and you take the y coordinates and divide by two:

So:

[tex]midpoint = \frac{sum.of.x-coords}{2},  \frac{sum.of.y-coords}{2}[/tex]

------------------------------------

So the x-coords of the midpoint is:

[tex]\frac{sum.of.x-coords}{2}[/tex]

and

y -coords of midpoint is:

[tex]\frac{sum.of.y-coords}{2}[/tex]

------------------------------------

However, in this question we are trying to work out one of the endpoints.

First let's say that the coordinates of the missing endpoint is:

(x , y)

_____________________________________________

That means that the x-coords of the midpoint of (x, y) and the other endpoint (3, 0) is :

[tex]\frac{3 + x}{2}[/tex]

However, we already know the x-coord of the midpoint ( it's -2). So we can form an equation to workout x:

[tex]\frac{3 + x}{2} = -2[/tex]                (multiply both sides by 2)

[tex]3 + x = -4[/tex]                      (subtract 3 from both sides)

[tex]x = -7[/tex]

This is the x-coord of the other endpoint

_______________________________________________

Let's do the same for the y coordinates:

We know y coords for the midpoint of (x, y) and (3, 0) is:

[tex]\frac{0 + y}{2}[/tex]

But we also know the ycoord is -3. So we can form an equation and solve for y:

[tex]\frac{0+y}{2} = -3[/tex]

[tex]\frac{0 + y}{2} = -3[/tex]   (multiply both sides by 2)

[tex]0 + y = -6[/tex]                (simplify)

[tex]y = -6[/tex]

This is the y-coord of the other endpoint

___________________________________

Now we just put these coords together to get the coordinate of the other endpoint:

Endpoint is at:

(x, y)                           (substitute in values that we worked out)

=  (-7, -6)

_________________________________________________

Answer:

D. (-7, -6)

________________________________________________

Note:

If there is anything you don't quite understand or was unclear

- please don't hesitate to ask below in the comments.

The product shown is a difference of squares. What is the missing constant term in the second factor?(–5x – 3)(–5x + )

Answers

Answer:

3

Step-by-step explanation:

the missing no is 3

I have answered ur question

Answer:

3

Step-by-step explanation:

Tristan records the number of customers who visit the store each hour on a Saturday. His data representing the first seven hours are 15, 23, 12, 28, 20, 18, and 23. How many customers visited the store during the eighth hour if the median number of customers per hour did not change?Show all your work and explain how you arrived at your answer.

Answers

First, list the numbers from smallest to greatest:
12, 15, 18, 20, 23, 23, 28
Median is the middle number of the list—20.

Answer:

20

Step-by-step explanation:

Given that Tristan records the number of customers who visit the store each hour on a Saturday.

His data representing the first seven hours are 15, 23, 12, 28, 20, 18, and 23.

There are 7 entries and if written in ascending order 12,15,18,20,23,23,28

Median = middle entry -20

If one more entry is added then we have two middle entries and median would be the average of the two.

Hence if median is to remain the same, eighth hour no of customers visited should be 20

Answer is 20

Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conductor, with respect to the outer conductor, is +600 V. An electron is released from rest at the surface of the outer conductor. What is the speed of the electron as it reaches the inner conductor?

Answers

Answer:

v = 1.45 × 10⁷ m/s

Step-by-step explanation:

Given:

Inner radius of the cylinder, r₁ = 20 mm = 0.2 m

outer  radius of the cylinder, r₂ = 80 mm = 0.8 m

Potential difference, ΔV = 600V

Now, the work done (W) in bringing the charge in to the inner conductor

W = [tex]\frac{1}{2}mv^2[/tex]

where, m is the mass of the electron = 9.1 × 10⁻³¹ kg

v is the velocity of the electron

also,

W = qΔV

where,

q is the charge of the electron = 1.6 × 10⁻¹⁹ C

equating the values of work done and substituting the respective values

we get,

qΔV =  [tex]\frac{1}{2}mv^2[/tex]

or

1.6 × 10⁻¹⁹ × 600 = [tex]\frac{1}{2}\times 9.1\times 10^{-31}v^2[/tex]

or

[tex]v = \sqrt\frac{2\times 600\times 1.6\times 10^{-19}}{9.1\times 10^{-31}}[/tex]

or

v = 14525460.78 m/s

or

v = 1.45 × 10⁷ m/s

Final answer:

The speed of the electron as it reaches the inner conductor is calculated using conservation of energy, giving a final speed of approximately 1.46 × 107 m/s.

Explanation:

Electron Velocity in Coaxial Conductors

An electron released from the outer conductor will be accelerated towards the higher potential inner conductor due to the electric field between them. To calculate the speed of the electron as it reaches the inner conductor, we use the concept of conservation of energy. The electrical potential energy lost by the electron as it moves from the outer to the inner conductor is converted into kinetic energy.

The initial potential energy (Ui) of the electron can be given by:

Ui = qV

where q is the charge of the electron (q = -1.6 × 10-19 C) and V is the potential difference (V = 600 V).

The final kinetic energy (Kf) when the electron reaches the inner conductor is:

Kf = ½ [tex]mv^2[/tex]

where m is the mass of the electron (m = 9.11 × 10-31 kg) and v is the final speed we want to find.

Using conservation of energy (Ui + Ki = Kf + Uf and noting that both the initial kinetic energy Ki and the final potential energy Uf are zero), we get:

qV = ½ [tex]mv^2[/tex](-1.6 × 10-19 C)(600 V) = ½ (9.11 × 10-31kg)[tex]v^2[/tex]

Solving for v gives us the final speed of the electron:

v = √[(2qV)/m]v = √[(2(-1.6 × 10-19 C)(600 V))/(9.11 × 10-31kg)]v = 1.46 × 107 m/s

This is the speed of the electron when it reaches the inner conductor.

What is the magnitude of the position vector whose terminal point is (-2, 4)?

Answers

Answer:

  2√5

Step-by-step explanation:

The Pythagorean theorem tells you how to find the distance from the origin.

  d = √((-2)² +4²) = √20 = 2√5

The vector's magnitude is 2√5 ≈ 4.47214.

Answer:

The magnitude of the position is [tex]|x|=\sqrt{20}[/tex]

Step-by-step explanation:

Given : Vector whose terminal point is (-2, 4).

To find : What is the magnitude of the position vector?

Solution :

We have given, terminal point (-2,4)

The magnitude of the point x(a,b) is given by,

[tex]|x|=\sqrt{a^2+b^2}[/tex]

Let point x=(-2,4)

[tex]|x|=\sqrt{(-2)^2+(4)^2}[/tex]

[tex]|x|=\sqrt{4+16}[/tex]

[tex]|x|=\sqrt{20}[/tex]

Therefore, The magnitude of the position is [tex]|x|=\sqrt{20}[/tex]

Please help will give the brainliest

Find the coordinates of the vertices formed by the system of inequalities.

X≤ 3

­-x + 3y ≤ 12

4x + 3y ≥ 12


A (0, 3), (4, 0), (5, 3)

B (3, 0), (0, 4), (3, 5)

C (­-3, 3), (1, 3), (0, 4)

D (3, ­-3), (3, 1), (4, 0)


2. At What point is the maximum value found in the system of inequalities graphed below for the function f(x, y) = x - 2y?



A (0, 3)

B (0, 0)

C (5, 0)

D (5, 3)

Answers

Final answer:

To find the vertices of the system of inequalities x ≤ 3, -x + 3y ≤ 12, and 4x + 3y ≥ 12, we can solve each pair of inequalities to find the intersection points. The vertices are the points where the lines intersect. The coordinates of the vertices are (3, 0), (0, 4), and (3, 5). For the function f(x, y) = x - 2y, the point where the maximum value is found in the system of inequalities is (5, 3).

Explanation:

To find the coordinates of the vertices formed by the system of inequalities x ≤ 3, -x + 3y ≤ 12, and 4x + 3y ≥ 12, we can solve each pair of inequalities to find the intersection points. The vertices are the points where the lines intersect.

The solution is (3, 0), (0, 4), and (3, 5), so the correct answer is B.

For the second question, to find the point where the maximum value is found for the function f(x, y) = x - 2y in the system of inequalities graphed below, we need to locate the highest point on the graph. From the given options, (5, 3) is the point where the maximum value is found, so the correct answer is D.

Other Questions
Consider the combustion reaction for octane (C8H18), which is a primary component of gasoline. 2C8H18+25O216CO2+18H2O How many moles of CO2 are emitted into the atmosphere when 28.6 g C8H18 is burned? All bodies at a temperature above absolute zero emit thermal radiation. a)-True b)-False How do I do these problems? HELP! I added pics btw. It's a great place to have dinner ... unless you like cleansilverware, prompt service, and hot food. The following data were obtained from experiments to find the molecular formula of procaine, a local anesthetic, which contains only carbon, hydrogen, nitrogen, and oxygen. Complete combustion of a 3.54g sample of procaine with excess O2 formed 8.58 g of CO2 and 2.70 g H2O. Another sample of mass 2.35 g was found to contain 0.279 g of N. The molar mass of procaine was found to be 236.Find the molar formula of procaine On the day that his first child was born, Ezio Auditore de Firenze deposited $3,000 into an investment account. The only purpose for the account was to pay for his sons first year of college tuition. Assume that his son, Flavia, started college on his 18t h birthday and his first year tuition payment had to be made that day. The amount needed on that day was $26,000. If that was indeed the amount of money in the account on Flavias 18t h birthday, what annual rate of return did Ezio earn on his investment account? the legs of a right triangle measure 10 inches and 4 inches. what is the area of the triangle? Please help me with these two questions g 'A fire hose ejects a stream of water at an angle of 31.6o above the horizontal. The water leaves the nozzle with a speed of 29.3 m/s. Assuming that the water behaves like a projectile, how far from a building should the fire hose be located to hit the highest possible fire? The spectra for elements are _____.all the samethe same for a chemical familythe same for elements with similar massall different and specific to each The midpoint of a segment is (2,3) and one endpoint is (3,0) . Find the coordinates of the other endpoint. A. (8, 3) B. (-7, 3) C. (8, -6) D. (-7, -6) What is the simplified form of 10,000x64 ?5000x325000x8100x8100x32 A random sample of 100 people was taken. Eighty of the people in the sample favored Candidate A. We are interested in determining whether or not the proportion of the population in favor of Candidate A is significantly more than 75%. Refer to Exhibit 9-6. At a .05 level of significance, it can be concluded that the proportion of the population in favor of candidate A is Question 4 of 102 PointsHaving an unreliable narrator in "Top of the Food Chain" leads the reader to:A. feel morally superior.OB. believe he is an expert.Oc. question his views.OD. take his ideas seriously. pope urban the ll hoped the crusades would:? Which three of the following goals best represent the American Dream of the black community in the nineteenth century?freedom from Protestantismsocial and political equalityreturn to countries of origineconomic independencefreedom from slaveryResetNext A boater travels 532 miles. Assuming the boat averages 6.3 miles per gallon, how many gallons of gasoline(to the nearest then of gallon) were used? plz show work Louis kicked a football during the opening play of a high school football game. Which type of function could model the height of the football after the kick? What is the average airspeed velocity of an unladen swallow Which of the following is true? a.a shift left of the long-run aggregate supply and potential GDP will also shift the short-run aggregate supply curve left as well. b.a shift right of the long-run aggregate supply and potential GDP will also shift the short-run aggregate supply curve right as well. c.a change the money wage and other resource prices does not shift the long-run aggregate supply. d.all of the answers are true.