Find a polynomial f(x) of degree 4 that has the following zeros.
0, -4, (multiplicity ), 2
Leave your answer in factored form.

Answers

Answer 1

Answer:

[tex]f(x)=(x-2)(x)(x+4)^2[/tex]

Step-by-step explanation:

Since there is a multiplicity at x=-4, that would meant that that part of the factor would have to have an even degree. This means that it would have to be 2.

This would give you [tex]f(x)=(x-2)(x)(x+4)^2[/tex]

Answer 2

Answer:

[tex]f (x) = x (x + 4)^2(x-2)[/tex]

Step-by-step explanation:

The zeros of the polynomial are all the values of x for which the function [tex]f (x) = 0[/tex]

In this case we know that the zeros are:

[tex]x = -4,\ x+4 =0[/tex]

[tex]x = -4,\ x+4 =0[/tex]

[tex]x = 0[/tex]

[tex]x = 2[/tex], [tex]x - 2 = 0[/tex]

Now we can write the polynomial as a product of its factors

[tex]f (x) = x (x + 4)(x+4) (x-2)[/tex]

[tex]f (x) = x (x + 4)^2(x-2)[/tex]

Note that the polynomial is of degree 4 because the greatest exponent of the variable x that results from multiplying the factors of f(x) is 4


Related Questions

Analyze the diagram below and complete the instructions that follow.

Find the value of x and the value of y.

A. x=9, y=18√2

B.x=18, y=18

C.x=9√2, y=18√2

D. x=9√3, y=18

Answers

Answer:

D. x = 9√3 and y = 18

Step-by-step explanation:

This is an isosceles triangle divided into two equal parts.

Step 1: 18 can be divided into 2 parts which makes the base of both triangles 9.

Step 2: Find the value of x

The value of x can be found through the tan rule.

tan (angle) = opposite/adjacent

tan (60) = x/9

√3 = x/9

x = √3 x 9

x = 9√3

Step 3: Find the value of y

The value of y can be found through the cos rule.

Cos (angle) = adjacent/hypotenuse

Cos (60) = 9/y

1/2 = 9/y

y = 18

Therefore, the correct answer is D; x = 9√3 and y = 18

!!

7) State the prime factorization of 30.

Answers

Answer:

[tex]30=2\: *3\:*5[/tex]

Step-by-step explanation:

We analyze between which prime numbers we can divide the number 30. The smallest prime number by which we divide is 2. Then:

[tex]\frac{30}{2}=15[/tex]

We now look for the smallest prime number that divides the 15. Since 15 is not a multiple of 2, we make the division with the number 3 that is divisor of 15.

[tex]\frac{15}{3}=5[/tex]

We now look for a number that divides to 5, but since 5 is a prime number, the only divisor other than 1 is 5. Then:

[tex]\frac{5}{5}=1[/tex]

This ends the decomposition of 30 and we find 3 prime factors:

2,3 and 5.

True or False: If p1, p2, . . . , pn are prime, then A = p1p2 . . . pn1 + 1 is also prime.

Answers

Answer:

The given statement is FALSE.

Step-by-step explanation:

If p1, p2, . . . , pn are prime, then A = p1p2 . . . pn1 + 1 is also prime.

No, this statement is false.

Let's take an example:

We take two prime numbers.

p1 = 3

p2 = 5

Now p1p2+1 becomes :

[tex](3\times5)+1=16[/tex]

And we know that 16 is not a prime number.

Note : A prime number is a number that is only divisible by 1 and itself like 3,5,7,11 etc.

Divide

(x^2 - 13x +40) divided by (x- 6)

Answers

Answer:

The quotient is: x-7

The remainder is: -2

Step-by-step explanation:

We need to divide (x^2 - 13x +40) divided by (x- 6)

The quotient is: x-7

The remainder is: -2

The division is shown in the figure attached

A Social Security number consists of nine digits in a particular​ order, and repetition of digits is allowed. After seeing the last four digits printed on a​ receipt, if you randomly select the other​ digits, what is the probability of getting the correct Social Security number of the person who was given the​ receipt?

Answers

Answer:  [tex]\dfrac{1}{100,000}[/tex]

Step-by-step explanation:

Given : The total number of digits in number system (0 to 9) = 10

The number of digits in a social security number = 9

After last four digits are printed, the number of digits remaining to print = 9-4=5

Since , repetition of digits is allowed, then the total number of ways to print 5 remaining digits is given by :-

[tex]10\times10\times10\times10\times10=100,000[/tex]

Now, the probability of getting the correct Social Security number of the person who was given the​ receipt is given by:-

[tex]\dfrac{\text{Number of correct code}}{\text{Total number of codes}}\\\\=\dfrac{1}{100,000}[/tex]

Final answer:

The probability of correctly guessing an entire Social Security number with the last four digits known is 0.001%, calculated by multiplying the probability of guessing each of the five unknown digits correctly, which is 1/10, resulting in (1/10)^5 or 1/100,000.

Explanation:

The question asks about the probability of correctly guessing an entire Social Security number given the last four digits. A Social Security number has nine digits and the digits can be repeated. If you know the last four digits, you need to guess the first five correctly.

Since each digit can be any number from 0 to 9, there are 10 possibilities for each digit. The probability of guessing one digit correctly is 1 out of 10 (1/10). To find the probability of guessing all five correctly, you need to multiply the probability for each digit, so the probability for all five is (1/10) x (1/10) x (1/10) x (1/10) x (1/10), which equals 1/100,000 or 0.00001. Therefore, the probability of getting the correct Social Security number is 0.00001 or 0.001%.

8. Show all computations for the following. Do not use a calculator.

(a) How many bit strings are there of length six which are palindromes? Explain

(b) How many bit strings are there of length 6 which contain exactly three 1’s? Explain

Answers

Answer:

a= 8 ways

b. 20

Step-by-step explanation:

Palindrome of length 6 means first three digits must be same as the last three in reverse. For example 123321 is palindrome of six digits.

There 2 bits 0 and 1

a.So each of first three digits can be filled in 2 ways

therefore, 2*2*2= 8 ways

number of different palindromes of 6 digits will be 8

b. In a 6 digit a palindrome there Are 6 spaces in which 3 spaces are to be filled with 1's

this cab be done in

[tex]_{6}^{3}\textrm{C}= \frac{6!}{3!\times3!}[/tex]

= 20

The average height of students at UH from an SRS of 12 students gave a standard deviation of 3.1 feet. Construct a 95% confidence interval for the standard deviation of the height of students at UH. Assume normality for the data.

Answers

Answer: [tex](2.20,\ 5.26)[/tex]

Step-by-step explanation:

The confidence interval for the standard deviation is given by :-

[tex]\left ( \sqrt{\dfrac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}}},\ \sqrt{\dfrac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}} \ \right )[/tex]

Given : n= 12 ; s= 3.1

Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Using Chi-square distribution table ,

[tex]\chi^2_{11,0.025}}=21.92\\\\\chi^2_{11,0.975}}=3.82[/tex]

Now, the 95% confidence interval for the standard deviation of the height of students at UH is given by :-

[tex]\left ( \sqrt{\dfrac{(11)(3.1)^2}{21.92}},\ \sqrt{\dfrac{(11)(3.1)^2}{3.82}} \ \right )\\\\=\left ( 2.19602743525, 5.26049188471\right )\approx(2.20,\ 5.26)[/tex]

Final answer:

To construct a 95% confidence interval for the standard deviation of the height of students at UH, use the chi-square distribution.

Explanation:

To construct a 95% confidence interval for the standard deviation of the height of students at UH, we can use the chi-square distribution. Since the population standard deviation is unknown, we need to use the sample standard deviation as an estimate. The formula to calculate the confidence interval is:

Lower limit = ((n-1) * s^2) / X^2

Upper limit = ((n-1) * s^2) / X^2

Where n is the sample size, s is the sample standard deviation, and X^2 is the chi-square critical value corresponding to the desired confidence level and degrees of freedom (n-1).

Learn more about Confidence Interval here:

https://brainly.com/question/34700241

#SPJ3

4. A study of 30 fathers was completed in which the fathers were asked the highest level of education they had completed. 10 completed only elementary school, 10 completed elementary school and high school; 7 completed elementary school, high school and college; 3 completed elementary school, high school, college and graduate school. What was the cumulative percentage of fathers who completed only elementary school?

Answers

Answer:

The cumulative percentage of fathers who completed only elementary school is nearle 33%.

Step-by-step explanation:

Among 30 fathers:

10 completed only elementary school;10 completed elementary school and high school;7 completed elementary school, high school and college;3 completed elementary school, high school, college and graduate school.

You can fill these numbers into the table:

[tex]\begin{array}{cccc}&\text{Frequency}&\text{Cumulative frequency}&\text{Cumulative percentage}\\\text{Elementary school}&10&10&\approx 33\%\\\text{El. and high school}&10&20&\approx 67\%\\\text{El., high schools and college}&7&27&90\%\\\text{El., high, college and grad. sch.}&3&30&100\%\end{array}[/tex]

The cumulative percentage of fathers who completed only elementary school is nearle 33%.

Answer: 33%

Step-by-step explanation:

Solve the Differential equation (2x^3 - xy^2 - 2y + 3)dx - (x^2y + 2x)dy = 0

Answers

Notice that

[tex](2x^3-xy^2-2y+3)_y=-2xy-2[/tex]

[tex](-x^2y-2x)_x=-2xy-2[/tex]

so the ODE is exact, and we can find a solution [tex]F(x,y)=C[/tex] such that

[tex]F_x=2x^3-xy^2-2y+3[/tex]

[tex]F_y=-x^2y-2x[/tex]

Integrating both sides of the first equation wrt [tex]x[/tex] gives

[tex]F(x,y)=\dfrac{x^4}2-\dfrac{x^2y^2}2-2xy+3x+g(y)[/tex]

Differentiating wrt [tex]y[/tex] gives

[tex]F_y=-x^2y-2x=-x^2y-2x+g'(y)\implies g'(y)=0\implies g(y)=C[/tex]

So we have

[tex]\boxed{F(x,y)=\dfrac{x^4}2-\dfrac{x^2y^2}2-2xy+3x=C}[/tex]

Final answer:

The solution to this complex differential equation requires knowledge in calculus and differential equations. Without additional context, it's impossible to provide a specific solution. However, exploring technique utilization such as exact differential equations, integrating factors and substitution would be beneficial.

Explanation:

To solve the given differential equation, which is (2x^3 - xy^2 - 2y + 3)dx - (x^2y + 2x)dy = 0, we will use an approach of factorization or grouping like terms to simplify the equation. In some cases, you might need to rearrange terms and identify if it's a special type of differential equation, like exact, separable, or homogeneous, and then apply the relevant techniques accordingly.

This difficult task requires excellent knowledge in calculus and differential equations. Unfortunately, due to the complexity of this particular equation, without additional context or information, it is impossible to provide a specific solution. I would recommend you to go through topics such as exact differential equations, as well as methods involving integrating factors and substitution. These may help you to analyze and solve this complex equation.

Learn more about Differential Equations here:

https://brainly.com/question/33814182

#SPJ11

The mean length of six-year-old rainbow trout in the Arolik River in Alaska is 481 millimeters with a standard deviation of 41 millimeters. Assume these lengths are normally distributed. What proportion of six-year-old rainbow trout are less than 516 millimeters long?

Answers

Answer: 0.8023

Step-by-step explanation:

Given : [tex]\text{Mean}=\mu=481 \text{ millimeters}[/tex]

[tex]\text{Standard deviation}=41 \text{ millimeters}[/tex]

Assuming these lengths are normally distributed.

The formula to calculate the z-score is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= [tex]516 \text{ millimeters}[/tex]

[tex]z=\dfrac{516-481}{41}=0.853658536585\approx0.85[/tex]

The p-value = [tex]P(z\leq0.85)=0.8023374\approx0.8023[/tex]

Hence, the required probability : 0.8023

Find x.
A. 124
B.56
C.62
D.28

Answers

Answer:

C. 62 degrees

Step-by-step explanation:

Alright I see a circle and a half a rotation where the diameter is at. A half of 360 degrees is 180 degrees.

So the arc measure in degrees for EG is 180 degrees (both the left piece and right piece have this measure).

Since EG is 180 then FG=EG-EF=180-56=124.

To find x we have to half 124 since it is the arc measure where x is but x is the inscribed angle.

x=124/2=62

C.

62 degrees ! All the rest wouldn’t make sense (:

Color blindness is an inherited characteristic that is more common in males than in females. If M represents male and C represents red-green color blindness, using the relative frequencies of the incidences of males and red-green color blindness as probabilities results in the values below. P(C)=0.042, P ( M intersect C)=0.022, P ( M union C)=0.412What is the probability that a randomly selected person is not color blind?

Answers

Answer:

The probability that a randomly selected person is not color blind is 0.958

Step-by-step explanation:

Given,

C represents red-green color blindness,

Also, the probability that a randomly selected person is color blind,

P(C) = 0.042,

Thus, probability that a randomly selected person is not color blind,

P(C') = 1 - P(C) = 1 - 0.042 = 0.958

Suppose that 9 female and 6 male applicants have been successfully screened for 5 positions. If the 5 positions are filled at random from the 15 ?finalists, what is the probability of selecting no? females?

Answers

Answer: [tex]\dfrac{2}{1001}[/tex]

Step-by-step explanation:

Given : The number of female applicants = 9

The number of male applicants = 6

Total applicants = 15

The number of ways to select 5 applicants from 15 applicants :-

[tex]^{15}C_5=\dfrac{15!}{5!(15-5)!}=3003[/tex]

The number to select 5 applicants from 15 applicants such that no female applicant is selected:-

[tex]^{9}C_0\times^6C_5=1\times\dfrac{6!}{5!(6-5)!}=6[/tex]

Now, the required probability :-

[tex]\dfrac{6}{3003}=\dfrac{2}{1001}[/tex]

Kyd and North are playing a game. Kyd selects one card from a standard 52-card deck. If Kyd selects a face card (Jack, Queen, or King), North pays him $5. If Kyd selects any other type of card, he pays North $2. a) What is Kyd's expected value for this game? b) What is North's expected value for this game? c) Who has the advantage in this game?

Answers

Step-by-step explanation:

In a 52 deck, there are 12 face cards (4 Jacks, 4 Queens, and 4 Kings).  The remaining 40 cards are non-face cards.

The probability that Kyd draws a face card is 12/52, and the probability that he draws a non-face card is 40/52.

a) Kyd's expected value is:

K = (12/52)(5) + (40/52)(-2)

K = -5/13

K ≈ -$0.38

b) North's expected value is:

N = (12/52)(-5) + (40/52)(2)

N = 5/13

N ≈ $0.38

c) Kyd is expected to lose money, and North is expected to gain money.  North has the advantage.

Kyd's expected value for this game is -$0.38.

North's expected value for this game is  $0.38.Kyd is expected to lose money, and North is expected to gain money.  

North has the advantage.

What is probability?

The area of mathematics known as probability deals with numerical representations of the likelihood that an event will occur or that a statement is true. An event's probability is a number between 0 and 1, where, roughly speaking, 0 denotes the event's impossibility and 1 denotes certainty.

Given

In a 52 deck, there are 12 face cards (4 Jacks, 4 Queens, and 4 Kings).  The remaining 40 cards are non-face cards.

The probability that Kyd draws a face card is 12/52, and the probability that he draws a non-face card is 40/52.

a) Kyd's expected value is:

K = (12/52)(5) + (40/52)(-2)

K = -5/13

K ≈ -$0.38

b) North's expected value is:

N = (12/52)(-5) + (40/52)(2)

N = 5/13

N ≈ $0.38

c) Kyd is expected to lose money, and North is expected to gain money.  North has the advantage.

To know more about probability refer to :

https://brainly.com/question/13604758

#SPJ2

A barber’s chair with a person in it weighs 2118.0 N. The output plunger of a hydraulic system begins to lift the chair when the barber’s foot applies a force of 63.0 N to the input piston. Neglect any height difference between the plunger and the piston. What is the ratio of the radius of the plunger to the radius of the piston?

Answers

Answer:5.8

Step-by-step explanation:

Given

weight of chair with person on it =2118 N

Barber applies a force of 63 N

Using pascal's law

we know pressure around both sides is equal

i.e. [tex]P_{chair}=P_{piston}[/tex]

pressure=[tex]\frac{force}{area}[/tex]

[tex]P_{chair}[/tex]=[tex]\frac{2118}{\pi \dot r_{plunger}^2}[/tex]

[tex]P_{piston}[/tex]=[tex]\frac{63}{\pi \dot r_{piston}^2}[/tex]

substituting values

[tex]\left [\frac{r_{plunger}^2}{r_{piston}^2}\right ][/tex]=[tex]\frac{2118}{63}[/tex]

[tex]\left [\frac{r_{plunger}}{r_{piston}}\right ][/tex]=[tex]\left [ \frac{2118}{63}\right ]^{0.5}[/tex]

[tex]\left [\frac{r_{plunger}}{r_{piston}}\right ][/tex]=5.798

An individual is planning a trip to a baseball game for 16 people. Of the people planning to go to the baseball game, 8 can go on saturday and 12 can go on sunday, some of them can go on both days. How many people can only go to the game on saturday?

Answers

Answer: There are 4 people who only go to the game on Saturday.

Step-by-step explanation:

Let the number of people go on Saturday be n(A).

Let the number of people go on Sunday be n(B).

Since we have given that

n(A) = 8

n(B) = 12

n(A∪B)  = 16

According to rules, we get that

[tex]n(A)+n(B)-n(A\cap B)=n(A\cup B)\\\\8+12-n(A\cap B)=16\\\\20-n(A\cap B)=16\\\\n(A\cap B)=20-16=4[/tex]

So, n(only go on Saturday) = n(only A) = n(A) - n(A∩B) = 8-4 = 4

Hence, there are 4 people who only go to the game on Saturday.

could someone give me an answer and explain how you got it ?

Answers

Answer:

A (9, 3)

Step-by-step explanation:

First the point is rotated 90° counterclockwise about the origin.  To do that transformation: (x, y) → (-y, x).

So S(-3, -5) becomes S'(5, -3).

Next, the point is translated +4 units in the x direction and +6 units in the y direction.

So S'(5, -3) becomes S"(9, 3).

One card is selected at random from.a standard deck of 52 cards. Determine the probability that the card selected is a club or a picture cardst sd 10.

Answers

Answer:

The answer is [tex]\frac{11}{26}[/tex]

Step-by-step explanation:

Total number of cards in the deck = 52

Number of clubs = 13

Number of picture cards = 12

Number of picture cards that are clubs = 3

So, number of picture cards or clubs = [tex]13+12-3=22[/tex]

P(club or picture) = [tex]\frac{22}{52} =\frac{11}{26}[/tex]

The answer is [tex]\frac{11}{26}[/tex].

Final answer:

To determine the probability of selecting a club or a picture card from a standard deck of 52 cards, calculate the number of favorable outcomes and divide it by the total number of possible outcomes.

Explanation:

To determine the probability that a card selected from a standard deck of 52 cards is a club or a picture card, we need to calculate the number of favorable outcomes and divide it by the total number of possible outcomes.

There are 13 clubs and 12 picture cards (Jacks, Queens, and Kings) in a deck. However, we need to subtract the Queen of Clubs, as it has already been selected. So, the number of favorable outcomes is 13 + 12 - 1 = 24.

The total number of possible outcomes is 52, as there are 52 cards in a standard deck.

Therefore, the probability of selecting a club or a picture card is 24/52, which simplifies to 6/13 or approximately 0.4615.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ12

Four points question: Answer the following A- When selecting cards from a deck without replacing, the number of ways to draw the 3 card is (which of the following)? 52 52-1 52-2 B- When calculating the number of permutations of all letters in a word, the denominator of the calculation is which of the following? n! 0! C- How many ways can you draw a card from a normal deck and roll a number on a normal die? D- If you pick cards from a normal deck of cards, one at a time and replace the card and reshuffle the deck between draws, how many ways can you select 3 cards?

Answers

Answer:

A : 52-2

B : 0!

C : 312

D : 140608

Step-by-step explanation:

Part A:

It is given that that cards are selecting from a deck without replacing. So,

The number of ways to draw first card = 52

Now, one card is draw. The remaining cards are 51.

The number of ways to drawn second card = 52 - 1 =51

Now, one more card is drawn. The remaining cards are 50.

The number of ways to drawn third card = 52 - 2 =50

Therefore the number of ways to draw the 3 card is 52-2.

Part B:

Let a word has n letters and we need to find the number of permutations of all letters in a word, then the permutation formula is

[tex]^nP_n=\frac{n!}{(n-n)!}=\frac{n!}{0!}[/tex]

The denominator of the calculation is 0!.

Part C:

Total number of cards is a normal deck = 52

Total number sides in a die = 6

Total number of ways to draw a card from a normal deck and roll a number on a normal die = 52 × 6 = 312.

Therefore the total number of ways to draw a card from a normal deck and roll a number on a normal die is 312.

Part D:

It is given that we pick cards from a normal deck of cards, one at a time and replace the card and reshuffle the deck between draws.

Total number of ways to select each card = 52

Total number of ways to select 3 cards = 52³ = 140608

Therefore the total number of ways to select 3 cards is 140608.

The amount of sales tax on a new car is directly proportional to the purchase price of the car. Victor bought a new car for $30,000 and paid $1,500 in sales tax. Rita bought a new car from the same dealer and paid $2,375 sales tax. How much did Rita pay for her car?

Answers

Answer:

Rita paid 47,500 dollars for the purchase price.

Step-by-step explanation:

We are given the sales tax on a new car is directly proportional to the purchase price of the car which means there is is something k such that

when you multiply it to the sales tax you get the purchase price.

Let's set this equation:

y=kx

Let y represent the purchase price and x the sales tax.

The second sentence tells us that (x,y)=(1500,30000).

We can plug this into y=kx to find the constant k.  (Constant means it stays the same no matter what the input and output is).

So we have:

30000=k(1500)

300    =k(15)      I went ahead and divided previous equation by 100.

Now divide both sides by 15:

300/15=k

Simplify:

20=k

So the equation to use the answer the question is

y=20x

where y is purchase price and x is sales tax.

So we want to know the purchase price on a car if the sales tax is 2375.

So replace x with 2375:

y=20(2375)

y=47500

Answer:

$47500

Step-by-step explanation:

If the amount of sales tax on a new car is directly proportional to the purchase price of the car and Victor bought a new car for $30,000 and paid $1,500 in sales tax and Rita bought a new car from the same dealer and paid $2,375 sales tax, Rita payed $47,500 for her car.

y=20(2375)

y=47500

write a 6th order homogeneous linear equation whose general solution is

y=C1+C2e-t+C3Cos(3t)+C4sin(3t)+C5tcos(3t)+C6tsin(3t)

Answers

Answer:

[tex] y''''''+y'''''+18y''''+18y'''+81y''+81y'=0[/tex]

Step-by-step explanation:

We are given that  a general solution of 6th order homogeneous linear equation

[tex] y=C_1+C_2e^{-t}+C_3 Cos(3t)+C_4 Sin(3t)+C_5 tCos(3t) +C_6 sin t (3t)[/tex]

We have to find the 6th order homogeneous linear differential equation whose general solution is given above.

We know that imaginary roots are in pair

There two values of imaginary roots and the values of imaginary roots are repeat.

From first term of general solution we get D=0

From second term of general solution we get D=-1

Last four terms are the values of imaginary roots and roots are repeated.

Therefore, D=[tex]\pm 3i[/tex] and D=[tex]\pm 3i[/tex]

Substitute all values then we get

[tex]D(D+1)(D^2+9)^2=0[/tex]

[tex]D(D+1)(D^4+18D^2+81)=0[/tex]

[tex]D^6+D^5+18D^4+18D^3+81 D^2+81 D=0[/tex]

[tex](D^6+D^5+18D^4+18D^3+81 D^2+81 D)y=0[/tex]

[tex] y''''''+y'''''+18y''''+18y'''+81y''+81y'=0[/tex]

Therefore, the 6th order homogeneous linear differential equation is

[tex] y''''''+y'''''+18y''''+18y'''+81y''+81y'=0[/tex]

solve this system of linear equations. Separate the X- and Y- values with a comma. -9x+2y=-16 19x+3y=41​

Answers

Answer:

(2, 1)

Step-by-step explanation:

The best way to do this to avoid tedious fractions is to use the addition method (sometimes called the elimination method).  We will work to eliminate one of the variables.  Since the y values are smaller, let's work to get rid of those.  That means we have to have a positive and a negative of the same number so they cancel each other out.  We have a 2y and a 3y.  The LCM of those numbers is 6, so we will multiply the first equation by a 3 and the second one by a 2.  BUT they have to cancel out, so one of those multipliers will have to be negative.  I made the 2 negative.  Multiplying in the 3 and the -2:

3(-9x + 2y = -16)--> -27x + 6y = -48

-2(19x + 3y = 41)--> -38x - 6y = -82

Now you can see that the 6y and the -6y cancel each other out, leaving us to do the addition of what's left:

-65x = -130 so

x = 2

Now we will go back to either one of the original equations and sub in a 2 for x to solve for y:

19(2) + 3y = 41 so

38 + 3y = 41 and

3y = 3.  Therefore,

y = 1

The solution set then is (2, 1)

x=2 and y=1

proof:

-9x+2y=-16

-9(2)+2(1)=-16

which is a true statement

Determine the sample size needed to construct a 90​% confidence interval to estimate the average GPA for the student population at a college with a margin of error equal to 0.5. Assume the standard deviation of the GPA for the student population is 1.5.

Answers

Answer: 24

Step-by-step explanation:

The formula to calculate the sample size is given by :-

[tex]n=(\frac{z_{\alpha/2}\ \sigma}{E})^2[/tex]

Given : Margin of error : [tex]E=0.5[/tex]

The significance level : [tex]\alpha=1-0.90=0.1[/tex]

Critical value : [tex]z_{0.05}=\pm1.645[/tex]

Standard deviation : [tex]\sigma=1.5[/tex]

Now, the required sample size will be :-

[tex]n=(\frac{1.645\times1.5}{0.5})^2=24.354225\approx24[/tex]

Hence, the required sample size = 24

Who directed Dr. Strangelove? a. Warren Beatty b. Peter Fonda c. Dustin Hoffman d. Stanley Kubrick

Answers

Answer:

D. Stanley Kubrick

Step-by-step explanation:

Answer:

[tex]\Large\textnormal{(D.) Stanley Kubrick}[/tex]

Step-by-step explanation:

Stanley Kubrick directed to Dr. Strangelove. I hope this helps, and have a wonderful day!

4.C.48 Calculate the current yield on the described bond. A $500 Treasury bond with a coupon rate of 2.8% that has a market value of $450 The current yield is %. (Round to two decimal places as needed.) tents hual uccess a Library Success le Resources

Answers

Answer:

The current yield is 3.11%.

Step-by-step explanation:

Given - A $500 Treasury bond with a coupon rate of 2.8% that has a market value of $450.

Now the face value of the bond is = $500

The rate of interest is = 2.8%

Then interest on $500 becomes:

[tex]0.028\times500=14[/tex] dollars

The current market value is $450

So, current yield is = [tex]\frac{14}{450}\times100= 3.11[/tex]%

The current yield is 3.11%.

Final answer:

The current yield on a $500 Treasury bond with a 2.8% coupon rate and a market value of $450 is 3.11%, calculated by dividing the annual coupon payment by the market value of the bond and then converting to a percentage.

Explanation:

To calculate the current yield on the described $500 Treasury bond with a coupon rate of 2.8% that has a market value of $450, follow these steps:

First, calculate the annual coupon payment by multiplying the face value of the bond by the coupon rate: $500 * 0.028 = $14.Next, divide the annual coupon payment by the market value of the bond: $14 / $450 = 0.0311.To express this as a percentage, multiply by 100: 0.0311 * 100 = 3.11%.

Therefore, the current yield on the bond is 3.11% when rounded to two decimal places.

Analyze the diagram below and complete the instructions that follow.

Find the value of x.

A.√3

B. 3√2/2

C. 3√2

D. 3√3

Answers

Answer:

B. 3√2/2

Step-by-step explanation:

The value of x can be found with the tan rule.

Step 1: Identify the sides as opposite, adjacent and hypotenuse to apply the formula

Opposite = (opposite from angle 45 degrees)

Adjacent = x (between angle 45 degrees and 90 degrees)

Hypotenuse = 3 (opposite from 90 degrees)

Step 2: Apply the tan formula

Cos (angle) = adjacent/hypotenuse

Cos (45) = x/3

√2/2 = x/3

x = √2/2 x 3

x = 3√2/2

Therefore, the correct answer is B; x = 3√2/2

!!

The distribution of the amount of money spent on book purchases for a semester by college students has a mean of $280 and a standard deviation of $40. If the distribution is bell-shaped and symmetric, what proportion of students will spend between $200 and $280 this semester? Round your answer to four decimal places.

Answers

Answer: 0.4772

Step-by-step explanation:

Given : The distribution is bell shaped , then the distribution must be normal distribution.

Mean : [tex]\mu=\$280[/tex]

Standard deviation :[tex]\sigma= \$40[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = $200

[tex]z=\dfrac{200-280}{40}=-2[/tex]

For x = $280

[tex]z=\dfrac{280-280}{40}=0[/tex]

The p-value = [tex]P(-2<z<0)=P(z<0)-P(z<-2)[/tex]

[tex]0.5-0.0227501=0.4772499\approx0.4772[/tex]

Hence, the proportion of students will spend between $200 and $280 this semester = 0.4772

Final answer:

Approximately 34% of the college students will spend between $200 and $280 on book purchases for a semester according to the empirical rule for a bell-shaped and symmetric distribution.

Explanation:

The distribution of the amount of money spent on book purchases for a semester by college students is described as bell-shaped and symmetric with a mean of $280 and a standard deviation of $40. To find the proportion of students that will spend between $200 and $280, we can use the empirical rule (68-95-99.7 rule) which indicates that approximately 68% of the data fall within one standard deviation from the mean. Since we are concerned with the range from $200 (which is 2 standard deviations below the mean) to $280 (the mean), we are effectively looking at half of this 68% range. Therefore, approximately 34% of the students are expected to spend between $200 and $280 on books for a semester.

To calculate the proportion, we take 68% of the range (which covers -1 to +1 standard deviation from the mean) and divide it by 2:

68% / 2 = 34%

Thus, the proportion of students spending between $200 and $280 is 0.34, which when rounded to four decimal places, gives us 0.3400.

Exercise 1.4.4: Solve y' + xy = x.

Answers

Answer:

Step-by-step explanation:

Let's rewrite this with dy/dx in place of y', since they mean the same thing.  But to solve a differential we will need to take the antiderivative by separation to find the general solution.

[tex]\frac{dy}{dx}+xy=x[/tex]

The goal is to get the x stuff on one side and the y stuff on the other side by separation.  But we have an xy term there that we need to be able to break apart.  So let's get everything on one side separate from the dy/dx and take it from there.

[tex]\frac{dy}{dx}=x-xy[/tex]

Now we can factor out the x:

[tex]\frac{dy}{dx}=x(1-y)[/tex]

And now we can separate:

[tex]\frac{dy}{(1-y)}=x dx[/tex]

Now we solve by taking the antiderivative of both sides:

[tex]\int\ {\frac{1}{1-y}dy }=\int\ {x} \, dx[/tex]

On the left side, the antiderivative of the derivative of y cancels out, and the other part takes on the form of the natural log, while we follow the power rule backwards on the right to integrate x:

[tex]ln(1-y)=\frac{1}{2}x^2+C[/tex]

That's the general solution.  Not sure what your book has you solving for.  Some books solve for the constant, C. Some solve for y when applicable.  I'm leaving it like it is.

1) Let A = {1, 2, 3, 4} and R be a relation on the set A defined by: R = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (4, 1), (4, 4)} Determine whether R is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. For each property, either explain why R has that property or give an example showing why it does not. (30 points)

Answers

Answer:

R is not reflexive,not irreflexive ,symmetric,not asymmetric,not antisymmetric and transitive.

Step-by-step explanation:

1.Reflexive : Relation R is not reflexive because it does not contain identity relation on A.

Identity relation on A:{(1,1),(2,2),(3,3),(4,4)}

If we take a relation R on A :{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1)}

The relation R is reflexive on set A because it contain identity relation.

2.Irreflexive: Given relation R is not reflexive because it contain some elements of identity relation .If a relation is irreflexive then it does not contain any element of identity relation. We can say the intersection of R with identity relation is empty.

[tex]R\cap I=\left\{(1,1),(2,2),(4,4)\right\} \neq \phi[/tex]

If we take a relation on A R:{(1,2),(2,1)}

Then relation is irreflexive because it does not contain any element of identity relation

[tex]R\cap I=\phi[/tex]

3.Symmetric : The given relation R is symmetric because it satisfied the property of symmetric relation.

(1,2)belongs to relation (2,1) also belongs to relation ,(1,4) belongs to relation and (4,1) also belongs to given relation Hence we can say it is symmetric relation.

4.Asymmetric: The given relation is not asymmetric relation.Because it does not satisfied the property of asymmetric relation

Asymmetric relation: If (a,b) belongs to relation then (b,a) does not belongs to given relation.

Here (1,2) belongs to given relation and (2,1) also belongs to given relation Therefore, it is not asymmetric.

If we take a relation R on A

R:{(1,2),(1,3)}

It is asymmetric relation because it does not contain (2,1) and (3,1).

5.Antisymmetric: The given relation is not antisymmetric because it does not satisfied the property of antisymmetric relation.

Antisymmetric relation: If (a,b) and (b,a) belongs to relation then a=b

If we take a relation R

R;{(1,2) (1,1)}

It is antisymmetric because it contain (1,1) where 1=1 .Hence , it is antisymmetric.

6.Transitive: The given relation is transitive because it satisfied the property of transitive relation

Transitive relation: If (a,b) and (b,c) both belongs to relation R then (a,c) belongs to R.

Here, we have (1,2) and (2,1)belongs to relation then (1,1)  and (2,2) are also belongs to relation.

(1,4) and (4,1)  then (1,1) and (4,4) are also belongs to the relation.

Find an equation of the line that contains the following pair of points. (3,2) and (1,3) The equation of the line is (Simnlif vour ancwor Llco.intogore or fractione.for anu.numborc.in.the aquatio

Answers

Answer: [tex]x+2y-7=0[/tex]

Step-by-step explanation:

We know that the equation of a line passing through points (a,b) and (c,d) is given by :-

[tex](y-b)=\dfrac{d-b}{c-a}(x-a)[/tex]

Then , the equation of a line passing through points (3,2) and (1,3) is given by :-

[tex](y-2)=\dfrac{3-2}{1-3}(x-3)\\\\\Rightarrow\ (y-2)=\dfrac{1}{-2}(x-3)\\\\\Rightarrow\ -2(y-2)=(x-3)\\\\\Rightarrow\ -2y+4=x-3\\\\\Rightarrow\ x+2y-7=0[/tex]

Hence, the equation of a line passing through points (3,2) and (1,3) is : [tex]x+2y-7=0[/tex]

Other Questions
Which of the binomials below is a factor of this trinomial?22-5x-14 What do I do for this question? LOOK AT PICTURE. VOLUME OF CAN PROBLEM alguien se ha leido la verdad sospechosa? An undamped 1.23 kg horizontal spring oscillator has a spring constant of 37.4 N/m. While oscillating, it is found to have a speed of 2.48 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? What is the main function of cellulose? A. Produces trigylcerides B. Component of cell walls C. Energy storage D. Water transfer Total costs for Locke & Company at 140 comma 000 units are $ 289 comma 000, while total fixed costs are $ 195 comma 000. The total variable costs at a level of 260 comma 000 units would be (Round intermediate calculations to the nearest cent and the final answer to the nearest dollar.) Use LHospitals Rule to evaluate the following limit. which of the following best describes a gene pool? At what frequency f do a 1.0 f capacitor and a 1.0 h inductor have the same reactance? Which of the following actors starred in Dr. Strangelove? a. Peter Fonda b. Paul Newman c. Rod Stieger d. None of the above. A non-food crop is infected by pests on the 1st of a month. The pests infect the crop in such a way that the area infected doubles after each month. If the pests continue to infect the crop in this way, the non-food crop will be entirely infected after the sixth month.After which month will one-eighth of the non-food crop be infected? How much energy is stored by the electric field between two square plates, 8.5 cm on a side, separated by a 2.5-mm air gap? The charges on the plates are equal and opposite and of magnitude 14 nC . Who wrote these words from his famous work Don Juan? He was the epitome of the Romantic Hero. I want a hero: an uncommon want, . . . But cant find any in the present age Fit for my poem (that is, for my new one): So, as I said, Ill take my friend Don Juan. Shelley Lord Byron Keats Wordsworth Find the area of the shaded region if the dimensions of the unshaded region are 18ft x 22ft. Use 3.14 for as necessary.A. 1,419.84 ftB. 1,111.84 ftC. 709.92 ftD. 957.84 ft Biologists stocked a lake with 160 fish and estimated the carrying capacity (the maximal population for the fish of that species in that lake) to be 4,000. The number of fish tripled in the first year. (a) Assuming that the size of the fish population satisfies the logistic equation, find an expression for the size of the population after t years. (b) How long will it take for the population to increase to 2000 (half of the carrying capacity)? What is the solution to -4 | -2x +6 | = -24 g How much do you need when you retire to provide a $2,500 monthly check that will last for 25 years? Assume that your savings can earn 0.5% a month. $402,766.67 $414,008.24 $388,017.16 $361,526.14 5. Suppose that every three months, on average, an earthquake occurs in a certain region. Assuming this is a Poisson process, what is the probability that the next earthquake occurs after three but before seven months? 15 points!! What do you think? And why?