Find an equation of the plane. The plane that passes through the line of intersection of the planes x − z = 3 and y + 4z = 1 and is perpendicular to the plane x + y − 4z = 4

Answers

Answer 1
Final answer:

The equation of the plane that passes through the intersection of the planes x - z = 3 and y + 4z = 1, and is perpendicular to the plane x + y - 4z = 4, is s = 0.

Explanation:

To find the equation of a plane that passes through the intersection of two planes and is perpendicular to a third plane, we first need to find the intersection of the first two planes: x - z = 3 and y + 4z = 1. You can describe their line of intersection as x = z + 3 = s and y = 1 - 4z = 1 - 4(s - 3) = -4s + 13 by letting s be the parameter of the line.

Next, since our plane is perpendicular to the plane described by x + y - 4z = 4, we know the normal vector to our plane is (1,1,-4) which is the coefficients of x, y, and z in the equation of the perpendicular plane.

So, by using the point-normal form of the equation of a plane, which is (a(x-x0) + b(y-y0) + c(z-z0) = 0), where (a,b,c) is the normal vector and (x0,y0,z0) is a point on the plane. We use the point (z+3, -4z+13, z) that lies in the plane and put it all together, we get the equation of the plane as:  1(s - (s)) + 1((-4s + 13) - (-4s + 13)) - 4(s - (s)) = 0 , which simplifies to: s = 0.

Learn more about Plane Equation here:

https://brainly.com/question/33375802

#SPJ3


Related Questions

47. An honest coin is tossed 10 times in a row. The result of each toss (H or T) is observed. Find the probability of the event E= “a T comes up at least once.” (Hint: Find the probability of the complementary event.)

Answers

Answer:

0.0488%

Step-by-step explanation:

Here we have the probability of different independent events, which means that none of the previous ones affect the next. For this kind of events, the probability 'P' that a series of events occur is the multiplication of the probability of each singular event.

p1: Probability that an H be obtained: 50% (is always 50% because it is independent of the previous results)

P: The probability that H be obtained all of the 10 times. This is the complementary probability to E:(a T comes up at least once).

By the first definition given

[tex]P=0.5^{11}=0.00048828=0.0488%[/tex]

The complementary probability 'P' is the probability that 'E' does not happen, so the probability that E happen is: [tex]P_{E} =1-P[/tex]

The last makes sense if we think about the fact that for the experiment there are just two possibilities, 'E' happen, or 'E' does not happen. Then,

[tex]P_{E} =1-0.000488=99.95[/tex]%

Use Laplace transforms to solve the initial value problem. x" + 9x = 1;x (0) = 0 = x' (0)

Answers

Answer:   The required solution of the given IVP is

[tex]x(t)=\dfrac{1}{9}(1-\cos3t).[/tex]

Step-by-step explanation:  We are given to use Laplace transforms to solve the following initial value problem :

[tex]x^{\prime\prime}+9x=1,~~~x(0)=0=x^\prime(0).[/tex]

We will be using the following formula for the Laplace transform :

[tex](i)~L\{t^n\}=\dfrac{n!}{s^{n+1}},\\\\\\(ii)~L\{\coskt\}=\dfrac{s}{s^2+k^2}.[/tex]

Applying Laplace transform on both sides of the above equation, we have

[tex]L\{x^{\prime\prime}+9x\}=L\{1\}\\\\\\\Rightarrow s^2X(s)-sx(0)-x^\prime(0)+9X(s)=\dfrac{1}{s}\\\\\\\Rightarrow s^2X(s)-s\times0-0=\dfrac{1}{s}\\\\\\\Rightarrow (s^2+9)X(s)=\dfrac{1}{s}\\\\\\\Rightarrow X(s)=\dfrac{1}{s(s^2+9)}\\\\\\\Rightarrow X(s)=\dfrac{1}{9s}-\dfrac{s}{9(s^2+9)}.[/tex]

Taking inverse Laplace transform on both sides of the above equation, we get

[tex]L^{-1}\{X(s)\}=L^{-1}\left(\dfrac{1}{9s}\right)-L^{-1}\left(\dfrac{s}{9(s^2+9)}\right)\\\\\\\Rightarrow x(t)=\dfrac{1}{9}\times1-\dfrac{1}{9}\times \cos3t\\\\\\\Rightarrow x(t)=\dfrac{1}{9}(1-\cos3t).[/tex]

Thus, the required solution of the given IVP is

[tex]x(t)=\dfrac{1}{9}(1-\cos3t).[/tex]

Final answer:

To solve the given initial value problem using Laplace transforms, apply the transforms to the equation, simplify to get the equation in the s-domain, and then take the inverse Laplace transform to get the solution in the time domain.

Explanation:

To solve the initial value problem x" + 9x = 1 where x(0) = 0 = x'(0) using Laplace transforms, we firstly apply it to the whole equation. The Laplace transform of a second derivative x''(t) is s^2 X(s) - s x(0) - x`(0) and that of x(t) is X(s), where X(s) is the Laplace transform Of x(t). Since the Laplace transform of a constant is the constant itself divided by s, the Laplace transform of the equation becomes s^2 X(s) - 0 - 0 + 9X(s) = 1/s. Simplifying the above gives X(s) = 1/(s^3 + 9s), as a solution in the s-domain. Apply a combination of basic formulas and decomposition techniques to convert this equation into a zero-state solution. After this, take the inverse Laplace transform to get the solution in the time domain. It should be simple given that the initial values are zero.

Learn more about Laplace Transforms here:

https://brainly.com/question/31481915

#SPJ6

You are laying 1.200 ft of pipe. After doing 900 ft. your vendor has run out of $15 pipe, and you have to buy more pipe at the store for $25 per foot. How much will it cost you in materials to install the 1,200 ft of pipe? Next

Answers

Answer:

The total cost to install the 1,200 ft of the pipe is $21000.

Step-by-step explanation:

Consider the provided information.

You buy 900 ft pipe with a cost of $15 per foot and the remaining 300 ft pipe with a cost of $25 per foot.

Therefore, the total cost is:

[tex]900 \times 15+300 \times 25[/tex]

[tex]13500+7500[/tex]

[tex]13500+7500[/tex]

[tex]21000[/tex]

Hence, the total cost to install the 1,200 ft of the pipe is $21000.

Barney is the owner and insured of a $200,000 life insurance policy. Upon learning that he has a terminal illness, he sells the policy to a third party for $140,000, and the third party becomes the owner and beneficiary of the policy. Barney entered into what type of arrangement? a. life endowment b. accelerated death benefit arrangement c. qualified policy surrender d. viatical settlement

Answers

Answer:

Viatical settlement

Step-by-step explanation:

Here Barney sold his life insurance to 3rd party for less net death benefit value.

He entered into the arrangement called - viatical settlement

A viatical settlement is the sale of a life insurance policy to a third party. The owner of the life insurance policy sells the policy for cash benefit, thus making the buyer the new owner of the policy who will get death benefits.

A certain field is a rectangle with a perimeter of 918 feet. The length is 181 feet more than the width. Find the width and length of the rectangular field The width is? feet. The length is ? feet.

Answers

Final answer:

The width of the rectangular field is 139 feet and its length is 320 feet.

Explanation:

To solve this problem, we can use the formula for the perimeter of a rectangle, which is 2*(length + width). We know that the perimeter is 918 feet, and it's given that the length is 181 feet more than the width.

Let's denote the width as w, therefore the length would be w + 181.

By substituting these expressions into the formula for the perimeter, we get:
2*(w + w + 181)=918,
which simplifies to 2*(2w + 181)=918,
further simplifies to 4w + 362 = 918.

To isolate 4w, subtract 362 from both sides:
4w = 918 - 362 = 556.
Finally, divide both sides by 4 to solve for w:
w = 556/4 = 139 feet.

Substitute w = 139 into the length equation to get the length:
length = w + 181 = 139 + 181 = 320 feet.

So the width is 139 feet, and the length is 320 feet.

Learn more about Solving for Rectangle Dimensions here:

https://brainly.com/question/12997022

#SPJ3

Length is 320 feet.

Let's define the width of the rectangle as w feet and the length as l feet.

According to the problem,

the perimeter of the rectangle is 918 feet and the length is 181 feet more than the width.

We can express these conditions using the following equations:

Perimeter equation: 2l + 2w = 918

Length equation: l = w + 181

First, we can solve the perimeter equation for l+w:

2l + 2w = 918
Divide both sides by 2:

l + w = 459

Next, we substitute the length equation l = w + 181 into the perimeter equation:

w + 181 + w = 459 Simplify:

2w + 181 = 459
Subtract 181 from both sides:

2w = 278
Divide by 2:

w = 139 feet

Now substitute the width back into the length equation:

l = w + 181
l = 139 + 181

l = 320 feet

So, the width is 139 feet, and the length is 320 feet.

Seven times the first (smaller) of two consecutive odd integers is equal to five times the second (larger) integer. Find each integers.

Answers

Answer:The smaller consecutive odd integer is: 5and the larger consecutive odd integer is: 7Step-by-step explanation:

Let the smaller odd integer be: a

then the larger odd integer which is consecutive to a will be: a+2

It is given that:

Seven times the first (smaller) of two consecutive odd integers is equal to five times the second (larger) integer.

This means that:

7 times of a is equal to 5 times of (a+2)

i.e.

[tex]7a=5(a+2)\\\\i.e.\\\\7a=5\times a+5\times 2[/tex]

( Since, by using the distributive property of multiplication)

i.e.

[tex]7a=5a+10\\\\i.e.\\\\7a-5a=10\\\\i.e.\\\\2a=10\\\\i.e.\\\\a=5[/tex]

Hence, the smaller number is:  5

and the larger number is: 7

( Since a+2=5+2=7 )

Evaluate the line integral, where C is the given curve. C (x + yz) dx + 2x dy + xyz dz, C consists of line segments (1, 0, 1) to (2, 4, 1) and from (2, 4, 1) to (2, 6, 4)

Answers

Parameterize the first line segment [tex]C_1[/tex] by

[tex]\vec r(t)=(1,0,1)(1-t)+(2,4,1)t=(1+t,4t,1)[/tex]

and the second line segment [tex]C_2[/tex] by

[tex]\vec s(t)=(2,4,1)(1-t)+(2,6,4)t=(2,4+2t,1+3t)[/tex]

both with [tex]0\le t\le1[/tex]. Then

[tex]\displaystyle\int_{C_1}(x+yz)\,\mathrm dx+2x\,\mathrm dy+xyz\,\mathrm dz[/tex]

[tex]\displaystyle=\int_0^1\bigg((1+5t)\cdot1+2(1+t)\cdot4+(1-t)4t\cdot0\bigg)\,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^1(9+13t)\,\mathrm dt=\frac{31}2[/tex]

and

[tex]\displaystyle\int_{C_2}(x+yz)\,\mathrm dx+2x\,\mathrm dy+xyz\,\mathrm dz[/tex]

[tex]\displaystyle=\int_0^1\bigg((2+(4+2t)(1+3t))\cdot0+2(2)\cdot2+2(4+2t)(1+3t)\cdot3\bigg)\,\mathrm dt[/tex]

[tex]\displaystyle=\int_0^1(32+84t+36t^2)\,\mathrm dt=86[/tex]

Then

[tex]\displaystyle\int_C(x+yz)\,\mathrm dx+2x\,\mathrm dy+xyz\,\mathrm dz=\frac{31}2+86=\boxed{\frac{203}2}[/tex]

Final answer:

To evaluate the line integral, parameterize each segment of the curve separately, substitute the parameterization into the line integral expression, evaluate the integral for each segment, and sum up the results.

Explanation:

To evaluate the line integral, we need to first parameterize the curve C. The given curve consists of two line segments, so we will parameterize each segment separately.

For the first segment from (1, 0, 1) to (2, 4, 1), we can parameterize it as r(t) = (1 + t, 4t, 1), where t ranges from 0 to 1.  

For the second segment from (2, 4, 1) to (2, 6, 4), we can parameterize it as r(t) = (2, 4 + 2t, 1 + 3t), where t ranges from 0 to 1.

Next, we substitute the parameterization into the line integral expression and evaluate the integral for each segment separately. Finally, we sum up the individual results to get the value of the line integral.

Learn more about Line integral here:

https://brainly.com/question/34566674

#SPJ11

the solution of the differential equation x^2y"-5xy'+5y=0 is select the correct answer. (a)y=c1x+c2x^2, (b)y=c1xcoslnx+c2x^2sinlnx, (c)y=c1xcos2lnx+c2x^2sin2lnx, (d) c1x^(5+rad5/2)+c2x^(5-rad5/2) , or (e)y=c1e^2x+c2xe^2xsinx

Answers

Answer:

[tex]y=c_1x+c_2x^5[/tex]

Step-by-step explanation:

The given second order homogeneous Cauchy-Euler ordinary differential equation is

[tex]x^2y''-5xy'+5y=0[/tex]

The corresponding auxiliary equation is given by:

[tex]a {m}^{2} + (b - a)m + c = 0[/tex]

where a=1, b=-5, c=5

We substitute the coefficients into the auxiliary equation to obtain:

[tex] {m}^{2} + ( - 5 - 1)m + 5= 0[/tex]

[tex] {m}^{2} - 6m + 5= 0[/tex]

[tex](m - 1)(m - 5) = 0[/tex]

[tex] \implies \: m = 1 \: or \: m = 5[/tex]

The auxiliary equation has two distinct real roots. The general solution to the corresponding differential equation is of the form:

[tex]y=c_1x ^{m1} +c_2 {x}^{m2} [/tex]

We substitute the values to get:

[tex]y=c_1x+c_2x^5[/tex]

The provided differential equation [tex]x^2y'' - 5xy' + 5y = 0[/tex] can be solved using the method for Cauchy-Euler equations, resulting in the general solution [tex]y = c_1 x + c_2 x^5.[/tex] Therefore, the correct answer is (d) [tex]y = c_1 x^{5 + \frac{\sqrt{5}}{2}} + c_2 x^{5 - \frac{\sqrt{5}}{2}}[/tex]

To solve the given differential equation [tex]x^2y'' - 5xy' + 5y = 0[/tex], we use the method for Cauchy-Euler equations:

1. Assume a solution of the form[tex]y = x^m.[/tex]

2. Substitute [tex]y = x^m[/tex] into the differential equation:

[tex]y' = m x^(m-1)[/tex][tex]y'' = m(m-1)x^(m-2)[/tex]

3. Plug these into the equation:
[tex]x^2 [m(m-1)x^(m-2)] - 5x[mx^(m-1)] + 5[x^m] = 0[/tex]

4. Simplify to get the characteristic equation:
[tex]m(m-1) - 5m + 5 = 0[/tex]
[tex]m^2 - 6m + 5 = 0[/tex]

5. Solve the quadratic equation:
[tex]m = \frac{{6 \pm \sqrt{6^2 - 4 \times 5}}}{{2}}[/tex]
[tex]m = \frac{{6 \pm \sqrt{16}}}{{2}}[/tex]
[tex]m = \frac{{6 \pm 4}}{2}[/tex]
[tex]m = 5 \quad \text{or} \quad m = 1[/tex]

6. The general solution is then a linear combination of these solutions:
[tex]y = c_1 x^5 + c_2 x^1[/tex]
[tex]y = c_1 x + c_2 x^5[/tex]

[tex]y = c_1 x^{5 + \frac{\sqrt{5}}{2}} + c_2 x^{5 - \frac{\sqrt{5}}{2}}[/tex]


Shown work to help me make sense would be greatly appreciated.

1. Convert the 8-binary binary expansion (1010 0110)2 to a decimal expansion.

2. Convert the following decimal expansion (145)10 to an 8-bit binary expansion.

3. Convert the following hexadecimal expansion (A3C)16 to an octal expansion.

4. Convert the following binary expansion (1111 1100 0011 0110)2 to a hexadecimal expansion.

Answers

1. (1010 0110)₂ = (166)₁₀

2. (145)₁₀ = (1001 0001)₂

3. (101 000 111 100)₂ = (5074)₈

4. (1111 1100 0011 0110)₂ = (FC36)₁₆

1. Convert the 8-binary binary expansion (1010 0110)₂ to a decimal expansion.

In order to solve this problem we have to use the expansion:

n = aₓbˣ + aₓ₋₁bˣ⁻¹ + ... + a₁b¹ + a₀

where b = 2, x = 8 - 1 = 7 due is a 8-binary

(1010 0110)₂ = 1 x 2⁷ + 0 x 2⁶ + 1 x 2⁵ + 0 x 2⁴ + 0 x 2³ + 1 x 2² + 1 x 2¹ + 0 x 2⁰

(1010 0110)₂ = 128 + 0 + 32 + 0 + 0 + 4 + 2 + 0

(1010 0110)₂ = (166)₁₀

2. Convert the following decimal expansion (145)₁₀ to an 8-bit binary expansion.

To solve this problem we have to use the divide by 2 process.

Since we are dividing by 2, when the dividend is an even number, the remainder will be 0, and when the dividend is an odd number the binary residual will be 1.

145 ---------------> 1  Less significant bit

145/2 = 72 -----> 0

72/ 2 = 36 -----> 0

36/2 = 18 ------> 0

18/2 = 9 -------> 1

9/2 = 4 --------> 0

4/2 = 2 ---------> 0

2/2 = 1 ----------> 1  Most significant bit

Then we order from the most significant bit to the less significant bit (from the bottom to the top) to obtain the 8-binary number:

(145)₁₀ = (1001 0001)₂

3. Convert the following hexadecimal expansion (A3C)₁₆ to an octal expansion.

To convert a hexadecimal expansion to an octal expansion we have to convert  from hexadecimal to binary and then to octal using the table hexadecimal to binary and binary to octal.

Converting from hexadecimal to binary:

(A3C)₁₆

A = 1010, 3 = 0011 and C = 1100

(A3C)₁₆ = (1010 0011 1100)₂

Converting from binary to octal:

To convert binary to octal we have to order the binary expansion into group of 3-bits and use the table to convert binary to octal.

(1010 0011 1100)₂ = (101 000 111 100)₂

101 = 5, 000 = 0, 111 = 7 and 100 = 4

(101 000 111 100)₂ = (5074)₈

4. Convert the following binary expansion (1111 1100 0011 0110)₂ to a hexadecimal expansion.

To solve this exercise we have to use the binary to hexadecimal table.

(1111 1100 0011 0110)₂

1111 = F, 1100 = C, 0011 = 3 and 0110 = 6

(1111 1100 0011 0110)₂ = (FC36)₁₆

3) An oil prospector will drill a succession of holes in a given area to find a productive well. The probability that he is successful on a given trial is 0.2. What is the probability that the third hole drilled is the first to yield a productive well?

Answers

Answer: 0.128

Step-by-step explanation:

The geometric probability of getting success on nth trial is given by :-

[tex]P(n)=p(1-p)^{n-1}[/tex]

Given : The probability that he is successful on a given trial[tex]p= 0.2[/tex].

Then , the probability that the third hole drilled is the first to yield a productive well is given by :-

[tex]P(3)=0.2(1-0.2)^{3-1}=0.128[/tex]

Hence, the probability that the third hole drilled is the first to yield a productive well = 0.128

Write an equation of the circle with center (-8,4) and diameter 6 .

Answers

Answer:

(x+8)^2 + (y-4)^2 = 3^2

or

(x+8)^2 + (y-4)^2 = 9

Step-by-step explanation:

The diameter is 6, so the radius would be d/2 =3

The equation of a circle is

(x-h)^2 + (y-k)^2 = r^2

where (h,k) is the center and r is the radius

(x- -8)^2 + (y-4)^2 = 3^2

(x+8)^2 + (y-4)^2 = 3^2

or

(x+8)^2 + (y-4)^2 = 9

A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between 48.0 and 53.0 minutes. Find the probability that a given class period runs between 51.5 and 51.75 minutes. Find the probability of selecting a class that runs between 51.5 and 51.75 minutes.

Answers

Step-by-step answer:

Given:

class time uniformly distributed between 48 and 53 minutes (range 5 minutes)

Find probability that the class period runs between 51.5 and 51.75 minutes.

Solution:

Uniformly distributed means that the probability that the class time is the same for any minute (out of 5), i.e. 20%, or probability density is 0.2 / minutes, no matter which minute.

The interval between 51.5 and 51.75 is 0.25 minutes, so the probability of class period within that range is 0.25 minutes * 0.2 / minute = 0.05.

Final answer:

The probability that a class period runs between 51.5 and 51.75 minutes, when class lengths are uniformly distributed between 48.0 and 53.0 minutes, is 0.05 or 5%.

Explanation:

To find the probability that a given class period runs between 51.5 and 51.75 minutes when class lengths are uniformly distributed between 48.0 and 53.0 minutes, we utilize the properties of the uniform distribution. The probability is the area under the uniform probability density function (PDF) between the two specified lengths. For a uniform distribution, this area corresponds to the length of the interval divided by the length of the entire interval in which the variable is uniformly distributed.

Here, we're looking for the probability between 51.5 minutes and 51.75 minutes. The total length of the available interval is 53.0 - 48.0 = 5 minutes. The length of the desired interval is 51.75 - 51.5 = 0.25 minutes. So, we divide the length of the desired interval by the total interval to get the probability.

Probability = (51.75 - 51.5) / (53.0 - 48.0) = 0.25 / 5 = 0.05

Therefore, the probability that a class period runs between 51.5 and 51.75 minutes is 0.05 or 5%.

13. Imagine that you are taking a class and your chances of being asked a question in class are 1% during the first week of class and double each week thereafter (i.e., you would have a 2% chance in Week 2, a 4% chance in Week 3, an 8% chance in Week 4). What is the probability that you will be asked a question in class during Week 7?

Answers

Answer:  There is probability that he will be asked a question in class during Week 7 is 64%.

Step-by-step explanation:

Since we have given that  

Probability that question in class being asked during Week 1 = 1%  

Probability that question in class being asked during Week 2 = 2%  

Probability that question in class being asked during Week 3 = 4%

and so on.

So, we need to find the probability that question being asked in class during week 7.

Since it forms geometric series:

1%, 2%, 4%, ........

So, we need to find the 7 th term:  

[tex]a_n=ar^{n-1}\\\\a_7=ar^{7-1}\\\\a_7=1(2)^6\\\\a_7=64\%[/tex]

Hence, there is probability that he will be asked a question in class during Week 7 is 64%.

Find a polynomial f(x) of degree 5 that has the following zeros.
4, 9, -5 (multiplicity 2), -7
Leave your answer in factored form.

Answers

Answer:

[tex]f (x) = (x-4)(x + 5)^2(x-9)(x+7)[/tex]

Step-by-step explanation:

The zeros of the polynomial are all the values of x for which the function [tex]f (x) = 0[/tex]

In this case we know that the zeros are:

[tex]x = 4,\ x-4 =0[/tex]

[tex]x = 9,\ x-9=0[/tex]

[tex]x = -5[/tex], [tex]x + 5 = 0[/tex] (multiplicity 2)

[tex]x = -7,\ x+7=0[/tex]

Now we can write the polynomial as a product of its factors

[tex]f (x) = (x-4)(x + 5)^2(x-9)(x+7)[/tex]

Note that the polynomial is of degree 5 because the greatest exponent of the variable x that results from multiplying the factors of f (x) is 5

Final answer:

The polynomial of degree 5 with the zeros 4, 9, -5 (multiplicity 2), and -7 is given by f(x) = (x - 4)(x - 9)(x + 5)² (x + 7).

Explanation:

To find a polynomial f(x) of degree 5 that has the zeros 4, 9, -5 (multiplicity 2), -7, you would begin by setting up a polynomial that has these zeros. From the given roots, we can form the polynomial in factored form as follows:

f(x) = (x - 4)(x - 9)(x + 5)²(x + 7).

Multiplicity refers to how many times a root is repeated. In this case, -5 is repeated twice, hence the exponent of 2.

So, the polynomial in factored form with the zeros provided is:

f(x) = (x - 4)(x - 9)(x + 5)² (x + 7).

Learn more about Polynomial here:

https://brainly.com/question/20121808

#SPJ11

what is the solution of the inequality shown below? c-7>2​

Answers

Answer:

c > 9

Step-by-step explanation:

Isolate the variable, c. Treat the greater than sign as an equal, what you do to one side, you do to the other. Add 7 to both sides:

c - 7 > 2

c - 7 (+7) > 2 (+7)

c > 2 + 7

c > 9

c > 9 is your answer.

~

Answer:

[tex]\Huge \boxed{C>9}\checkmark[/tex]

Step-by-step explanation:

Add by 7 from both sides.

[tex]\displaystyle c-7+7>2+7[/tex]

Simplify, to find the answer.

[tex]\displaystyle 2+7=9[/tex]

[tex]\huge \boxed{c>9}[/tex], which is our answer.

Based on a Comcast​ survey, there is a 0.8 probability that a randomly selected adult will watch​ prime-time TV​ live, instead of​ online, on​ DVR, etc. Assume that seven adults are randomly selected. Find the probability that fewer than three of the selected adults watch​ prime-time live.

Answers

Answer: Our required probability is 0.004672.

Step-by-step explanation:

Since we have given that

Number of adults = 7

Probability of getting adult will watch prime time TV live = 0.8

We need to find the probability that fewer than 3 of the selected adults watch prime time live.

We will use "Binomial Distribution":

here, n = 7

p = 0.8

So, P(X<3)=P(X=0)+P(X=1)+P(X=2)

So, it becomes,

[tex]P(X=0)=(1-0.8)^7=0.2^7=0.0000128[/tex]

[tex]P(X=1)=^7C_1(0.8)(0.2)^6=0.0003584\\\\P(X=2)=^7C_2(0.8)^2(0.2)^5=0.0043[/tex]

So, probability that fewer than 3 of the selected adult watch prime time live is given by

[tex]0.0000128+0.0003584+0.0043=0.004672[/tex]

Hence, our required probability is 0.004672.

Final answer:

This problem relates to the binomial distribution and requires us to find the sum of binomial probabilities for 0, 1, and 2 successes (adults watching live TV) out of seven trials (the seven randomly selected adults).

Explanation:

This question is utilizing the concept of binomial distribution. The probability of a randomly selected adult watching prime-time TV live is 0.8. We want to find the probability that fewer than 3 out of 7 randomly selected adults watch prime-time live.

We find this by adding up the probabilities for 0, 1, and 2 adults watching live TV using the binomial distribution formula: P(X=k) = C(n, k) * (p^k) * ((1-p)^(n-k)), where C(n, k) denotes the number of combinations of n items taken k at a time, p is the probability of success, and n is the number of trials.

We get:

P(X=0) = C(7, 0) * (0.8^0) * ((1-0.8)^(7-0))P(X=1) = C(7, 1) * (0.8^1) * ((1-0.8)^(7-1))P(X=2) = C(7, 2) * (0.8^2) * ((1-0.8)^(7-2))

Adding these up will give the total probability that fewer than three adults out of seven watch prime-time live.

Learn more about Binomial Distribution here:

https://brainly.com/question/33656163

#SPJ12

A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 431 gram setting. It is believed that the machine is underfilling the bags. A 23 bag sample had a mean of 430 grams with a standard deviation of 24. A level of significance of 0.025 will be used. Assume the population distribution is approximately normal. State the null and alternative hypotheses.

Answers

Answer: [tex]H_0:\mu\geq431\\\\H_a:\mu<431[/tex]

Step-by-step explanation:

Given : A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 431 gram setting. t is believed that the machine is underfilling the bags.

Claim : [tex]\mu<431[/tex]

We know that the null hypothesis always have equals sign , then the required set of hypothesis for the situation :-

[tex]H_0:\mu\geq431\\\\H_a:\mu<431[/tex]

A model for the basal metabolism rate, in kcal/h, of a young man is R(t) = 95 − 0.18 cos(πt/12), where t is the time in hours measured from 5:00 AM. What is the total basal metabolism of this man, 24 R(t) dt, 0 over a 24-hour time period?

Answers

Answer:

  2280 kcal

Step-by-step explanation:

The given function R(t) is periodic with a period of 24 hours, so the integral is the product of the average value (95 kcal/h) and the 24-hour interval:

  (95 kcal/h)(24 h) = 2280 kcal

Final answer:

To calculate the total basal metabolism over 24 hours for a young man modeled by R(t) = 95 − 0.18 cos(πt/12), you need to apply integral calculus. First, integrate the function R(t) and then apply a definite integral over the period from 0 to 24 hours. The result will be the total basal metabolism over this time period.

Explanation:

To solve this problem, you need to integrate the function R(t) = 95 − 0.18 cos(πt/12) over the time interval of 0 to 24 hours. In calculus, such an operation is represented as ∫R(t) dt from 0 to 24. This operation will give you the total basal metabolism during these 24 hours.

The first thing you need to do in this case is to integrate the function. As this function is a composition of functions, you would need to use the basics of integral calculus, specifically the trigonometric substitution method or table of integrals for cosine function.

Afterward, apply a definite integral over the period from 0 to 24 hours. This will give you the total basal metabolism for 24 hours, expressed in kcal.

The steps presented above represent a simplification of the process. The actual calculations might be quite complex, so please don't worry if they seem overwhelming - it's a normal part of learning integral calculus.

Learn more about Integral Calculus here:

https://brainly.com/question/34730103

#SPJ2

Jason received an invoice for $5,000, and the invoice was dated on August 26 with terms of 2/10, n/45 EOM. Please answer the following questions:

(1) How much did Jason owe if the bill is paid by September 26?

(2) When will be the last day that Jason can receive the cash discount?

(3) When will be the last day that Jason has to pay for this bill?

Answers

Step-by-step explanation:

Consider the provided information.

Jason received an invoice for $5,000, and the invoice was dated on August 26.

Part 1)

We need to find the bill Jason needs to pay by September 26.

n/45 means invoice amount should be paid within 45 days after the august 26.

From August 26 to September 26 Jason complete a month.

Thus, Jason just need to pay only $5,000. Which is the invoice amount.

Part 2)

The last day of discount can be calculated by 2/10.

Here, the 2/10 represents that discount of 2% within 10 days.

Now, calculate the 10 days form August 26.

The 10 days from August 26 is September 5.

Hence, September 5 is the last day that Jason can receive the cash discount.

Part 3)

Now, we need to calculate the last day that Jason has to pay for the bill.

n/45 means invoice amount should be paid within 45 days after the august 26.

Hence, the sum of the invoice should be paid within 45 days of August 26, whatever the date.

32. Quality Control A campus bookstore buys 100 calcula-
tors. Assume that 2 have a defect of some kind. The math-
ematics department buys 8 of these calculators from the
bookstore. What is the probability that, of those calcula-
tors bought by the mathematics department,
(a) All are free of defects?
(b) Exactly 1 will have a defect?
(c) Exactly 2 will have a defect?

Answers

Answer:

a) 0.8508

b) 0.1389

c) 0.0099

Step-by-step explanation:

Total number of calculators bought = 100

Number of calculators with defect = 2

Probability of selecting a calculator with defect = p = 2 out of 100 = [tex]\frac{2}{100}=0.02[/tex]

Probability of selecting a calculator without defect = q = 1 - p = 1 - 0.02 = 0.98

Part a)

The bookstore buys 8 calculators. This means the number of trials is fixed ( n =8). The calculator is either with defect or without defect. This means there are 2 outcomes only. The outcome of one selection is independent of other selections. This means all the events(selections) are independent of each other.

Hence, all the conditions of a Binomial Experiment are being satisfied. So we will use Binomial Probability to solve this problem.

We need to find the probability that all calculators are free of defects. i.e. number of success is 0 i.e. P( x = 0 )

The formula of Binomial Probability is:

[tex]P(x) =^{n}C_{x} (p)^{x} q^{n-x}[/tex]

Using the values, we get:

[tex]P(0)=^{8}C_{0}(0.02)^{0}(0.98)^{8-0}\\\\ P(0)=0.8508[/tex]

Thus, the probability that all calculators are free of defects is 0.8508

Part b) Exactly 1 calculator will have defect

This means the number of success is 1. So, we need to calculate ( x = 1)

Using the formula of binomial probability again and using x = 1, we get:

[tex]P(1)=^{8}C_{1}(0.02)^{1}(0.98)^{8-1}\\\\ P(1)=0.1389[/tex]

Thus, the probability that exactly two calculators will be having a defect is 0.1389

Part c) Exactly 2 calculator will have defect

This means the number of success is 2. So, we need to calculate ( x = 2 )

Using the formula of binomial probability again and using x = 2, we get:

[tex]P(2)=^{8}C_{2}(0.02)^{2}(0.98)^{8-2}\\\\ P(2)=0.0099[/tex]

Thus, the probability that exactly two calculators will be having a defect is 0.0099

urgent help please!!!!!!!!!!!!!!!!!!​

Answers

Answer:

  B.  AAS Congruence Theorem

Step-by-step explanation:

Previous steps showed congruence of a side of the designated triangle, and two angles that do not bracket that side. In short form, you have shown congruence of ...

  Angle - Angle - Side

so the AAS congruence theorem applies.

Find dx/dt when y=2 and dy/dt=1, given that x^4=8y^5-240

dx/dt=

Answers

Answer:

The value of [tex]\frac{dx}{dt}[/tex] is [tex]\frac{160}{x^3}[/tex].

Step-by-step explanation:

The given equation is

[tex]x^4=8y^5-240[/tex]

We need to find the value of [tex]\frac{dx}{dt}[/tex].

Differentiate with respect to t.

[tex]4x^3\frac{dx}{dt}=8(5y^4)\frac{dy}{dt}-0[/tex]              [tex][\because \frac{d}{dx}x^n=nx^{n-1},\frac{d}{dx}C=0][/tex]

[tex]4x^3\frac{dx}{dt}=40y^4\frac{dy}{dt}[/tex]

It is given that y=2 and dy/dt=1, substitute these values in the above equation.

[tex]4x^3\frac{dx}{dt}=40(2)^4(1)[/tex]

[tex]4x^3\frac{dx}{dt}=40(16)(1)[/tex]

[tex]4x^3\frac{dx}{dt}=640[/tex]

Divide both sides by 4x³.

[tex]\frac{dx}{dt}=\frac{640}{4x^3}[/tex]

[tex]\frac{dx}{dt}=\frac{160}{x^3}[/tex]

Therefore the value of [tex]\frac{dx}{dt}[/tex] is [tex]\frac{160}{x^3}[/tex].

Find the area and the circumference of a circle with radius 3 m. Use the value 3.14 for π, and do not round your answers. Be sure to include the correct units in your answers.

Answers

Circumference: 18.84 m

Area: 28.26[tex]m^{2}[/tex]

Explanation

For circumference, use the formula [tex]\pi[/tex]*d, where d=the diameter(the radius times 2).

For area, use the formula [tex]\pi[/tex][tex]r^{2}[/tex], where r=the radius. Make sure to square the radius first before multiplying by pi!

A good way to remember these formulas is Cherry(circumference) Pi([tex]\pi[/tex]) is Delicious(diameter) and Apple(area) [tex]\pi[/tex] [tex]r^{2}[/tex]("are too")

The circumference of the circle with radius 3 meters is 18.84 meters and the area is 28.26 square meters.

Given that the radius of the circle is 3 meters, we can find the circumference and the area using the respective formulae.

Circumference of a circle with radius r (C) is given by the formula C = 2πr. Substituting π = 3.14 and r = 3 meters, the circumference C = 2*3.14*3 = 18.84 meters.

The Area of a circle with radius r (A) is given by the formula A = πr². Substituting π = 3.14 and r = 3 meters, the area A = 3.14*3² = 28.26 square meters.

So, the circumference of the circle with radius 3 meters would be 18.84 meters and the area would be 28.26 square meters.

Learn more about circumference here:

https://brainly.com/question/17130827

#SPJ3

M1Q13.) Find the relative frequency of the 2nd class to the nearest tenth of a percent.

Answers

Answer:

  9.1%

Step-by-step explanation:

The total number of observations is 33. The number in the second class is 3, so the relative frequency is ...

  3/33 × 100% = (100/11)% ≈ 9.1%

Add everything in the frequency column.

= 33

Take class two (3).

Solution:

3/33 * 100%

1/11 * 100%

100/11%

9.1%

Best of Luck!

Suppose that a poll finds that 31.9​% of taxpayers who filed their tax return electronically​ self-prepared their taxes. If three tax returns submitted electronically are randomly​ selected, what is the probability that all three were​ self-prepared?

Answers

Answer: 0.0325

Step-by-step explanation:

Binomial probability distribution formula for x successes in n trials:-

[tex]P(X=x)=^nC_x\ p^x\ (1-p)^{n-x}[/tex], where n is the number of trials , p is the probability of success.

Given : The probability that taxpayers who filed their tax return are electronically​ self-prepared their taxes : [tex]p= 0.319[/tex]

If three tax returns submitted electronically are randomly​ selected, then the probability that all three were​ self-prepared is given by :-

[tex]P(X=3)=^3C_3\ (0.319)^3\ (1-0.319)^{3-3}\\\\=(1) (0.319)^3(1)\\=0.032461759\approx0.0325[/tex]

Hence, the probability that all three were​ self-prepared =0.0325

Final answer:

The probability that all three tax returns submitted electronically are self-prepared, when each has a 31.9% chance of being self-prepared, is the product of their individual probabilities, resulting in approximately 3.24%.

Explanation:

To compute this, we will use the property that the probability of independent events all occurring is the product of their individual probabilities.

The probability of one taxpayer self-preparing is 0.319. Since the question implies that the taxpayers are chosen independently, the probability that all three returns are self-prepared is:

P(First self-prepared) = 0.319,

P(Second self-prepared) = 0.319,

P(Third self-prepared) = 0.319.

To find the combined probability, we multiply these probabilities together:

P(All three self-prepared) = 0.319 × 0.319 × 0.319,

This calculation results in approximately 0.0324, or 3.24%.

On the day that his first child was born, Ezio Auditore de Firenze deposited $3,000 into an investment account. The only purpose for the account was to pay for his son’s first year of college tuition. Assume that his son, Flavia, started college on his 18t h birthday and his first year tuition payment had to be made that day. The amount needed on that day was $26,000. If that was indeed the amount of money in the account on Flavia’s 18t h birthday, what annual rate of return did Ezio earn on his investment account?

Answers

Answer:

  about 12.75%

Step-by-step explanation:

Let r represent the annual rate of return. Compounded annually for 18 years, the account multiplier is (1+r)^18. Then we have ...

  26,000 = 3,000(1+r)^18

  (26,000/3,000)^(1/18) = 1+r . . . . . . divide by 3000, take the 18th root

  (26/3)^(1/18) -1 = r ≈ 12.7465%

Ezio's account earned about 12.75% annually.

Ezio's $3,000 investment grew to $26,000 over 18 years at this rate.

To calculate the annual rate of return Ezio earned on his investment for his son, Flavia's, college tuition, we'll need to use the compound interest formula:

A = P(1 + r)^n

Where:

A is the amount of money accumulated after n years, including interest.

P is the principal amount (the initial amount of money).

r is the annual interest rate (decimal).

n is the number of years the money is invested.

We know that Ezio deposited $3,000 (P = 3000), the amount in the account after 18 years is $26,000 (A = 26000), and that the time period n is 18 years. We need to find the annual interest rate r.

Let's rearrange the formula to solve for r:

(1 + r)^n = A / P

(1 + r)^18 = 26000 / 3000

(1 + r)^18 = 8.6667

Now we need to take the 18th root of 8.6667 to find (1 + r):

1 + r = (8.6667)^(1/18)

The 18th root of 8.6667 is approximately 1.1225. This means:

1 + r = 1.1225

Subtract 1 from both sides to find r:

r = 1.1225 - 1

r = 0.1225 or 12.25%

The annual rate of return Ezio earned on his investment is approximately 12.25%.

Theorem: Let a and b be positive integer, if gcd(a,b)=1, then exist positive integer x and y such that ax+by=c for any integer greater than ab-a-b.

Prove the above theorem.

Answers

Answer with explanation:

It is given that , a and b are positive integers.

gcd(a,b)=1

We have to prove for any positive integer x and y ,

a x + by =c, for any integer greater than ab-a-b.

Proof:

GCD of two numbers is 1, when two numbers are coprime.

Consider two numbers , 9 and 7

GCD (9,7)=1

So, we have to calculate positive integers x and y such that

⇒ 9 x +7 y > 9×7-9-7

⇒9x +7 y> 47

To prove this we will draw the graph of Inequality.

So the ordered pair of Integers are

x>5 and y>6.

So, for any integers , a and b ,

→ax+ by > a b -a -b, if

[tex]\Rightarrow \frac{x}{\frac{ab-a-b}{a}}+ \frac{y}{\frac{ab-a-b}{b}}>1,\frac{ab-a-b}{a},\text{and},\frac{ab-a-b}{b}[/tex]

⇒Range of x for which this inequality hold

      [tex]=[\frac{ab-a-b}{a},\infty)[/tex]

if,

[tex]\frac{ab-a-b}{a}[/tex]

is an Integer ,otherwise range of x

         [tex]=(\frac{ab-a-b}{a},\infty)[/tex]

⇒Range of y for which this inequality hold

      [tex]=[\frac{ab-a-b}{b},\infty)[/tex]

if,

[tex]\frac{ab-a-b}{b}[/tex]

is an Integer ,otherwise range of y

         [tex]=(\frac{ab-a-b}{b},\infty)[/tex]

A random sample of 100 people was taken. Eighty of the people in the sample favored Candidate A. We are interested in determining whether or not the proportion of the population in favor of Candidate A is significantly more than 75%. Refer to Exhibit 9-6. At a .05 level of significance, it can be concluded that the proportion of the population in favor of candidate A is

Answers

Answer:

it would be A 1251

Step-by-step explanation:

Final answer:

The question involves hypothesis testing of proportions. Based on a sample where 80% favour Candidate A, we may infer the true population proportion is significantly greater than 75%, however, actual mathematical calculations are needed for confirmation.

Explanation:

The question examines whether the proportion of the population favouring Candidate A is significantly more than 75% based on a sample of 100 people where 80 favoured Candidate A. This is a problem of hypothesis testing for proportions. The null hypothesis (H₀) is that the true population proportion is 75% (p = 0.75), versus the alternative hypothesis (H₁) stating the true population proportion is more than 75%. Using a significance level of 0.05, we examine the data.

With a sample proportion of 80 out of 100 (p' = 0.80) and given the large sample size, we apply the Normal approximation to the Binomial distribution, followed by a one-sample z-test. If the resulting p-value is less than the significance level of 0.05, we reject the null hypothesis and conclude that the true population proportion of individuals favouring Candidate A is significantly greater than 75%.

However, without performing the actual calculations, we cannot definitively determine the conclusion. From a practical perspective, an 80% sample proportion showing favour in a sample as large as 100 might indicate a significantly higher proportion than 75%, but an exact mathematical test should be done to confirm this.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

Question 1: Find the distance between the points (1, 4) and (5, 1).
Question 1 options:

7

5

25

√7

Answers

[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{1}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{5}~,~\stackrel{y_2}{1})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{(5-1)^2+(1-4)^2}\implies d=\sqrt{4^2+(-3)^2} \\\\\\ d=\sqrt{16+9}\implies d=\sqrt{25}\implies d=5[/tex]

Answer: second option.

Step-by-step explanation:

You need to use the formula for calculate the distance between two points. This is:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Given the point (1, 4) and the point (5, 1), you can say that:

[tex]x_2=5\\x_1=1\\y_2=1\\y_1=4[/tex]

Now you must substitute these values into the formula.

The distance between the points (1, 4) and (5, 1) is the following:

[tex]d=\sqrt{(5-1)^2+(1-4)^2}\\\\d=5[/tex]

This matches with the second option.

2. In 1973, Secretariat set the current record of 1 minute 59.40 seconds for the Kentucky Derby. The length of this race is 10 furlongs1 furlong1/8 mile). What was Secretariat's average speed in this race in mi/hr?

Answers

Answer:

Secretariat's average speed in the Kentucky Derby of 1973 was of 47.05 miles per hour.

Step-by-step explanation:

Secretariat set the current record of 1 minute 59.40 seconds for the Kentucky Derby, running 10 furlongs, which are 1.25 miles.

To determine the speed at which the horse ran, we must first isolate the time in which he ran, to determine the fraction of time in which he traveled the 1.25 mile.

An hour has 60 minutes. To determine the speed, whe have to divide 60 by the minutes the horse ran, and then multiply it by the number of miles he ran: 60 / 1.5940 = 37,64 x 1.25 = 47,05.

The horse ran at 47.05 miles per hour.

Secretariat's record average speed during the Kentucky Derby was an impressive 37.68 mi/hr.

The question asks to calculate Secretariat's average speed during the Kentucky Derby in miles per hour (mi/hr). First, we need to express the distance of the Kentucky Derby in miles. The Derby is 10 furlongs long, and since 1 furlong is 1/8 mile, this translates to 1.25 miles (10 furlongs × 1/8 mile/furlong). Understanding this conversion is crucial because speed is typically measured in miles per hour in the United States.

Next, Secretariat's record-setting time for completing this distance is 1 minute and 59.40 seconds, which is equivalent to 119.40 seconds. To find the average speed, we use the formula:

Speed = Distance / Time

Hence, Secretariat's average speed is:

1.25 miles / (119.40 seconds × (1 hour / 3600 seconds)) = 1.25 miles / 0.03317 hours = 37.68 mi/hr, when the time is converted from seconds to hours.

Therefore, Secretariat's record average speed during the Kentucky Derby was an impressive 37.68 mi/hr.

Other Questions
7) State the prime factorization of 30. I will add brainlist from the last question its just that I have to wait till it appears! THIS IS IXL QUESTION Find an equation of the line that contains the following pair of points. (3,2) and (1,3) The equation of the line is (Simnlif vour ancwor Llco.intogore or fractione.for anu.numborc.in.the aquatio In chapter 25, why can't the farmers pick the fruit?(The grapes of wrath) A. Because there is too much of itB. Because there are no workersC. Because they are driven off their land before harvestD. Because the fruit is diseasedSUBM Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean 2.61 and standard deviation 0.82. (a) If a random sample of 25 specimens is selected, what is the probability that the sample average sediment density is at most 3.00? Between 2.61 and 3.00 On March 1, 2018, Mandy Services issued a 3% long-term notes payable for $15,000. It is payable over a 3-year term in $5,000 principal installments on March 1 of each year, beginning March 1, 2019. Each yearly installment will include both principal repayment of $5,000 and interest payment for the preceding one-year period. What is the amount of total cash payment that Mandy will make on March 1, 2019? PLEASE ANSWER QUICK!!! Identify the equation of the circle that has its center at (-8, 15) and passes through the origin. If sin0=-1/2 and 0 is in quadrant III then tan0= Veronica works each day and earns more money per hour the longer she works. Write a function to represent a starting pay of $20 with an increase each hour by 5%. Determine the range of the amount Veronica makes each hour if she can only work a total of 8 hours. Write an equation: After withdrawing $7 from a checking account, Carlas balance was $89 Which element would the search element be compared to first, if abinary search were used on the list above?4354498 Which of these is a feature of audible pedestrian crosswalk signals?A.Pedestrian trackingB.Directional beaconsC.Emergency instructionsD.Responses to voice commands Exercise 1.4.4: Solve y' + xy = x. Wendy Epstein, a sales representative, earns an annual salary of $29,500 and receives a commission on that portion of her annual sales that exceeds $150,000. The commission is 8.5% on all sales up to $50,000 above the quota. Beyond that amount, she receives a commission of 10%. Her total sales for the past year were $295,000. Compute the following amounts:a. The regular annual salary $b. The commission $c. The total annual earnings $b. Calculate commission amounts on sales multiplied by commission percentages.c. Regular annual salary + commission = Total Annual earnings. What does the letter R symbolize in a structural formula, such as RCOOH? Factor completely. 6x4 9x3 36x2 + 54x3x(x2 + 6)(2x + 3)6x(x2 6)(2x 3)3x(x2 6)(2x 3)6x(x2 + 6)(2x + 3) 8. Show all computations for the following. Do not use a calculator.(a) How many bit strings are there of length six which are palindromes? Explain(b) How many bit strings are there of length 6 which contain exactly three 1s? Explain Four points question: Answer the following A- When selecting cards from a deck without replacing, the number of ways to draw the 3 card is (which of the following)? 52 52-1 52-2 B- When calculating the number of permutations of all letters in a word, the denominator of the calculation is which of the following? n! 0! C- How many ways can you draw a card from a normal deck and roll a number on a normal die? D- If you pick cards from a normal deck of cards, one at a time and replace the card and reshuffle the deck between draws, how many ways can you select 3 cards? A group of 8 friends (5 girls and 3 boys) plans to watch a movie, but they have only 5 tickets. How many different combinations of 5 friends couldpossibly receive the tickets?A. 13B. 40C. 56b. 64 Matrices X and Y both measure 2x2 and are inverses of each other. Which matrix represents their product?