Find Malcolm’s debt-to-income ratio if his monthly expenses are $975 and his monthly salary is $1200.
Question 8 options:


a) 1.23


b) 0.795


c) 0.75


d) 0.8125

Answers

Answer 1

Answer: D. 0.8125

Step-by-step explanation: His expenses is $975, and his salary is $1200. Divide the expenses by the salary to find the debt-to-income ratio.

975/1200 = 0.8125

The debt-to-income ratio is 0.8125.

Answer 2

Answer:

d) 0.8125

Step-by-step explanation:

Malcolm’s debt-to-income ratio is 0.8125 if his monthly expenses are $975 and his monthly salary is $1200.

All you have to do is divide monthly expenses by the monthly salary.

975 ÷ 1200 = 0.8125


Related Questions

What is the equation of the graph below​

Answers

Answer:

y=-(x-3)^2+2

Step-by-step explanation:

since the curve is convex up so the coefficient of x^2 is negative

and by substituting by the point 3 so y = 2

Answer:

B

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

here (h, k) = (3, 2), hence

y = a(x - 3)² + 2

If a > 0 then vertex is a minimum

If a < 0 then vertex os a maximum

From the graph the vertex is a maximum hence a < 0

let a = - 1, then

y = - (x - 3)² + 2 → B

how does one do this? may someone teach me how to calculate and solve this problem please, thanks.​

Answers

Answer:

x=1

Step-by-step explanation:

So we are talking about parabola functions.

All parabolas (even if they aren't functions) have their axis of symmetry going through their vertex.

For parabola functions, your axis of symmetry is x=a number.

The "a number" part will be the x-coordinate of the vertex.

The axis of symmetry is x=1.

Answer:

x=1

Step-by-step explanation:

The vertex of a parabola is the minimum or maximum of the parabola.

This is the line  where the parabola makes a mirror image.

Assuming the equation for the parabola is ( since this is a function)

y= a(x-h)^2 +k

where (h,k) is the vertex

Then x=h is the axis of symmetry

y = a(x-1)^2+5

when we substitute the vertex into the equation

The axis of symmetry is x=1

Whats the quotient for this? ​

Answers

Answer:

Step-by-step explanation:

Divide 4378 by 15

From 4378 lets take the first two digits for division:

43/ 15

We know that 43 does not come in table of 15

So we will take 15 *2 = 30

43-30 = 13

The quotient is 3 and the remainder is 13

Now take one more number which is 7 with 13

137/15.

Now 137 does not come in table of 15

15*9 = 135

135-137 = 2

It means quotient is 9 and remainder is 2

Now take one more number which is 8 with 2

28/15

28 does not come in table of 15

15*1 = 15

28-15 = 13/15

Now the quotient is 1 and remainder is 13

Hence, the quotient of 4,378 is 291 and remainder is 13 ....

How is the interquartile range calculated?
Minimum
Q1
Q1
Median
Median
Q3
Q3
Maximum
Maximum

Answers

Answer:

A

Step-by-step explanation:

The interquartile range is the difference between the upper quartile and the lower quartile, that is

interquartile range = [tex]Q_{3}[/tex] - [tex]Q_{1}[/tex]

Final answer:

The interquartile range (IQR) represents the spread of the middle 50 percent of a data set and is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). It also helps in identifying potential outliers in the data.

Explanation:

The interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the middle 50 percent of a data set. It is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). To elaborate:


 First Quartile (Q1): This is the median of the lower half of the data set, not including the median if the number of data points is odd.
 Third Quartile (Q3): This is the median of the upper half of the data set, not including the median if the number of data points is odd.
 The IQR is found by the formula IQR = Q3 - Q1.

If, for example, Q1 is 2 and Q3 is 9, the IQR is calculated as 9 minus 2, resulting in an IQR of 7.

In addition to providing insight into the spread of the central portion of the data set, the IQR can also be used to identify potential outliers. These are values that fall more than 1.5 times the IQR above Q3 or below Q1.

For f(x)=4x+1 and g(x)=x^2-5, find (f-g)(x).

Answers

Answer:

C

Step-by-step explanation:

note (f - g)(x) = f(x) - g(x)

f(x) - g(x)

= 4x + 1 - (x² - 5) ← distribute by - 1

= 4x + 1 - x² + 5 ← collect like terms

= - x² + 4x + 6 ← in standard form → C

For this case we have the following functions:

[tex]f (x) = 4x + 1\\g (x) = x ^ 2-5[/tex]

We must find [tex](f-g) (x).[/tex] By definition we have to:

[tex](f-g) (x) = f (x) -g (x)[/tex]

So:

[tex](f-g) (x) = 4x + 1- (x ^ 2-5)[/tex]

We take into account that:

[tex]- * + = -\\- * - = +\\(f-g) (x) = 4x + 1-x ^ 2 + 5\\(f-g) (x) = - x ^ 2 + 4x + 6[/tex]

Answer:

[tex](f-g) (x) = - x ^ 2 + 4x + 6[/tex]

Option C

What is the midpoint of a line segment with the endpoints (-6, -3) and (9,-7)?

Answers

Answer: (1.5, -5)

Step-by-step explanation: a p e x

Please help and explain

Answers

Answer: Option A

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Step-by-step explanation:

Use the quadratic formula to find the zeros of the function.

For a function of the form

[tex]ax ^ 2 + bx + c = 0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case the function is:

[tex]2x^2-6x+5=0[/tex]

So

[tex]a=2\\b=-6\\c=5[/tex]

Then using the quadratic formula we have that:

[tex]x=\frac{-(-6)\±\sqrt{(-6)^2-4(2)(5)}}{2(2)}[/tex]

[tex]x=\frac{6\±\sqrt{36-40}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{-4}}{4}[/tex]

Remember that [tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{6\±\sqrt{4}*\sqrt{-1}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{4}i}{4}[/tex]

[tex]x=\frac{6\±2i}{4}[/tex]

[tex]x=\frac{3\±i}{2}[/tex]

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

What is the volume of a sphere that has a radius of 9?​

Answers

Answer:

V = 3053.63

Step-by-step explanation:

The volume of a sphere that has a radius of 9 is 3053.63.

V=4

3πr3=4

3·π·93≈3053.62806

Answer is provided in the image attached.

In △ABC, m∠A=16°, m∠B=49°, and a=4. Find c to the nearest tenth.

Answers

Answer:

= 8.33 inches

Step-by-step Explanation

First add 49 + 16, which equals 65, and subtract that result from 180, since a triangle equals 180 degrees and you find out angle C is equal to 115 degrees.

Now using the formula sinA/a = sinB/b = sinC/c, plug in values and you'd get the equation sin49 x 10/sin115. After solving the equation you'd get about  8.32729886047258 inches.

= 8.33

Answer:

13.2 units

Step-by-step explanation:

∠A = 16°

∠B = 49°

∠C = 180-(16+49)

∠C = 115°

a = 4

Now, from sine rule we get

[tex]\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}[/tex]

[tex]\frac{sinA}{a}=\frac{sinC}{c}\\\Rightarrow \frac{sin16}{4}=\frac{sin115}{c}\\\Rightarrow c=\frac{sin115}{ \frac{sin16}{4}}\\\Rightarrow c=13.2[/tex]

∴ c is 13.2 units

Rachel has been watching the number of alligators that live in her neighborhood. The number of alligators changes each week.
n f(n)
1 48
2 24
3 12
4 6
Which function best shows the relationship between n and f(n)?
f(n) = 48(0.5)^n − 1
f(n) = 48(0.5)^n
f(n) = 24(0.5)^n
f(n) = 96(0.5)^n − 1

Answers

Answer:

f(x) = 48(0.5)^n - 1 ⇒ 1st answer

Step-by-step explanation:

* Lets explain how to solve the problem

- The number of alligators changes each week

∵ The number in week 1 is 28

∵ The number in week 2 is 24

∵ The number in week 3 is 12

∵ The number in week 4 is 6

∴ The number of alligators is halved each week

∴ The number of alligators each week = half the number of alligators

   of the previous week

- The number of alligators formed a geometric series in which the

  first term is 48 and the constant ratio is 1/2

∵ Any term in the geometric series is Un = a r^(n - 1), where a is the

  first term and r is the constant ratio

∴ f(n) = a r^(n - 1)

∵ a = 48 ⇒ The number of alligators in the first week

∵ r = 1/2 = 0.5

∴ f(x) = 48(0.5)^n - 1

the answer is f(x) = 48(0.5)^n - 1

A parallelogram has coordinates A(1,1), B(5,4), C(7,1), and D(3,-2) what are the coordinates of parallelogram A’BCD after 180 degree rotation about the origin and a translation 5 units to the right and 1 unit down ?

Answers

Answer:

The coordinates are  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

Step-by-step explanation:

* Lets revise some transformation

- If point (x , y) rotated about the origin by angle 180°

 ∴ Its image is (-x , -y)

- If the point (x , y) translated horizontally to the right by h units

 ∴ Its image is (x + h , y)

- If the point (x , y) translated horizontally to the left by h units

 ∴ Its image is (x - h , y)

- If the point (x , y) translated vertically up by k units

 ∴ Its image is (x , y + k)

- If the point (x , y) translated vertically down by k units

 ∴ Its image is (x , y - k)

* Now lets solve the problem

∵ ABCD is a parallelogram

∵ Its vertices are A (1 , 1) , B (5 , 4) , C (7 , 1) , D (3 , -2)

∵ The parallelogram rotates about the origin by 180°

∵ The image of the point (x , y) after rotation 180° about the origin

   is (-x , -y)

∴ The images of the vertices of the parallelograms are

  (-1 , -1) , (-5 , -4) , (-7 , -1) , (-3 , 2)

∵ The parallelogram translate after the rotation 5 units to the right

   and 1 unit down

∴ We will add each x-coordinates by 5 and subtract each

   y-coordinates by 1

∴ A' = (-1 + 5 , -1 - 1) = (4 , -2)

∴ B' = (-5 + 5 , -4 - 1) = (0 , -5)

∴ C' = (-7 + 5 , -1 - 1) = (-2 , -2)

∴ D' = (-3 + 5 , 2 - 1) = (2 , 1)

* The coordinates of the parallelograms A'B'C'D' are:

  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

Helllllllppppp plzzzzzzzzz

Answers

Answer:

Hey, You have chosen the correct answer.

the correct answer is C.

The answer is C you got it right

write a point slope equation for the line that has slope 3 and passes through the point (5,21). do not use parenthesis on the y side

Answers

Answer:

y - 21 = 3(x - 5)

Step-by-step explanation:

The equation of a line in point- slope form is

y - b = m(x - a)

where m is the slope and (a, b) a point on the line

here m = 3 and (a, b) = (5, 21), hence

y - 21 = 3(x - 5) ← in point- slope form

Final answer:

The point slope form of an equation is y - y1 = m(x - x1). Substituting the given point (5,21) and slope 3 into the equation, we get y - 21 = 3(x - 5). To remove the parenthesis on the y side, we simplify the equation to be y = 3x + 6.

Explanation:

The question asks for the writing of a point-slope equation of a line with a given slope of 3 that passes through a point (5,21). The point-slope form of an equation is generally denoted as:

y - y1 = m(x - x1)

Here, (x1, y1) = (5,21) and m (slope) = 3. Hence, substituting these values yields the equation:

y - 21 = 3(x - 5)

The asked equation without parenthesis on the y side would be:

y = 3x - 15 + 21

So, the final equation is:

y = 3x + 6

Learn more about Point-Slope Equation

https://brainly.com/question/35491058

#SPJ11

what is the area of the sector shown

Answers

Answer:

[tex] D.~ 34.2~cm^2 [/tex]

Step-by-step explanation:

An arc measure of 20 degrees corresponds to a central angle of 20 degrees.

Area of sector of circle

[tex] area = \dfrac{n}{360^\circ}\pi r^2 [/tex]

where n = central angle of circle, and r = radius

[tex] area = \dfrac{20^\circ}{360^\circ}\pi (14~cm)^2 [/tex]

[tex] area = \dfrac{1}{18}(3.14159)(196~cm^2) [/tex]

[tex] area = 34.2~cm^2 [/tex]

Solve the equations to find the number and type of solutions
The equation 8 - 4x = 0 has
real solution(s).
DONE

Answers

Answer:

This has one real solution, x=4

Step-by-step explanation:

8 - 4x = 0

Add 4x to each side

8 - 4x+4x = 0+4x

8 =4x

Divide each side by 4

8/4 = 4x/4

2 =x

This has one real solution, x=4

Answer:

This equation has 1 real solution, x=2....

Step-by-step explanation:

8- 4x=0

Move 8 to the R.H.S

-4x=0-8

-4x=-8

Divide both sides by -4

-4x/-4 = -8/-4

x=2

Thus this equation has 1 real solution, x=2 ....

Which of the following numbers are less than 9/4?

Choose all that apply:

A= 11/4
B= 15/8
C= 2.201

Answers

Answer:

OPTION B.

OPTION C.

Step-by-step explanation:

In order to know which numbers are less than [tex]\frac{9}{4}[/tex], you can convert this fraction into a decimal number. To do this, you need to divide the numerator 9 by the denominator 4. Then:

 [tex]\frac{9}{4}=2.25[/tex]

 Now you need convert the fractions provided in the Options A and B into decimal numbers by applying the same procedure. This are:

Option A→ [tex]\frac{11}{4}=2.75[/tex] (It is not less than 2.25)

Option B→ [tex]\frac{15}{8}=1.875[/tex] (It is less than 2.25)

The number shown in Option C is already expressed in decimal form:

Option C→ [tex]2.201[/tex] (It is less than 2.25)

Its definitely c because i know

plz help meh wit dis question but I need to show work..... ​

Answers

Answer:

5

Step-by-step explanation:

16+24

--------------

30-22

Complete the items on the top of the fraction bar

40

----------

30-22

Then the items under the fraction bar

40

------------

8

Then divide

5

Step-by-step explanation:

First of all, solve the numerator.

16+24=40

Secondly, solve the denominator:

30-22 = 8

So now the fraction appear like this :

[tex] \frac{40}{8} [/tex]

40/8 = 5

Isabel is on a ride in an amusement park that Slidez the right or to the right and then it will rotate counterclockwise about its own center 60° every two seconds how many seconds pass before Isabel returns to her starting position

Answers

Final answer:

Isabel's ride rotates 60° every two seconds. It takes 6 intervals (360° divided by 60°) to make a full rotation. Multiplying 6 intervals by 2 seconds gives us 12 seconds for Isabel to return to the starting position.

Explanation:

To determine how many seconds will pass before Isabel returns to her starting position on the ride, we need to establish the total degrees of rotation that equate to a full circle, which is 360°. Since the ride rotates 60° every two seconds, we can calculate the number of two-second intervals required to complete a full 360° rotation.

Firstly, divide 360° by 60° to find the number of intervals:

360° / 60° = 6 intervals

Since each interval takes 2 seconds, multiply the number of intervals by 2 to find the total time:

6 intervals × 2 seconds/interval = 12 seconds.

Therefore, it will take Isabel 12 seconds to return to her starting position on the amusement park ride.

children play a form of hopscotch called jumby. the pattern for the game is as given below.

Find the area of the pattern in simplest form.​

Answers

Answer:

7t^2 + 21t

Step-by-step explanation:

You have 7 tiles of each t by t+3.

One tile has an area of

t * (t+3) = t^2 + 3t

So in total the area is

7* (t^2 + 3t)

7t^2 + 21t

If 47400 dollars is invested at an interest rate of 7 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent.

(a) Annual: $______
(b) Semiannual: $ _____
(c) Monthly: $______
(d) Daily: $_______

Answers

Answer:

Part A) Annual [tex]\$66,480.95[/tex]  

Part B) Semiannual [tex]\$66,862.38[/tex]  

Part C) Monthly [tex]\$67,195.44[/tex]  

Part D) Daily [tex]\$67,261.54[/tex]  

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

Part A)

Annual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=1[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{1})^{1*5}[/tex]  

[tex]A=47,400(1.07)^{5}[/tex]  

[tex]A=\$66,480.95[/tex]  

Part B)

Semiannual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=2[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{2})^{2*5}[/tex]  

[tex]A=47,400(1.035)^{10}[/tex]  

[tex]A=\$66,862.38[/tex]  

Part C)

Monthly

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=12[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{12})^{12*5}[/tex]  

[tex]A=47,400(1.0058)^{60}[/tex]  

[tex]A=\$67,195.44[/tex]  

Part D)

Daily

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=365[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{365})^{365*5}[/tex]  

[tex]A=47,400(1.0002)^{1,825}[/tex]  

[tex]A=\$67,261.54[/tex]  

The value of an investment of $47,400 at an interest rate of 7% per year was calculated at the end of 5 years for different compounding methods, reaching slightly different amounts, with the highest value obtained through daily compounding.

The value of the investment at the end of 5 years for different compounding methods would be:

(a) Annual: $62,899.68(b) Semiannual: $63,286.83(c) Monthly: $63,590.92(d) Daily: $63,609.29

The diagram represents three statements: p, q, and r. For what value is both p ∧ r true and q false?

2
4
5
9

Answers

Answer:

9

Step-by-step explanation:

From the diagram:

only p true in 8 cases;only q true in 7 cases;only r true in 6 cases;both p and q true, r false in 5 cases;both p and r true, q false in 9 cases;both q and r true, p false in 4 cases;all three p, q and r true in 2 cases.

So, correct option is 9 cases.

Answer:

The correct option is 4. For value 9 both p ∧ r true and q false.

Step-by-step explanation:

The diagram represents three statements: p, q, and r.

We need to find the value for which p ∧ r is true and q false.

p ∧ r true mean the intersection of statement p and r. It other words p ∧ r true means p is true and r is also true.

From the given venn diagram it is clear that the intersection of p and r is

[tex]p\cap r=9+2=11[/tex]

p ∧ r true and q false means intersection of p and r but q is not included.

From the given figure it is clear that for value 2 all three statements are true. So, the value for which both p ∧ r true and q false is

[tex]11-2=9[/tex]

Therefore the correct option is 4.

Match the identities to their values taking these conditions into consideration sinx=sqrt2 /2 cosy=-1/2 angle x is in the first quadrant and angle y is in the second quadrant. Information provided in the picture. PLEASE HELP

Answers

Answer:

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \cos(x+y)\quad }\longleftrightarrow \boxed{\quad \dfrac{-(\sqrt{6}+\sqrt{2})}{4}\quad }[/tex]

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \sin(x+y)\quad }\longleftrightarrow \boxed{\quad\dfrac{\sqrt{6}-\sqrt{2}}{4}\quad }[/tex]

[tex]\boxed{\quad \tan(x+y)\quad }\longleftrightarrow \boxed{\quad\sqrt{3} -2\quad }[/tex]

[tex]\boxed{\vphantom{\sqrt{3}}\quad \tan(x-y)\quad }\longleftrightarrow \boxed{\quad-(2+\sqrt{3})\quad }[/tex]

Step-by-step explanation:

To find the values of the given trigonometric identities, we first need to find the values of cos x and sin y using the Pythagorean identity, sin²x + cos²x ≡ 1.

Given values:

[tex]\sin x = \dfrac{\sqrt{2}}{2}\qquad \textsf{Angle $x$ is in Quadrant I}\\\\\\\cos y=-\dfrac{1}{2}\qquad \textsf{Angle $y$ is in Quadrant II}[/tex]

Find cos(x):

[tex]\sin^2 x+\cos^2 x=1\\\\\\\left(\dfrac{\sqrt{2}}{2}\right)^2+\cos^2 x=1\\\\\\\dfrac{1}{2}+\cos^2 x=1\\\\\\\cos^2 x=1-\dfrac{1}{2}\\\\\\\cos^2 x=\dfrac{1}{2}\\\\\\\cos x=\pm \sqrt{\dfrac{1}{2}}\\\\\\\cos x=\pm \dfrac{\sqrt{2}}{2}[/tex]

As the cosine of an angle is positive in quadrant I, we take the positive square root:

[tex]\cos x=\dfrac{\sqrt{2}}{2}[/tex]

Find sin(y):

[tex]\sin^2 y + \cos^2 y = 1 \\\\\\ \sin^2 y + \left(-\dfrac{1}{2}\right)^2 = 1 \\\\\\ \sin^2 y + \dfrac{1}{4} = 1 \\\\\\ \sin^2 y = 1-\dfrac{1}{4} \\\\\\ \sin^2 y = \dfrac{3}{4} \\\\\\ \sin y =\pm \sqrt{ \dfrac{3}{4}} \\\\\\ \sin y = \pm \dfrac{\sqrt{3}}{2}[/tex]

As the sine of an angle is positive in quadrant II, we take the positive square root:

[tex]\sin y = \dfrac{\sqrt{3}}{2}[/tex]

The tangent of an angle is the ratio of the sine and cosine of that angle. Therefore:

[tex]\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1[/tex]

[tex]\tan y=\dfrac{\sin y}{\cos y}=\dfrac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3}[/tex]

Now, we can use find the sum or difference of two angles by substituting the values of sin(x), cos(x), sin(y), cos(y), tan(x) and tan(y) into the corresponding formulas.

[tex]\dotfill[/tex]

cos(x + y)

[tex]\cos(x+y)=\cos x \cos y - \sin x \sin y \\\\\\ \cos(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) - \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\ \cos(x+y)=-\dfrac{\sqrt{2}}{4} - \dfrac{\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-\sqrt{2}-\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{2}+\sqrt{6})}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{6}+\sqrt{2})}{4}[/tex]

[tex]\dotfill[/tex]

sin(x + y)

[tex]\sin(x+y)=\sin x \cos y + \cos x \sin y \\\\\\\sin(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) + \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\\sin(x+y)=-\dfrac{\sqrt{2}}{4} + \dfrac{\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{-\sqrt{2}+\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{\sqrt{6}-\sqrt{2}}{4}[/tex]

[tex]\dotfill[/tex]

tan(x + y)

[tex]\tan(x+y)=\dfrac{\tan x + \tan y}{1-\tan x \tan y} \\\\\\ \tan(x+y)=\dfrac{1 + (-\sqrt{3})}{1-(1) (-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1 -\sqrt{3}}{1+\sqrt{3}} \\\\\\ \tan(x+y)=\dfrac{(1 -\sqrt{3})(1 -\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1-2\sqrt{3}+3}{1-\sqrt{3}+\sqrt{3}-3} \\\\\\ \tan(x+y)=\dfrac{4-2\sqrt{3}}{-2} \\\\\\ \tan(x+y)=-2+\sqsrt{3} \\\\\\ \tan(x+y)=\sqrt{3} -2[/tex]

[tex]\dotfill[/tex]

tan(x - y)

[tex]\tan(x-y)=\dfrac{\tan x - \tan y}{1+\tan x \tan y} \\\\\\\tan(x-y)=\dfrac{1 - (-\sqrt{3})}{1+(1) (-\sqrt{3})} \\\\\\\tan(x-y)=\dfrac{1 +\sqrt{3}}{1-\sqrt{3}} \\\\\\\tan(x-y)=\dfrac{(1 +\sqrt{3})(1 +\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \\\\\\ \tan(x-y)=\dfrac{1+2\sqrt{3}+3}{1+\sqrt{3}-\sqrt{3}-3} \\\\\\ \tan(x-y)=\dfrac{4+2\sqrt{3}}{-2} \\\\\\ \tan(x-y)=-2-\sqrt{3}\\\\\\\tan(x-y)=-(2+\sqrt{3})[/tex]

Which linear function represents the line given by the point-slope equation y +7=-2/3(x + 6)

Answers

Answer:

y = -(2/3)*x - 11

Step-by-step explanation:

To convert a point-slop equation into a linear function, there are certain steps which have to be followed. The primary aim is to make y the subject of the equation. By making sure that y is on the left hand side of the equation and x is on the right hand side of the equation, our goal will be achieved. To do that, first of all do the cross multiplication. This will result in:

3(y+7) = -2(x+6).

Further simplification results in:

3y + 21 = -2x - 12.

Keeping the expression of y on the left hand side and moving the constant on the right hand side gives:

3y = -2x - 33.

Leaving y alone on the left hand side gives:

y = -(2/3)*x - 33/3.

Therefore, y = -(2/3)*x - 11!!!

1. Factor each of the following completely. Look carefully at the structure of each quadratic function and consider the best way to factor. Is there a GCF? Is it an example of a special case? SHOW YOUR WORK

Answers

Answer: 1) (x - 7)(x - 8)

               2) 2x(2x-7)(x + 2)

               3) (4x + 7)²

               4) (9ab² - c³)(9ab² + c³)

Step-by-step explanation:

1) x² - 15x + 56  → use standard form for factoring

                    ∧

                -7 + -8 = -15

  (x - 7) (x - 8)

************************************

2) 4x³ - 6x² - 28x      → factor out the GCF (2x)

2x(2x² - 3x - 14)         → factor using grouping

2x[2x² + 4x    - 7x - 14]    

2x[ 2x(x + 2)   -7(x + 2)]

2x(2x - 7)(x + 2)

*************************************

3) 16x² + 56x + 49     → this is the sum of squares

√(16x²) = 4x      √(49) = 7

              (4x + 7)²

******************************************************

4) 81a²b⁴ - c⁶          → this is the difference of squares

√(81a²b⁴) = 9ab²       √(c⁶) = c³

       (9ab² - c³)(9ab² + c³)

   

What is 5 m in mm I would like to know please?

Answers

1 meter = 1000 mm

so then 5 meters is just 5 * 1000 = 5000 mm.

A high school track is shaped as a rectangle with a half circle on either side . Jake plans on running four laps . How many meters will jake run ?

Answers

Answer:

[tex]1,207.6\ m[/tex]

Step-by-step explanation:

step 1

Find the perimeter of one lap

we know that

The perimeter of one lap is equal to the circumference of a complete circle (two half circles is equal to one circle) plus two times the length of 96 meters

so

[tex]P=\pi D+2(96)[/tex]

we have

[tex]D=35\ m[/tex]

[tex]\pi =3.14[/tex]

substitute

[tex]P=(3.14)(35)+2(96)[/tex]

[tex]P=301.9\ m[/tex]

step 2

Find the total meters of four laps

Multiply the perimeter of one lap by four

[tex]P=301.9(4)=1,207.6\ m[/tex]

Answer:

1207.6

Step-by-step explanation:

step 1

i got it right on the test

step 2

you get it right on the test

Write the slope-intercept form of the equation that passes through the point (0,-3) and is perpendicular to the line y = 2x - 6

Answers

For this case we have that by definition, the equation of a line of the slope-intersection form is given by:

[tex]y = mx + b[/tex]

Where:

m: It's the slope

b: It is the cutoff point with the y axis

By definition, if two lines are perpendicular then the product of their slopes is -1.

We have the following line:

[tex]y = 2x-6[/tex]

Then[tex]m_ {1} = 2[/tex]

The slope of a perpendicular line will be:

[tex]m_ {1} * m_ {2} = - 1\\m_ {2} = \frac {-1} {m_ {1}}\\m_ {2} = - \frac {1} {2}[/tex]

Thus, the equation of the line will be:

[tex]y = - \frac {1} {2} x + b[/tex]

We substitute the given point and find "b":

[tex]-3 = - \frac {1} {2} (0) + b\\-3 = b[/tex]

Finally the equation is:

[tex]y = - \frac {1} {2} x-3[/tex]

Answer:

[tex]y = - \frac {1} {2} x-3[/tex]

Answer:

[tex]y=-\frac{1}{2}x -3[/tex]

Step-by-step explanation:

The slope-intercept form of the equation of a line has the following form:

[tex]y=mx + b[/tex]

Where m is the slope of the line and b is the intercept with the y axis

In this case we look for the equation of a line that is perpendicular to the line

[tex]y = 2x - 6[/tex].

By definition If we have the equation of a line of slope m then the slope of a perpendicular line will have a slope of [tex]-\frac{1}{m}[/tex]

In this case the slope of the line [tex]y = 2x - 6[/tex] is [tex]m=2[/tex]:

Then the slope of the line sought is: [tex]m=-\frac{1}{2}[/tex]

The intercept with the y axis is:

If we know a point [tex](x_1, y_1)[/tex] belonging to the searched line, then the constant b is:

[tex]b=y_1-mx_1[/tex] in this case the poin is: (0,-3)

Then:

[tex]b= -3 -(\frac{1}{2})(0)\\\\b=-3[/tex]

finally the equation of the line is:

[tex]y=-\frac{1}{2}x-3[/tex]

The equations 3x-4y=-2, 4x-y=4, 3x+4y=2, and 4x+y=-4 are shown on a graph.

Which is the approximate solution for the system of equations 3x+4y=2 and 4x+y=-4?
A. (–1.4, 1.5)
B. (1.4, 1.5)
C. (0.9, –0.2)
D. (–0.9, –0.2)

i cant download the graph picture but please help.

Answers

Answer:

A (-1,4,1.5)

Step-by-step explanation:

Solve by graphing, the lines intersect near this point.

What is the sum of entries a32 and b32 in A and B? (matrices)

Answers

Answer:

The correct answer is option D.  13

Step-by-step explanation:

From the figure we can see two matrices A and B

To find the sum of a₃₂ and b₃₂

From the given attached figure we get

a₃₂ means that the third row second column element in the matrix A

b₃₂ means that the third row second column element in the matrix B

a₃₂ = 4 and b₃₂ = 9

a₃₂ + b₃₂ = 4 + 9

 = 13

The correct answer is option D.  13

[tex]A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}[/tex]

So

[tex]a_{32}=4\\b_{32}=9\\\\a_{32}+b_{32}=4+9=13[/tex]

Evaluate the function rule for the given value. y = 15 • 3^x for x = –3

Answers

Answer:

5/9

Step-by-step explanation:

y = 15 • 3^x

Let x = -3

y = 15 • 3^(-3)

The negative means the exponent goes to the denominator

y = 15 * 1/3^3

  = 15 * 1/27

  =15/27

Divide the top and bottom by 3

 =5/9

Other Questions
What is the solution to the equation 1/4x+2=-5/8x-5 If you are researching a topic, when should you organize your notes?A.before you writeB.while you writeC.after you writeD.Notes are unnecessary. true or false ? The segment ab is congruent to the segment bo Who were the first people on the moon? On the 1 AM rounds, the nurse finds a patient awake and frustrated that she cannot go to sleep. The nurse administers an ordered hypnotic to help the patient sleep. Two hours later, the nurse finds the patient out of bed, full of energy, cleaning her room, and singing. Which of the following describes what is happening? a. An allergic reaction b. An idiosyncratic response c. A teratogenic effect d. A synergistic effect In terms of immigration, which of the following would be considered a pushfactor?OA) religious intolerance in one's home countryO B) religious intolerance in another countryOC) plentiful economic opportunity in one's home countryOD) plentiful economic opportunity in another country Solve for x. Your answer must be simplified. -12x 44 A diver shines light up to the surface of a flat glass-bottomed boat at an angle of 30 relative to the normal. If the index of refraction of water and glass are 1.33 and 1.5, respectively, at what angle (in degrees) does the light leave the glass (relative to its normal)? What is the molar mass of (NH4)2C03? a) 144 g b) 96 g c)138 g d)78 g A rectangle has a width of 3 inches. The rectangle's length is 5 times its width. What is the area of the rectangle? What is the prime factorization of 621? A book slides across a level, carpeted floor with an initial speed of 3.25 m/s and comes to rest after 3.25 m. Calculate the coefficient of kinetic friction ????k between the book and the carpet. Assume the only forces acting on the book are friction, weight, and the normal force. On July 18, Lester accepted a $15,000, 7 3/4%, 180-day note from Ryan O'Flynn. On October 5, Lester discounted the note at Brome Bank at 8 1/4%, What proceeds did Lester receive? Use ordinary interest. A famous instance of variation is Newtons Law of Gravity. It states that the magnitude of the Force, F, of gravitational attraction between two masses, m1 and m2, varies directly with the product of the masses and inversely with the square of the distance, r, between them. Write a variation equation relating F, m1, m2, and r. A writer chargers $5 per word plus a startup fee of $50 per article. Write an equation in standard form to represent the total cost, y of a project that is x words long What is the verbal expression for 3(n+8) Michelle is on a secret mission to reclaim artifacts that were recently stolen from the National Museum. The artifacts are located in a private manor just outside the city. The rectangular base of the manor is 60m by 30m.Help Michelle plan her mission by redrawing the base of the manor by moving points on the grid below.HELP!! For the opening home game of the baseball season, the Madd Batters minor league baseball team offered the following incentives to its fans: Every 75th fan who entered the stadium got a coupon for a free hot dog. Every 30th fan who entered the stadium got a coupon for a free cup of soda. Every 50th fan who entered the stadium got a coupon for a free bag of popcorn. The stadium holds 4000 fans and was completely full for this game. How many of the fans at the game were lucky enough to receive all three free items? Should parents be responsible for the crimes of their children? x+y-2z=-92x-y+8z=99x-2y+5z=23give the solution with z arbitrary