find the area of the polygons 5 cm 5 cm 8 cm square centimeters

Answers

Answer 1

Answer:

Answer: 600

Step-by-step explanation:

5x5=25

3x8=24

25x24=600


Related Questions

The mean of a normally distributed group of weekly incomes of a large group of executives is $1,000 and the standard deviation is $100. What is the z-score (value of z) for an income of $1,100

Answers

Answer:

The z-score (value of z) for an income of $1,100 is 1.

Step-by-step explanation:

We are given that the mean of a normally distributed group of weekly incomes of a large group of executives is $1,000 and the standard deviation is $100.

Let X = group of weekly incomes of a large group of executives

So, X ~ N([tex]\mu=1,000 ,\sigma^{2} = 100^{2}[/tex])

The z-score probability distribution for a normal distribution is given by;

               Z = [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean income = $1,000

            [tex]\sigma[/tex] = standard deviation = $100

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

Now, we are given an income of $1,100 for which we have to find the z-score (value of z);

So, z-score is given by = [tex]\frac{X-\mu}{\sigma}[/tex] = [tex]\frac{1,100-1,000}{100}[/tex] = 1

Hence, the z-score (value of z) for an income of $1,100 is 1.

The z-score for an income of $1,100 is 1.0.

The z-score is a measure of how many standard deviations a particular value, in this case, income, is from the mean of a normally distributed dataset. The formula to calculate the z-score is:

z = (x - μ) / σ

Where:

x is the value being evaluated.μ is the mean of the distribution.σ is the standard deviation of the distribution.

Given the mean (μ) is $1,000 and the standard deviation (σ) is $100, we can substitute these values into the formula to find the z-score of an income of $1,100.

z = ($1,100 - $1,000) / $100

z = $100 / $100

z = 1

Therefore, the z-score for an income of $1,100 is 1.0. This means the income of $1,100 is one standard deviation above the mean.

Graphing Quadratic Equations, if you have a graph, how do you find zeros?

Answers

Answer:

   look for the x-intercepts

Step-by-step explanation:

A "zero" is a value of x where the function value is zero. On a graph, that point is where the graph meets the x-axis. Every x-intercept is a zero of the function.

__

If there are no x-intercepts, then there are no real zeros. The roots (zeros) will be complex.

Choose the correct graph of the following condition.

Answers

Answer:

the correct graph is pictured below

Step-by-step explanation:

the graph is below

A radioactive substance decays according to the following function, where yo is the initial amount present, and y is the amount present at time t (in days).

y= y_o e^0.072t.

Find the half-life of this substance. Do not round any intermediate computations, and round your answer to the nearest tenth. days

Answers

Answer:

[tex]t_{1/2} \approx 9.6\,days[/tex]

Step-by-step explanation:

The time constant of the radioactive constant is:

[tex]\tau = \frac{1}{0.072}\,days[/tex]

[tex]\tau = 13.889\,days[/tex]

The half-life of the substance is:

[tex]t_{1/2} = \tau \cdot \ln 2[/tex]

[tex]t_{1/2} = (13.889\,days)\cdot \ln 2[/tex]

[tex]t_{1/2} \approx 9.6\,days[/tex]

Researchers are interested in whether having an older sibling provides people a model for stable relationships in adolescence. They gather random samples of people with either older siblings or not and measure the number of relationships they have as teenagers. For individuals with no older siblings (N=16), they find an average of 5 relationships (s=1.4) For individuals with older siblings (N=20), they find an average of 3.5 relationships (s=0.8). Test the null hypothesis that the number of adolescent relationships is equal between those with an older sibling and those without (alpha=0.05).

Answers

Answer:

Step-by-step explanation:

So, we do not have enough evidence to conclude that the number of adolescent relationships is equal between those with an older sibling and those without.

check the attached file for explanation and solution

Tomos is a skier he completed a ski race in 2 min 6 seconds the race was 525 m in length. tomos assumes that his average speed is the same for each race. using this assumption, work out how long tomos should take to complete an 800 m race give your answer in minutes and seconds

Answers

Final answer:

By calculating the average speed of Tomos in the 525-meter race, we can estimate that he would take about 3 minutes 12 seconds to complete an 800-meter race if he maintains the same average speed.

Explanation:

To solve this problem, we first need to figure out Tomos's average speed in the 525-meter ski race that he completed in 2 minutes and 6 seconds. We convert the time to seconds for ease of calculation. So, 2 minutes 6 seconds equals 126 seconds. Now, we calculate his average speed by dividing the length of the race by the time he took to complete it:

Average speed = Distance / Time
Average speed = 525m / 126s
Average speed = 4.17 m/s

Now to calculate how long Tomos should take to complete an 800 m race, we rearrange the formula to solve for time. Time = Distance / Average Speed:

Time = 800m / 4.17 m/s
Time = 191.84 seconds

Learn more about Average Speed here:

https://brainly.com/question/17661499

#SPJ11

According to industry sources, online banking is expected to take off in the near future. The projected number of households (in millions) using this service is given in the following table. (Here, x = 0 corresponds to the beginning of 1997.)

Year, x 0 1 2 3 4 5
Households, y 4.5 7.5 10.0 13.0 15.6 18.0
(a) Find an equation of the least-squares line for these data. (Give numbers to three decimal places.)
y(x) =

(b) Use your result of part (a) to estimate the number of households using online banking at the beginning of 2007, assuming the projection is accurate.

Answers

Answer:

(a) The least-square regression line is: [tex]y=4.662+2.709x[/tex].

(b) The number of households using online banking at the beginning of 2007 is 31.8.

Step-by-step explanation:

The general form of a least square regression line is:

[tex]y=\alpha +\beta x[/tex]

Here,

y = dependent variable

x = independent variable

α = intercept

β = slope

(a)

The formula to compute intercept and slope is:

[tex]\begin{aligned} \alpha &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\beta &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \end{aligned}[/tex]

The values of ∑X, ∑Y, ∑XY and ∑X² are computed in the table below.

Compute the value of intercept and slope as follows:

[tex]\begin{aligned} \alpha &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 68.6 \cdot 55 - 15 \cdot 218.9}{ 6 \cdot 55 - 15^2} \approx 4.662 \\ \\\beta &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 6 \cdot 218.9 - 15 \cdot 68.6 }{ 6 \cdot 55 - \left( 15 \right)^2} \approx 2.709\end{aligned}[/tex]

The least-square regression line is:

[tex]y=4.662+2.709x[/tex]

(b)

For the year 2007 the value of x is 10.

Compute the value of y for x = 10 as follows:

[tex]y=4.662+2.709x[/tex]

  [tex]=4.662+(2.709\times10)\\=4.662+27.09\\=31.752\\\approx 31.8[/tex]

Thus, the number of households using online banking at the beginning of 2007 is 31.8.

Let F = sin ( 8 x + 5 z ) i − 8 y e x z k . F=sin⁡(8x+5z)i−8yexzk. Calculate div ( F ) div(F) and curl ( F ) . and curl(F). (Express numbers in exact form. Use symbolic notation and fractions where needed.)

Answers

Answer:

Required results are [tex]\nabla .\vec{F}[/tex]=8\cos(8x+5z)-8ye^x[/tex]  and  [tex]\nabla\times \vec{F}=-8e^xz\uvec{i}+(8ye^xz+5\sin(8x+5z))\uvec{j}[/tex]

Step-by-step explanation:

Given vector function is,

[tex]\vec{F}=\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k}[/tex]

To find [tex]\nabla .\vec{F}[/tex] and [tex]\nabla \times \vec{F}[/tex] .

[tex]\nabla .\vec{F}[/tex]

[tex]=(\frac{\partial}{\partial x}\uvec{i}+\frac{\partial}{\partial y} \uvec{j}+\frac{\partial}{\partial z} \uvec{k})(\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k})[/tex]

[tex]=\frac{\partial}{\partial x}(\sin(8x+5z))-\frac{\partial}{\partial z}(8ye^xz)[/tex]

[tex]=8\cos(8x+5z)-8ye^x[/tex]

And,

[tex]\nabla \times \vec{F}[/tex]

[tex]=(\frac{\partial}{\partial x}\uvec{i}+\frac{\partial}{\partial y} \uvec{j}+\frac{\partial}{\partial z} \uvec{k})\times(\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k})[/tex]

[tex]\end{Vmatrix}[/tex]

[tex]=\uvec{i}\Big[\frac{\partial}{\partial y}(-8ye^xz)\Big]-\uvec{j}\Big[\frac{\partial}{\partial x}(-8ye^xz)-\frac{\partial}{\partial z}(\sin(8x+5z))\Big]+\uvec{k}\Big[-\frac{\partial}{\partial y}(-\sin(8x+5z))\Big][/tex]

[tex]=-8e^xz\uvec{i}+(8ye^xz+5\sin(8x+5z))\uvec{j}[/tex]

Hence the result.

A survey of 1000 air travelers1 found that prefer a window seat. The sample size is large enough to use the normal distribution, and a bootstrap distribution shows that the standard error is . Use a normal distribution to find a 90% confidence interval for the proportion of air travelers who prefer a window seat. Round your answers to three decimal places.

Answers

Answer:

90% confidence interval for the true proportion of air travelers who prefer the window seat is (0.575, 0.625)

Step-by-step explanation:

We have the following data:

Sample size = n = 1000

Proportion of travelers who prefer window seat = p = 60%

Standard Error = SE = 0.015

We need to construct a 90% confidence interval for the proportion of travelers who prefer window seat. Therefore, we will use One-sample z test about population proportion for constructing the confidence interval. The formula to calculate the confidence interval is:

[tex](p-z_{\frac{\alpha}{2}}\sqrt{\frac{p(1-p)}{n}}, p+z_{\frac{\alpha}{2}}\sqrt{\frac{p(1-p)}{n}})[/tex]

Since, standard error is calculated as:

[tex]SE=\sqrt{\frac{p(1-p)}{n} }[/tex]

Re-writing the formula of confidence interval:

[tex](p-z_{\frac{\alpha}{2}} \times SE, p+z_{\frac{\alpha}{2}} \times SE)[/tex]

Here, [tex]z_{\frac{\alpha}{2}}[/tex] is the critical value for 90% confidence interval. From the z-table this value comes out to be 1.645.

Substituting all the values in the formula gives us:

[tex](0.6 - 1.645 \times 0.015, 0.6 + 1.645 \times 0.015)\\\\ = (0.575, 0.625)[/tex]

Therefore, the 90% confidence interval for the true proportion of air travelers who prefer the window seat is (0.575, 0.625)

The number 0.05891 can be expressed using scientific notation as

Answers

Answer:

  5.892×10^-2

Step-by-step explanation:

Scientific notation has one digit to the left of the decimal point. To write the number in scientific notation, it can work to start by writing the number with that as one of the factors:

  0.05891 = 5.891 × 0.01

  = 5.891 × 1/10^2

  = 5.891 × 10^-2

__

You can also enter this number into your calculator and change the display mode to SCI.

_____

It helps to understand the decimal place-value number system in terms of the power of 10 that multiplies each number place.

-4x + (-3) =x +3 What is X equivalent to

Answers

Answer: x=  −6 /5  is the answer

Answer:

x= -1 1/5 or x= -1.2

Step-by-step explanation:

-4x+-3=x+3

-5x-3=3

-5x=6

-x=6/5

x=-6/5

x=-1 1/5

or x=-1.2

Hope this helps! Pls rate brainliest

Use the following to answer question 39: The average score of 100 students taking a statistics final was 70 with a standard deviation of 7. Assuming a normal distribution, what is the probability that students scored less than 60

Answers

Answer:

The probability of students scored less than 60 = .0768

Step-by-step explanation:

Given -

Mean score [tex](\nu )[/tex] = 70

standard deviation [tex](\sigma )[/tex] = 7

Let X be the score of students

the probability that students scored less than 60 =

[tex]P(X< 60)[/tex]  = [tex]P(\frac{X - \nu }{\sigma}< \frac{60 - 70}{7})[/tex]

                  =  [tex]P(z < \frac{60 - 70}{7})[/tex]   put[ Z= [tex]\frac{X - \nu }{\sigma}[/tex]]

                   =  [tex]P(z < -1.428)[/tex]  using z table

                    =  .0768

Steroids, which are dangerous, are sometimes used to improve athletic performance. A study by the National Athletic Trainers Association surveyed random samples of 1679 high school freshmen and 1366 high school seniors in Illinois. Results showed that 34 of the freshmen and 24 of the seniors had used anabolic steroids. Estimate at a 95% confidence level the difference between the proportion of freshmen using steroids in Illinois and the proportion of seniors using steroids in Illinois.

Answers

Answer:

At 95% confidence level, the difference between the proportion of freshmen using steroids in Illinois and the proportion of seniors using steroids in Illinois is -7.01135×10⁻³ < [tex]\hat{p}_1-\hat{p}_2[/tex] < 1.237

Step-by-step explanation:

Here we are required to construct the 95% confidence interval of the difference between two proportions

The formula for the confidence interval of the difference between two proportions is as follows;

[tex]\hat{p}_1-\hat{p}_2\pm z^{*}\sqrt{\frac{\hat{p}_1\left (1-\hat{p}_1 \right )}{n_{1}}+\frac{\hat{p}_2\left (1-\hat{p}_2 \right )}{n_{2}}}[/tex]

Where:

[tex]\hat{p}_1 = \frac{34}{1679}[/tex]

[tex]\hat{p}_2 = \frac{24}{1366}[/tex]

n₁ = 1679

n₂ = 1366

[tex]z_{\alpha /2}[/tex] at 95% confidence level = 1.96

Plugging in the values, we have;

[tex]\frac{34}{1679}- \frac{24}{1366} \pm 1.96 \times \sqrt{\frac{ \frac{34}{1679}\left (1- \frac{34}{1679}\right )}{1679}+\frac{\frac{24}{1366} \left (1-\frac{24}{1366} \right )}{1366}}[/tex]

Which gives;

-7.01135×10⁻³ < [tex]\hat{p}_1-\hat{p}_2[/tex] < 1.237.

At 95% confidence level, the difference between the proportion of freshmen using steroids in Illinois and the proportion of seniors using steroids in Illinois = -7.01135×10⁻³ < [tex]\hat{p}_1-\hat{p}_2[/tex] < 1.237.

1. Heather rode her horse 2 kilometers down the mountain side trail. Hailey rode 1900 meters on her horse on the same trail. Who rode the farthest and how much farther did they ride in kilometers?

Answers

Answer:

Heather rode the farthest

She rode 0.1km farther than Hailey.

Step-by-step explanation:

This is a conversion of units question.

Heather rode her horse 2 kilometers.

Hailey rode 1900 meters on her horse.

Each km has 1000 meters.

So 1900 meters = 1900/1000 = 1.9 km

This means that Hailey rode for 1.9 km.

Heather rode the farthest(2km is greather than 1.9km)

2 - 1.9 = 0.1km

She rode 0.1km farther than Hailey.

The number of guppies that a fish tank can safely hold depends on its volume.A fish tank should have a volume of 576 cubic inches to safely hold 3 guppies.how many guppies can a fish tank that is 24 inches long, 12 inches wide, and 16 inches highly safely hold?

Answers

Answer:

24 guppies

Step-by-step explanation:

Assuming a linear relationship,  the volume required per guppy is given by:

[tex]g=\frac{576\ in^3}{3\ guppies}\\ g= 192\ in^3/guppy[/tex]

The volume of the fish tank is given by the product of its length, by its width and its height:

[tex]V = 24*12*16\\V=4,608\ in^3[/tex]

The number of guppies that this tank can safely hold is:

[tex]n=\frac{V}{g}=\frac{4,608}{192} \\n=24\ guppies[/tex]

The tank can safely hold 24 guppies.

He purchased $12.00 worth of lemons and $4.00 worth of glasses to make the lemonade.
He adds $0.02 worth of sugar to each glass of lemonade.
He sells each glass of lemonade for $0.25.
What is the minimum number of glasses of lemonade that Michael needs to sell to begin to make a profit?

Answers

Final answer:

The student must sell at least 70 glasses of lemonade at $0.25 each, considering the initial costs of $16.00 and the additional $0.02 cost per glass for sugar, to begin to make a profit.

Explanation:

To calculate the minimum number of glasses of lemonade that must be sold to start making a profit, we need to consider the total costs and the revenue per glass. The student spent $12.00 on lemons and $4.00 on glasses, totaling $16.00 in costs. Additionally, each glass of lemonade has an added cost of $0.02 for sugar. The revenue from selling one glass of lemonade is $0.25.

To break even, the total revenue must equal the total costs. As costs are fixed at $16.00 and the variable cost is $0.02 per glass, we can set up the equation: (Number of glasses × $0.25) - (Number of glasses × $0.02) = $16.00. This simplifies to (Number of glasses × $0.23) = $16.00, and solving for Number of glasses gives us Number of glasses = $16.00 / $0.23, which is approximately 69.57 glasses. Since you can't sell a fraction of a glass, rounding up means the student needs to sell at least 70 glasses to begin to make a profit.

A population of rabbits oscillates 19 above and below average during the year, hitting the lowest value in january. the average population starts at 650 rabbits and increases by 160 each year. find an equation for the population p in terms of the months since january t

Answers

Final answer:

The equation we've developed to represent the rabbit population over time, where 't' is the number of months since January, is P(t) = 19sin((2π/12)t - π/2) + (160t/12) + 650. This equation covers the oscillations in the population and the steady yearly increase.

Explanation:

The subject matter falls under the discipline of Mathematics, particularly in the topics involving functions. We can create a sinusoidal (sine or cosine) function to represent the oscillation of the population of rabbits.

Given that the population fluctuates 19 above and below the average, and the average increases by 160 each year, this suggests a sinusoidal period of 12 months (a year) with a vertical shift (midline) that increases linearly.

Considering t as the number of months since January, the equation for the population P in terms of the months since January t would be:

P(t) = 19sin((2π/12)t - π/2) + (160t/12) + 650

The 19 is the amplitude, (2π/12)t - π/2 represents the sinusoidal oscillation adjusted to start at the minimum in January, (160t/12) is the yearly change in population that increases per month, and 650 is the average population at the start.

Learn more about Sinusoidal Functions here:

https://brainly.com/question/32049339

#SPJ3

To find the population equation in terms of months since January considering oscillations and growth, use the formula p(t) = 650 + 160t + 19sin(2πt/12).

Population Equation: The equation for the population p in terms of the months since January t can be written as p(t) = 650 + 160t + 19sin(2πt/12). This equation takes into account the initial population of 650 rabbits, an increase of 160 rabbits per year, and the oscillation of 19 above and below the average population.

which expressions are equivalent to 7•7•7•7•7•7

Answers

Answer:7^6

Step-by-step explanation:

Answer:

7^6

Step-by-step explanation:

Drains A and B are used to empty a swimming pool. Drain A alone can empty the pool in 4.75 hours. How long will it take drain B alone to empty the pool if it takes 2.6 hours when both drains are turned on?

Answers

B alone can empty the pool in 5.744 hours, if A alone can empty the pool in 4.75 hours and  it takes 2.6 hours when both drains are turned on.

Step-by-step explanation:

The given is,

                   A alone can empty the pool in 4.75 hours.

                   It takes 2.6 hours when both drains are turned on.

Step:1

            One hour work drains A and B =

                  One hour work of drain A + One hour work of Drain B.........(1)

            One hour work of Drain A = [tex]\frac{1}{4.75}[/tex]

                     One hour of ( A + B ) = [tex]\frac{1}{2.6}[/tex]

            Equation (1) becomes,

                     One hour work of B = One hour work of ( A + B )

                                                                  - One hour work of A

            Substitute the values,

                     One hour work of B =  [tex]\frac{1}{2.6} - \frac{1}{4.75}[/tex]

                                                       = [tex]\frac{4.75-2.6}{(4.75)(2.6)}[/tex]

                                                       = [tex]\frac{2.15}{12.35}[/tex]

                                                       = [tex]\frac{1}{5.744}[/tex]

                    One hour work of B  = [tex]\frac{1}{5.744}[/tex]

             B alone can empty the pool in 5.744 hours

Result:

           B alone can empty the pool in 5.744 hours, if A alone can empty the pool in 4.75 hours and  it takes 2.6 hours when both drains are turned on.

Hopefully that’s better :)))

Answers

Answer: Top right, a rectangle has all the properties of a square

Step-by-step explanation: A rectangle does not have all the properties of a square.

A company receives shipments of a component used in the manufacture of a high-end acoustic speaker system. When the components arrive, the company selects a random sample from the shipment and subjects the selected components to a rigorous set of tests to determine if the components in the shipments conform to their specifications. From a recent large shipment, a random sample of 250 of the components was tested, and 24 units failed one or more of the tests.

a) What is the point estimate of the proportion of components in the shipment that fail to meet the company's specifications?
b) What is the standard error of the estimated proportion?
c) At the 98% level of confidence, what is the margin of error in this estimate?
d) What is the 95% confidence interval estimate for the true proportion of components, p, that fail to meet the specifications?
e) If the company wanted to test the null and alternative hypotheses: H_0: p = 0.10 against H_a: p notequalto 0.10 at the alpha = 0.05 level of significance, what conclusion would they draw?

Answers

Step-by-step explanation:

a) 24 / 250 = 0.096

b) Standard error for a proportion is:

σ = √(pq/n)

σ = √(0.096 × 0.904 / 250)

σ = 0.0186

c) At 98% confidence, the critical value is 2.326.  The margin of error is therefore:

2.326 × 0.0186 = 0.0433

d) At 95% confidence, the critical value is 1.960.  The margin of error is therefore:

1.960 × 0.0186 = 0.0365

So the confidence interval is:

(0.0960 − 0.0365, 0.0960 + 0.0365)

(0.0595, 0.1325)

e) 0.10 is within the 95% confidence interval, so the null hypothesis would not be rejected.

Final answer:

a) The point estimate of the proportion of components in the shipment that fail to meet the company's specifications is 9.6%. b) The standard error of the estimated proportion is 1.9%. c) The margin of error at the 98% confidence level is 4.4%. d) The 95% confidence interval estimate for the true proportion is approximately 5.9% to 13.3%. e) The null hypothesis that the proportion is 0.10 is rejected if the z-test statistic falls outside the range (-1.96, 1.96).

Explanation:

a) Point estimate:
The point estimate of the proportion of components in the shipment that fail to meet the company's specifications is the number of failed components divided by the total number of components tested. In this case, the point estimate is 24/250 = 0.096, or 9.6%.

b) Standard error:
The standard error of the estimated proportion is calculated using the formula SE = sqrt((phat * (1 - phat)) / n), where phat is the point estimate and n is the sample size. In this case, the standard error is sqrt((0.096 * (1 - 0.096)) / 250) = 0.019, or 1.9%.

c) Margin of error:
The margin of error is determined by multiplying the standard error by the appropriate critical value from the standard normal distribution. For a 98% confidence level, the critical value is approximately 2.33. Therefore, the margin of error is 2.33 * 0.019 = 0.044, or 4.4%.

d) Confidence interval:
The 95% confidence interval estimate for the true proportion of components that fail to meet the specifications is given by the formula phat +/- z * SE, where phat is the point estimate, z is the appropriate critical value from the standard normal distribution (for 95% confidence, z is approximately 1.96), and SE is the standard error. Therefore, the confidence interval is 0.096 +/- 1.96 * 0.019, or approximately 0.059 to 0.133.

e) Hypothesis test:
To test the null hypothesis H_0: p = 0.10 against the alternative hypothesis H_a: p != 0.10, we can use a two-tailed z-test. The test statistic is calculated as (phat - p_0) / sqrt((p_0 * (1 - p_0)) / n), where p_0 is the null hypothesis value (0.10), phat is the point estimate, and n is the sample size. The critical value for a significance level of 0.05 is approximately 1.96 from the standard normal distribution. If the test statistic is outside the range (-1.96, 1.96), we reject the null hypothesis. In this case, if the test statistic falls outside the range (-1.96, 1.96), we would reject the null hypothesis and conclude that the true proportion of components that fail to meet the specifications is not 0.10.

The circumference of the inner circle is 88 ft. The distance between the inner circle and the outer circle is 3 ft. By how many feet is the circumference of outer circle greater than the circumference of the inner​ circle? Use StartFraction 22 Over 7 EndFraction
for pi. (3.14)

Answers

Answer:

18.86 feet

Step-by-step explanation:

The circumference of the inner circle is 88 ft.

Circumference of a Circle[tex]=2\pi r[/tex]

Therefore:

[tex]2\pi r =88\\r=88 \div (2*\frac{22}{7})=14 ft[/tex]

Radius of the inner circle=14 feet

If the distance between the inner circle and the outer circle is 3 ft, the radius of the outer circle=14+3 =17 feet.

Therefore. circumference of the outer Circle[tex]=2\pi r[/tex]

[tex]=2*\frac{22}{7}*17=106.86 ft[/tex]

Difference in Circumference=106.86-88 =18.86 feet

The circumference of the outer circle is greater than that of the inner circle by 18.86 feet.

18.9

Step-by-step explanation:

Someone please help.

Answers

bruh with what there’s nothing there

Answer:

...

Step-by-step explanation:

...

Write the equation of the tangent line to the curve x^2/8 - y^2/4 =1 at the point (4,2) by using the following facts. The slope m of the tangent line to a hyperbola at the point (x, y) is: m=b^2x/a^2y for x^2/a^2 -y^2/b^2=1 m=a^2x/b^2y for y^2/a^2 - x^2/b^2 =1

Answers

Answer:

[tex]y=x-2[/tex]

Step-by-step explanation:

So we are given the formula for the slope of a hyperbola in this form:

[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex].

That formula for the slope is [tex]m=\frac{b^2x}{a^2y}[/tex]

If we compare the following two equations, we will be able to find [tex]a^2[/tex] and [tex]b^2[/tex]:

[tex]\frac{x^2}{a^2}-\frac{y^2}{b^2}=1[/tex]

[tex]\frac{x^2}{8}-\frac{y^2}{4}=1[/tex]

We see that [tex]a^2=8[/tex] while [tex]b^2=4[/tex].

So the slope at [tex](x,y)=(4,2)[/tex] is:

[tex]m=\frac{b^2x}{a^2y}=\frac{4(4)}{8(2)}=\frac{16}{16}=1[/tex].

Recall: Slope-intercept form of a linear equation is [tex]y=mx+b[/tex].

We just found [tex]m=1[/tex]. Let's plug that in.

[tex]y=1x+b[/tex]

[tex]y=x+b[/tex]

To find [tex]b[/tex], the [tex]y[/tex]-intercept, we will need to use a point on our tangent line. We know that it is going through [tex](4,2)[/tex].

Let's enter this point in to find [tex]b[/tex].

[tex]2=4+b[/tex]

Subtract 4 on both sides:

[tex]2-4=b[/tex]

Simplify:

[tex]-2=b[/tex]

The equation for the tangent line at [tex](4,2)[/tex] on the given equation is:

[tex]y=x-2[/tex]

Answer: y = x - 2

Step-by-step explanation:

First you take the derivative of each term. d/dx(x²/8) - d/dx(y²/4) = d/dx(1)

x/4 - (y/2)dy/dx = 0

Then you solve for dy/dx: dy/dx = x/2y

Plug in the values: dy/dx = 1

To find the y-intercept, plug in values for y = mx+ b. 2 = 4 + b, b = -2

The equation is y = x - 2

what is one thousand five hundred divided by five equal

Answers

Answer: 300

We know that 5×3=15. Since we are trying to get 1500 we Multiply 300×5 and get 1500.

How do we know?

As you can see if you cross out 2 of the 0 in 300 you have 3×5. When you multiply it you get 15.Also if you cross out 1 of the 0 in 300 you have 30×5. When you multiply that you get 150.

As you see when you still multiply either of those problems you have 15 in it. So we should know 300×5=1500.

Note: We can also multiply 500×3 and get 1500. You still get the same answer but just switched numbers.

Answer:

[tex]300[/tex]

Step-by-step explanation:

[tex] \frac{1500}{5} = 300[/tex]

It's very easy to find if you use a calculator.

To know whether that the answer is correct or wrong you can do like this.

[tex]300 \times 5 = 1500[/tex]

hope this helps

thanks.

The life span of a battery is the amount of time the battery will last. The distribution of life span for a certain type of battery is approximately normal with mean 2.5 hours and standard deviation 0.25 hour. Suppose one battery will be selected at random. Which of the following is closest to the probability that the selected battery will have a life span of at most 2.1 hours?A:0.055B: 0.110C: 0.445D: 0.890E: 0.945

Answers

Answer:

A:0.055

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 2.5, \sigma = 0.25[/tex]

Which of the following is closest to the probability that the selected battery will have a life span of at most 2.1 hours?

This is the pvalue of Z when X = 2.1. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{2.1 - 2.5}{0.25}[/tex]

[tex]Z = -1.6[/tex]

[tex]Z = -1.6[/tex] has a pvalue of 0.0548

So the correct answer is:

A:0.055

Consider the function on the interval (0, 2π). f(x) = x − 2 sin x (a) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.)

Answers

Answer:

Increasing:

[tex](\frac{\pi}{3},\frac{5\pi}{3})[/tex]

Decreasing

[tex](0,\frac{\pi}{3})[/tex] U [tex](\frac{5\pi}{3},2\pi)[/tex]  

Step-by-step explanation:

Increasing and Decreasing Intervals

To find if a function is increasing in a point x=a, we evaluate the first derivative in x=a and if:

f'(a) >0, the function is increasing f'(a) <0, the function is decreasing f'(a) =0, the function has a critical point

For continuous functions, we can safely assume between a given critical point and the next one, the function keeps its behavior, i.e. it's increasing or decreasing in the interval formed by both points.

So, we find the critital points of  

[tex]f(x)=x-2sinx[/tex]

Taking the derivative

[tex]f'(x)=1-2cosx[/tex]

Equating to 0

[tex]1-2cosx=0[/tex]

Solving

[tex]\displaystyle cosx=\frac{1}{2}[/tex]

There are two solutions in the interval  [tex](0,2\pi)[/tex]

[tex]\displaystyle x=\frac{\pi}{3},\ x=\frac{5\pi}{3}[/tex]

Now we compute the second derivative

[tex]f''(x)=2sinx[/tex]

Evaluating for both critical points

[tex]\displaystyle f''(\frac{\pi}{3})=2sin\frac{\pi}{3}=\sqrt{3}[/tex]

Since it's positive, the point is a minimum

[tex]\displaystyle f''(\frac{5\pi}{3})=2sin\frac{5\pi}{3}=-\sqrt{3}[/tex]

Since it's negative, the point is a maximum

In the interval  

[tex](0,\frac{\pi}{3})[/tex]

the function is decreasing

In the interval  

[tex](\frac{\pi}{3},\frac{5\pi}{3})[/tex]

the function is increasing

In the interval  

[tex](\frac{5\pi}{3},2\pi)[/tex]  

the function is decreasing

First, you need to find the derivative of the function f(x) = x - 2sin(x).

Using the rules of calculus, the derivative of x is 1 and the derivative of -2sin(x) is -2cos(x). Therefore, the derivative of the function, denoted as f'(x), is given by:

f'(x) = 1 - 2cos(x).

To determine where the function is increasing or decreasing, we need to find the critical points, the x-values where the derivative of the function is equal to zero or undefined.

Setting the derivative equal to zero and solving:

1 - 2cos(x) = 0.

2cos(x) = 1.

cos(x) = 1/2.

The solutions to this equation on the interval 0 to 2π are x = π/3 and x = 5π/3.

With these critical points, we have divided the entire interval into three subintervals:

(0, π/3), (π/3, 5π/3), and (5π/3, 2π).

We now determine the sign of the derivative on each of these intervals. We pick a "test point" from each interval and substitute it into the derivative.

From (0, π/3), we pick x = π/6, and find that f'(π/6) is positive.
From (π/3, 5π/3), we pick x = π, and find that f'(π) is negative.
From (5π/3, 2π), we pick x = 3π/2, and find that f'(3π/2) is positive.

By the First Derivative Test, a positive derivative indicates that the function is increasing on that interval and a negative derivative indicates that the function is decreasing on that interval.

Therefore, the function increases on the intervals (0, π/3) and (5π/3, 2π),
and decreases on the interval (π/3, 5π/3).

#SPJ3

Which statement represents the expression 11 (30 + 7)?

Answers

Answer:

330+77= 407

Step-by-step explanation:

*Danganronpa flashbacks*

3. For the school Band, Marcia decides to order t-shirts for all of the participants. It will
cost $4 per shirt for the medium size and $5 per shirt for the large size. Marcia orders
a total of 70 T-shirts and spends $320. Determine the two linear equations to
represent the information. [4A) **Hint: One equation is for amount of t-shirts and the second is
for money. YOU DO NOT NEED TO SOLVE,
Let x represent number of medium size shirts
Let y represent total large size shirts

Answers

Answer:

4x+5y = 320

x+y = 70

Step-by-step explanation:

We need one equation for the total number of shirts, and one for the total cost.

Total number = 70

So that means medium shirts + large shirts = 70

So our first equation is x+y = 70

Total cost = $320

So that means $4 times medium shirts + $5 times large shirts = 320

So our second equation is 4x+5y = 320

The fuel tanks on some ships are spheres of which only the top halves are above deck. If one of these tanks is 96 ft in diameter, how many gallons of fuel does it hold? Use
1 ft3 ≈ 7.5 gal

Answers

Answer:

720

Step-by-step explanation:

96 * 7.5

Other Questions
At the time of her grandsons birth, a grandmother deposits $13,000 in account that pays 2.5% compounded monthly. What will be the value of the account at the childs twenty-first birthday, assuming that no other deposits or withdrawals are made during this period What does the image above reflect?a. a violent dream the artist hadb. the artist's interpretation of hellc. the violence of World War Id. the Four Horsemen of the Apocalypse has 12,200 shares of stock outstanding with a par value of $1 per share. The market value is $27.50 a share. The balance sheet shows $12,200 in the common stock account, $146,598 in the capital in excess of par account, and $263,455 in the retained earnings account. The firm just announced a stock dividend of 15 percent. What is the balance in the retained earnings account after the dividend 1) The local fire company is having a raffle to raise money for Fourth of July fireworks. Theywill sell one thousand tickets at $10 each. They will award one first prize of $300, one secondprize of $150, and one third prize of $50. The other tickets will win nothing. What is theexpected value of a ticket?O- $0.50O $300.00O $9.50O - $9.50 A space probe lands on a planet with 1/2 the gravitational force as the earth. What happensto the mass and weight of the space probe? What is the correlation coefficient for the data shown in the table? A farmer has determined that a crop of strwberries yields a yearly profit of $1.50 per square yard. If strawberries are planted on a triangul;ar piece of land whose sides are 50 yards, 75 yards, and 100 yards, how much profit to the nearest hundred dollars, would the farmer expect to make from this piece of land during the next harvest. in class 30 students,13of them are boys what parcentage of the class are girl give your answer to 1 decimal place What do all acids produce when dissolved in water Question 8The dumping of partially treated sewage into a body of water would most likely lead to pollution by which of the following?PLEASE HELP 1. Identifique a abscissa e a ordenada dos pontos abaixo.A(3,-5) abscissa__________ ordenada______________B(-1,0) abscissa__________ ordenada______________C(-3,5;-2) abscissa__________ ordenada______________D(0,-1) abscissa__________ ordenada______________ This net consists of a square and 4 identical triangles. What is the surface area of the sold this net can form?Not drawn to scale Paul withdrew $17.25 from his savings account every week for 3 weeks. Which expression is the best choice to help him determine the total amount of money he withdrew(3)(17.25) = 51.75; he withdrew $51.75(3)(17.25) = 51.75; he withdrew $51.75(3)(17.25) = 51.75; he withdrew $51.75(3)(17.25) = 51.75; he withdrew $51.75 A grocery store finds that the number of boxes of a new cereal sold increases each week. In the 1st week, only 20 boxes of the cereal were sold. In the 2nd week, 53 boxes of the cereal were sold and in the 3rd week 86 boxes of the cereal were sold. The number of boxes of cereal sold each week represents an arithmetic sequence.what is the explicit rule for the arithmetic sequence that defines the number of boxes of cereal sold in week n?Use this rule to calculate how many boxes of cereal will be sold during the 7th week. Describe the relationship between DNA, Chromosomes, and Genes How do you solve for mass if KE=0.5mv2 He was not satisfied with command of his native language merely, but gave attention to the study of foreign ones, and in particular was a master of Latin that he could speak it as well as his native tongue; but he could understand Greek better than he could speak it. He was so eloquent . . . The King spent much time and labour with him studying rhetoric, dialectics, and especially astronomy; he learned to reckon, and used to investigate the motions of the heavenly bodies most curiously.This passage exemplifies Charlemagne's enthusiasm for Read the passage below. It summarizes survey information.The Global Youth Tobacco Survey asks youth to fill in the answers to several questions about their tobacco use. Inthis survey conducted between 2000 and 2007, it was found that in youth ages 13-15, 12 percent of boys and 7percent of girls reported smoking cigarettes. This information was shared and reported on the American CancerSociety website. The information was then used by several industries in the fields of health care, insurance, andeducation.What is a reason that these data may be unreliable? Match each term with the correct definitionIncentive4A reward to encourage someone tobehave in a particular wayCensorship4A process by which the governmentcontrols information in the mediaPropagandaUUOOO4To teach others to completely acceptthe beliefs of a particular groupAnti-SemitismAnti-Jewish discrimination or prejudicehatred towards JewsIndoctrinateOfficial communications created to winsupport for a cause I need helpplease:^