For each function below, determine whether or not the function is injective and whether or not the function is surjective. (You do not need to justify your answer). (a) f:R + R given by f(x) = x2 (b) f:N + N given by f(n) = n2 (c) f: Zx Z → Z given by f(n, k) = n +k

Answers

Answer 1

Answer:

a.Neither injective nor surjective

b.Injective but not surjective

c.Surjective but not injective

Step-by-step explanation:

Injective function:It is also called injective function.If f(x)=f(y)

Then, x=y

Surjective function:It is also called Surjective function.

If function is onto function then Range of function=Co-domain of function

a.We are given that

[tex]f:R\rightarrow R[/tex]

[tex]f(x)=x^2[/tex]

It is not injective because

f(1)=1 and f(-1)=1

Two elements have same image.

If function is one-to-one then every element have different image.

Function is not surjective because negative elements have not pre-image in R

Therefore, Co-domain not equal to range.

Given function neither injevtive nor surjective.

b.[tex]f:N\rightarrow N[/tex]

[tex]f(n)=n^2[/tex]

If [tex]f(n_1)=f(n_2)[/tex]

[tex]n^2_1=n^2_2[/tex]

[tex]n_1=n_2[/tex]

Because N={1,2,3,...}

Hence, function is Injective.

2,3,4,.. have no pre- image in N

Therefore, function is not surjective

Because Range not equal to co-domain.

Hence, given function is injective but not Surjective.

c.[tex]f:Z\times Z \rightarrow Z[/tex]

f(n,k)=n+k

It is not injective because

f(1,2)=1+2=3

f(2,1)=2+1=3

Hence, by definition of one-one function it is not injective.

For every element belongs to Z we can find pre- image in [tex]Z\times Z[/tex]

Hence, function is surjective.

Answer 2
Final answer:

For function (a) f(x) = x² and function (b) f(n) = n², neither is injective or surjective. Function (c) f(n, k) = n + k is both injective and surjective.

Explanation:

The functions injective and surjective are important concepts in mathematics that pertain to the type of mappings functions perform from one set to another. An injective, or one-to-one, function assigns distinct outputs to distinct inputs, while a surjective, or onto, function ensures that every element of the function's codomain is mapped to by at least one element of its domain.

Function AnalysisFunction (a): f(x) = x² from reals to reals. This function is not injective because different input values can produce the same output (e.g., f(1) = f(-1) = 1). It is also not surjective as negative numbers in the codomain are not covered by any real number square.Function (b): f(n) = n² from natural numbers to natural numbers. Similar to the first function, it is not injective due to the squaring nature. It is also not surjective, as not all natural numbers are perfect squares.Function (c): f(n, k) = n + k from pairs of integers to integers. This function is injective, as no two different pairs can result in the same sum. It is surjective as well, as any integer can be expressed as a sum of two integers.


Related Questions

The equation giving a family of ellipsoids is u = (x^2)/(a^2) + (y^2)/(b^2) + (z^2)/(c^2) . Find the unit vector normal to each point of the surface of this ellipsoids.

Answers

Answer:

[tex]\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

Step-by-step explanation:

Given equation of ellipsoids,

[tex]u\ =\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}[/tex]

The vector normal to the given equation of ellipsoid will be given by

[tex]\vec{n}\ =\textrm{gradient of u}[/tex]

            [tex]=\bigtriangledown u[/tex]

           

[tex]=\ (\dfrac{\partial{}}{\partial{x}}\hat{i}+ \dfrac{\partial{}}{\partial{y}}\hat{j}+ \dfrac{\partial{}}{\partial{z}}\hat{k})(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2})[/tex]

           

[tex]=\ \dfrac{\partial{(\dfrac{x^2}{a^2})}}{\partial{x}}\hat{i}+\dfrac{\partial{(\dfrac{y^2}{b^2})}}{\partial{y}}\hat{j}+\dfrac{\partial{(\dfrac{z^2}{c^2})}}{\partial{z}}\hat{k}[/tex]

           

[tex]=\ \dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}[/tex]

Hence, the unit normal vector can be given by,

[tex]\hat{n}\ =\ \dfrac{\vec{n}}{\left|\vec{n}\right|}[/tex]

             [tex]=\ \dfrac{\dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}}{\sqrt{(\dfrac{2x}{a^2})^2+(\dfrac{2y}{b^2})^2+(\dfrac{2z}{c^2})^2}}[/tex]

             

[tex]=\ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

Hence, the unit vector normal to each point of the given ellipsoid surface is

[tex]\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

R1 R3 in an electric instrument called a Wheatstone bridge electric resistances are related byR1/R2=R3/R4. Find R 2 if R1 = 10.00 Ω R3-6470, and R2 = R4-15.0 . If necessary, round to two decimal places.

Answers

Answer:

R2 = 43.03 ohms

Step-by-step explanation:

If R2=R4-15, then R4 = R2+15

According to the Wheastone bridge equation we have:

[tex]\frac{R1}{R2} =\frac{R3}{R4}\\\frac{10}{R2} =\frac{6470}{R2+15}\\\\10*(R2+15) = 6470*R2\\10*R2+150 = 6470*R2\\150=(6470-15)*R2\\R2=\frac{6455}{150}= 43.03333[/tex]

Calculate: ( Round two decimal places for final answer)

1880 Milliliters(mL)=___pints(pts)

Answers

Answer:

1880 Milliliters(mL) = 3.97 pints

Step-by-step explanation:

This can be solved as a rule of three problem.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

Unit conversion problems, like this one, is an example of a direct relationship between measures.

Each ml has 0.002 pints. How many pints are there in 1880mL. So:

1ml - 0.002 pints

1880ml - x pints

[tex]x = 1800*0.002[/tex]

[tex]x = 3.97[/tex] pints

1880 Milliliters(mL) = 3.97 pints

In compounding a prescription, a pharmacist weighed 0.050 g of a substance on a balance insensitive to quantities smaller than 0.004 g. What was the maximum potential error in terms of percentage?

Answers

The maximum potential error is 92% as per the concept of percentage.

The pharmacist weighed 0.050 g of a substance on a balance insensitive to quantities smaller than 0.004 g.

To find the maximum potential error in terms of percentage, we need to determine the difference between the actual weight of the substance and the closest value that the balance can measure, which is 0.004 g.

The difference is 0.050 g - 0.004 g = 0.046 g.

The maximum potential error is the difference between the actual weight and the closest value that the balance can measure, divided by the actual weight, multiplied by 100%.

Therefore, the maximum potential error in terms of percentage is (0.046 g / 0.050 g) x 100% = 92%.

To learn more about the percentage;

https://brainly.com/question/24159063

#SPJ12

Final answer:

The question deals with the calculation of the maximum potential error in a measurement. Given the insensitivity of the balance to 0.004 g and the actual measurement of substance of 0.050 g, the maximum potential error by calculation comes out to be 8%.

Explanation:

The question is asking about the potential error in a measurement made by a pharmacist. The error is the difference between the smallest measurable quantity by the balance and the actual measurement. In this case, we have a balance that is insensitive to quantities smaller than 0.004 g, and the pharmacist is measuring 0.050 g of a substance.

To find the potential error percentage, we take the maximum potential error (which is defined by the sensitivity of the balance, 0.004 g), divide it by the actual measurement (0.050 g) and multiply by 100 to make it a percentage.

Maximum potential error percentage = (0.004 g / 0.050 g) * 100% = 8%

So the maximum potential error in this measurement is 8%.

Learn more about Maximum Potential Error here:

https://brainly.com/question/33956833

#SPJ3

Harper has $15to spend at the grocery store.She is going to buy bags of fruit that cost $4.75 each and one box of crackers that costs$3.50.Write and solve an inequality that models this situation and could be used to determine the maximum number of bags of fruit Harper can buy

Answers

Answer:

The maximum number of fruits bag Harper can buy are 3.

Step-by-step explanation:

Let there be x bags of fruits.

Let there be y boxes of chocolates

Cost of 1 bag of fruit = $4.75

So, cost of x bags = $4.75x

Cost of one box of crackers costs = $3.50

As per the given situation, the inequality forms:

[tex]4.75x+3.50y\leq 15[/tex]

So, the maximum number of bags of fruit Harper can buy, is when she buys no box of cracker.

So, putting y = 0 in above inequality , we have,

[tex]4.75x+3.50(0)\leq 15[/tex]

=> [tex]4.75x+0\leq 15[/tex]

=> [tex]4.75x \leq 15[/tex]

[tex]x\leq 3.15[/tex] rounding to 3.

Hence, the maximum number of fruits bag Harper can buy are 3.

A statistics professor wanted to test whether the grades on a statistics test were the same for upper and lower classmen. The professor took a random sample of size 10 from each, conducted a test and found out that the variances are equal. For this situation, the professor should use a t test with related samples.
(A) True
(B) False

Answers

Answer:

False

Step-by-step explanation:

In the above situation where the professor took a random sample of size 10 from each, conducted a test and found out that the variances are equal.  should not use a t test with related samples. The professor should use the t test for the difference in means testing for independence. Hence, the statement is false.

According to the hypothesis tested, it is found that it is true that the professor should use a t test with related samples, hence option A is correct.

When a t-test with related samples should be used?

A t-test should be used when we do not have the standard deviation for the population, which is the case in this problem, as we have it for the sample.

Related samples are used when comparisons are made between two samples, which is the case here for the samples of upper and lower classmen.

Hence, option A is correct.

More can be learned about an hypothesis test at https://brainly.com/question/13873630

Find the solution to the differential equation

dB/dt+4B=20

with B(1)=30

Answers

Answer:

Solution: [tex]B=5+25e^{4-4t}[/tex]

Step-by-step explanation:

Given: [tex]\dfrac{dB}{dt}+4B=20[/tex]  

with B(1)=30

The differential equation in form of linear differential equation,

[tex]\dfrac{dy}{dt}+Py=Q[/tex]

Integral factor, IF: [tex]e^{\int Pdt}[/tex]

General Solution:

[tex]y\cdot IF=\int Q\cdot IFdt[/tex]

[tex]\dfrac{dB}{dt}+4B=20[/tex]  

P=4, Q=20

IF= [tex]e^{\int 4dt}=e^{4t}[/tex]

Solution:

[tex]Be^{4t}=\int 20e^{4t}dt[/tex]

[tex]Be^{4t}=5e^{4t}+C[/tex]

[tex]B=5+Ce^{-4t}[/tex]

B(1)=30 , Put t=1, B=30

[tex]30=5+Ce^{-4}[/tex]

[tex]C=25e^4[/tex]

[tex]B=5+25e^{4-4t}[/tex]

Indicate which of the following are propositions (assume that x and y are real numbers).

a) The integer 36 is even.

b) Is the integer 315 − 8 even?

c) The product of 3 and 4 is 11.

d) The sum of x and y is 12.

e) If x > 2, then x 2 > 3.

f) 52 − 5 + 3

Answers

Answer:

a) It is a proposition .

b) It is not a proposition.

c) It is a proposition.

d) It is a proposition.

e) It is a proposition.

f) It is not a proposition.

Step-by-step explanation:

a) The integer 36 is even: It is a proposition, since this statement can be assigned a true value. If 36 is an even number, the statement is true, but if 36 is an odd number, the statement is false.

b) Is the integer 315 - 8 even ?: It is not a proposition, since this question cannot be assigned a true value.

c) The product of 3 and 4 is 11: It is a proposition, since this statement can be assigned a true value. If 3x4 = 11, the statement is true, but if 3x4 is not 11, the statement is false.

d) The sum of x and y is 12: It is a proposition, since, this statement can be assigned a true value. If x + y = 12, the statement is true, but if x + y is not 12, the statement is false.

e) If x> 2, then x 2> 3: It is a proposition, since, this statement can be assigned a truth value.

f) 52 - 5 + 3: It is not a proposition, since this statement cannot be assigned a true value.

Let p:4 is an even integer. q:-5 is a negative prime number. Write each of the following statements in terms ofp, q, and logical connectives: a. 4 is an even integer and-5 is a negative prime number. b. 4 is not an even integer and-5 is a negative prime number. c. If 4 is an even integer, then-5 is a negative prime number. d. 4 is an even integer if and only if-5 is a negative prime number. e. If 4 is not an even integer, then-5 is not a negative prime number 50 MATHEMATICS INTHE MODERN WORLD

Answers

Answer:

a. [tex]p \wedge q[/tex]

b. [tex]\neg p \wedge q[/tex]

c. [tex]p\Rightarrow q[/tex]

d. [tex]p \Leftrightarrow q[/tex]

e. [tex]\neg p \Rightarrow \neg q[/tex]

Step-by-step explanation:

a. 4 is an even integer and -5 is a negative prime number, can be represented by: [tex]p \wedge q[/tex]

b. 4 is not an even integer and-5 is a negative prime number, can be represented by: [tex]\neg p \wedge q[/tex]

c. If 4 is an even integer, then-5 is a negative prime number, can be represented by: [tex]p\Rightarrow q[/tex]

d. 4 is an even integer if and only if-5 is a negative prime number, can be represented by: [tex]p \Leftrightarrow q[/tex]

e. If 4 is not an even integer, then-5 is not a negative prime number,  can be represented by: [tex]\neg p \Rightarrow \neg q[/tex]

Final answer:

The statements a-e are translated into the language of logic as p ∧ q, ¬p ∧ q, p → q, p ↔ q, and ¬p → ¬q, respectively. These represent different logical relationships between the statements '4 is an even integer' and '-5 is a negative prime number'.

Explanation:

To rewrite the provided statements using logical connectors and the given identifiers (p: 4 is an even integer, q: -5 is a negative prime number), we proceed as follows:

a. p ∧ q: This reads "p and q", representing the statement "4 is an even integer and -5 is a negative prime number".

b. ¬p ∧ q: The symbol ¬ stands for "not", so this reads "not p and q", representing "4 is not an even integer and -5 is a negative prime number".

c. p → q: This reads "p implies q", representing "If 4 is an even integer, then -5 is a negative prime number".

d. p ↔ q: This reads "p if and only if q", representing "4 is an even integer if and only if -5 is a negative prime number".

e. ¬p → ¬q: This reads "not p implies not q", representing "If 4 is not an even integer, then -5 is not a negative prime number".

Learn more about Logical Statements here:

https://brainly.com/question/4458769

#SPJ3

The pictures are in order of the the questions asked.
1. Answer both parts:
2. Fill in the blank:
3. Arnie wrote:

If all three are answered in the most CLEAR way, brainliest will be handed out.

Answers

Answer:

The answers are given below:

Step-by-step explanation:

1. a. (─13)³⁵

1. b. The product will be negative. The expanded form shows 34 negative factors plus one more negative factor. Any even number of negative factor yields a positive product. The remaining 35th negative factor negates the resulting product.

2. 4 times.

3. Arnie is not correct. The base, ─3.1, should be in parentheses to prevent ambiguity. At present the notation is not correct.

A farmer looks out into the barnyard and sees the pigs and the chickens. "I count 70 heads and 180 feet, How many pigs and chickens are there?

Answers

Answer:

Pigs = 20 and Chickens = 50

Step-by-step explanation:

Let the number of pigs be x

and let the number of chicken be y

Thus, x + y = 70

Since Chicken has 2 legs and pigs has 4 legs.

⇒ 4x + 2y = 180

Solving both equations,

We get, x = 20 and y = 50

Thus number of pigs = 20

and, number of chickens = 50.

Beginning with Newton's second law of motion, derive the equations of motion for a projectile fired from altitude h above the ground at an angle e to the horizontal and with initial speed equal to vo.

Answers

Answer:

Considering the fire point at (0,h), x-direction positive to the right (→) and y-direction positive to up (↑) and the only force acting after fire is the projectile weight = -mg in the y-direction.

[tex]\\ x(t)=Vo*cos(e)*t\\ v_x(t)=Vo*cos(e)\\ a_y(t)=0\\ y(t)=h+Vo*sin(e)*t-\frac{g}{2}t^{2}\\ v_x(t)=Vo*sin(e)-gt\\ a_y(t)=-g[/tex]

Step-by-step explanation:

First, we apply the Second Newton's Law in both x and y directions:

x-direction:

[tex]\sum F_x= m\frac{dv_x}{dt} =0[/tex]

Integrating we have

[tex]\int\limits^{V_x} _{V_{0x}}{}\, dV_x =\int\limits^{t} _0{0}\, dt\\ V_{0x}=Vo*cos(e)\\ V_x(t)=Vo*cos(e)[/tex]

Taking into account that a=(dv/dt) and v=(dx/dt):

[tex]a_x(t)=\frac{dV_x(t)}{dt}=0\\V_x(t)=\frac{dx(t)}{dt}-->\int\limits^x_0 {} dx = \int\limits^t_0 {Vo*cos(t)} \, dt \\x(t)=Vo*cos(e)*t[/tex]

y-direction:

[tex]\sum F_y= m\frac{dv_x}{dt} =-mg[/tex]

Integrating we have

[tex]\int\limits^{V_y} _{V_{0y}}{}\, dV_y =\int\limits^{t} _0 {-g} \, dt\\ V_{0y}=Vo*sin(e)\\ V_y(t)=Vo*sin(e)-g*t[/tex]

Taking into account that a=(dv/dt) and v=(dy/dt):

[tex]a_y(t)=\frac{dV_y(t)}{dt}=-g\\V_y(t)=\frac{dy(t)}{dt}-->\int\limits^y_h {} dy = \int\limits^t_0 {(Vo*sin(t)-g*t)} \, dt \\y(t)=h+Vo*sin(e)*t-\frac{g}{2}t^{2}[/tex]

Show that n+1C = nCr-1 + nr.

Answers

Answer:  The proof is given below.

Step-by-step explanation:  We are given to show that the following equality is true :

[tex]^{n+1}C_r=^nC_{r-1}+^nC_r.[/tex]

We know that

the number of combinations of n different things taken r at a time is given by

[tex]^nC_r=\dfrac{n!}{r!(n-r)!}.[/tex]

Therefore, we have

[tex]R.H.S.\\\\=^nC_{r-1}+^nC_r\\\\\\=\dfrac{n!}{(r-1)!(n-(r-1))!}+\dfrac{n!}{(r)!(n-r)!}\\\\\\=\dfrac{n!}{(r-1)!(n-r+1)!}+\dfrac{n!}{(r)!(n-r)!}\\\\\\=\dfrac{n!}{(r-1)!(n-r+1)(n-r)!}+\dfrac{n!}{r(r-1)!(n-r)!}\\\\\\=\dfrac{n!}{(r-1)!(n-r)!}\left(\dfrac{1}{n-r+1}+\dfrac{1}{r}\right)\\\\\\=\dfrac{n!}{(r-1)!(n-r)!}\left(\dfrac{r+n-r+1}{(n-r+1)r}\right)\\\\\\=\dfrac{n!}{(r-1)!(n-r)!}\times\dfrac{n+1}{(n-r+1)r}\\\\\\=\dfrac{(n+1)!}{r!(n-r+1)!}\\\\\\=\dfrac{(n+1)!}{r!((n+1)-r)!}\\\\\\=^{n+1}C_r\\\\=L.H.S.[/tex]

Thus, [tex]^{n+1}C_r=^nC_{r-1}+^nC_r.[/tex]

Hence proved.

A three inch diameter pulley on an electric motor that runs at 1800
revolutions per minute is connected by a belt to a six inch
diameter pullley on a saw arbor.
angular speed = central angle/time, arc length = (central
angle)(radius)

a. Find the angular speed (in radians per minute) of each. ( 3 in
and 6 in pully)

b. find the revolutions per minute of the saw.

Answers

Answer:

a) 3 inch pulley: 11,309.7 radians/min

6) 6 inch pulley: 5654.7 radians/min

b) 900 RPM (revolutions per minute)

Step-by-step explanation:

Hi!

When a pulley wirh radius R rotantes an angle θ, the arc length travelled by a point on its rim is Rθ.  Then the tangential speed V is related to angular speed  ω as:

[tex]V=R\omega[/tex]

When you connect two pulleys with a belt, if the belt doesn't slip, each point of the belt has the same speed as each point in the rim of both pulleys: Then, both pulleys have the same tangential speed:

[tex]\omega_1 R_1 = \omega_2 R_2\\[/tex]

[tex]\omega_2 = \omega_1 \frac{R_1}{R_2} =1800RPM* \frac{3}{6}= 900RPM[/tex]

We need to convert RPM to radias per minute. One revolution is 2π radians, then:

[tex]\omega_1 = 1800*2\pi \frac{radians}{min} = 11,309.7\frac{radians}{min}[/tex]

[tex]\omega_2 = 5654.7 \frac{radians}{min}[/tex]

The saw rotates with the same angular speed as the 6 inch pulley: 900RPM

Final answer:

a. The angular speed of the 3 inch pulley is 3600π radians/min and the angular speed of the 6 inch pulley is 7200π radians/min. b. The revolutions per minute of the saw is 900.

Explanation:

a. To find the angular speed in radians per minute, we need to convert the revolutions per minute to radians per minute. Since 1 revolution is equal to 2π radians, we can calculate the angular speed of the 3 inch pulley as follows:

Angular speed = (Revolutions per minute) x (2π radians per revolution)

Angular speed = (1800 rev/min) x (2π radians/rev) = 3600π radians/min

Similarly, for the 6 inch pulley:

Angular speed = (Revolutions per minute) x (2π radians per revolution)

Angular speed = (1800 rev/min) x (2π radians/rev) = 7200π radians/min

b. To find the revolutions per minute of the saw, we need to use the ratio of the diameters of the two pulleys. Since the diameter of the 6 inch pulley is twice the diameter of the 3 inch pulley, the revolutions per minute of the saw will be half of the revolutions per minute of the motor. Therefore, the revolutions per minute of the saw is 900.

Suppose that the functions g and h are defined for all real numbers r as follows. gx) -4x +5 h (x) = 6x write the expressions for (g-h)(x) and (g+h)(x) and evaluate (g-h)(3). 2 o e m,曲 pe here to search

Answers

Answer: Our required values would be -10x+5, 2x+5 and -25.

Step-by-step explanation:

Since we have given that

g(x) = -4x+5

and

h(x) = 6x

We need to find  (g-h)(x) and (g+h)(x).

So, (g-h)(x) is given by

[tex]g(x)-h(x)\\\\=-4x+5-6x\\\\=-10x+5[/tex]

and (g+h)(x) is given by

[tex]g(x)+h(x)\\\\=-4x+5+6x\\\\=2x+5[/tex]

and (g-h)(3) is given by

[tex]-10(3)+5\\\\=-30+5\\\\=-25[/tex]

Hence, our required values would be -10x+5, 2x+5 and -25.

Find the value of 8/15×2/13 Although these numbers aren't quite as nice as the ones from the example, the procedure is the same, so the difficulty is the same excepting the ability to perform the calculation in your head. You may choose to use a calculator.

Answers

Answer:

[tex]\frac{16}{195}[/tex]

Step-by-step explanation:

To obtain the result of a fractions multiplication we need to multiply both numerators and the divide by the multiplication of the denomitators. In general, given a,b,c,d real numbers with b and d not zero, we have that

[tex]\frac{a}{b}*\frac{c}{d}=\frac{a*c}{b*d}[/tex]

Substituting a,b,c and d for 8,15,2 and 13 we obtain that

[tex]\frac{8}{15}* \frac{2}{13} =\frac{16}{195}[/tex]

Final answer:

To find the value of 8/15 x 2/13, multiply the numerators together and multiply the denominators together. The fraction 16/195 is the final answer.

Explanation:

To find the value of 8/15 x 2/13, we multiply the numerators together (8 x 2) and multiply the denominators together (15 x 13). This gives us 16 in the numerator and 195 in the denominator.

The fraction 16/195 cannot be simplified further, so that is the final answer.

Calculation:

We have 8/15 x 2/13 = (8 x 2)/(15 x 13) = 16/195.

when a number is decreased by 40% of itself, the result is 24 what is the number?

Answers

Answer: The number is 40.

Step-by-step explanation:

Since we have given that

Let the number be 'x'.

If a number is decreased by 40%.

So, number becomes,

[tex]\dfrac{100-40}{100}\times x\\\\=\dfrac{60}{100}\times x\\\\=0.6x[/tex]

According to question, the result becomes 24.

So, our equation becomes,

[tex]0.6x=24\\\\x=\dfrac{24}{0.6}\\\\x=\dfrac{240}{6}\\\\x=40[/tex]

Hence, the number is 40.

Which of the following sets are equal to {x | x < 9 and x >2}

Question 5 options:

{3, 4, 5, 6, 7, 8}

{2, 3, 4, 5, 6, 7, 8, 9}

{8, 7, 6, 5, 3}

{ }

{2, 3, 4, 5, 6, 7}

Answers

Answer:

  {3, 4, 5, 6, 7, 8}

Step-by-step explanation:

Integers that are less than 9 and greater than 2 include the integers 3 through 8.

The correct set equal to {x | x < 9 and x > 2} is {3, 4, 5, 6, 7, 8}, as it includes all the integers that satisfy the given condition.

The given set is {x | x < 9 and x > 2}, which translates to all numbers greater than 2 and less than 9. When comparing this to the options provided, we need to ensure that the numbers within the set are all and only the integers that satisfy these conditions, regardless of their order. The set {3, 4, 5, 6, 7, 8} matches this description exactly, as it includes all the integers that are greater than 2 and less than 9. Sets in mathematics do not consider the order of elements; they only consider the presence of elements. Therefore, the correct option that is equal to the given set is {3, 4, 5, 6, 7, 8}.

Express 247_10 to (a) base 7, (b) base 2, (c) base 8, and (d) base 16.

Answers

Answer:

Step-by-step explanation:

given number,

247₁₀ to be converted into

a) base 7

divide the number by 7 and write the remainder on the left side

solution is (502)₇

b) base 2

divide the number by 2 and write the remainder on the left side and write in the direction from down to up as shown in the diagram attached below.

solution is (11110111)₂

c) base 8

divide the number by 8 and write the remainder on the left side

solution is (367)₈

d) base 16

divide the number by 16 and write the remainder on the left side

solution is (F 7)₈

15 - F

diagram is attached below.

Let f be a differentiable function on (-0o,00) such that f(-x)= f(x) for all x in (, o). Compute the value of f'(0). Justify your answer

Answers

Answer:

[tex]f'(0)=0[/tex]

Step-by-step explanation:

Applying the chain rule

[tex]\frac{d}{dx} (f(-x))=-\frac{df}{dx}[/tex]

Then it becomes

[tex]\frac{df}{dx} =-\frac{df}{dx}[/tex]

In x=0

[tex]\frac{d[tex]f'(0)=-f'(0)\\f'(0)+f'(0)=0\\2f'(0)=0\\[/tex]f}{dx} =-\frac{df}{dx}[/tex]

Then

[tex]f'(0)=0[/tex]

Compute the exact interest on $5,870 at 12% if the money is borrowed from June to December of the same year.

Answers

Answer:

The exact interest on $5,870 at 12% is $58.70.

Step-by-step explanation:

Given information:

Principal = $5870

Interest rate  = 12% = 0.12

Time = June-December = 7 months.

We know that

1 year = 12 months

1/12 year = 1 month

7/12 year = 7 month

Time = 7/12 year

Formula for simple interest:

[tex]I=P\times r\times t[/tex]

where, P is principal, r is rate of interest and t is time in years.

Substitute P=5870, r=0.12 and t=7/12 in the above formula.

[tex]I=5870\times 0.12\times \frac{1}{12}[/tex]

[tex]I=5870\times 0.01[/tex]

[tex]I=58.70[/tex]

Therefore the exact interest on $5,870 at 12% is $58.70.

use the binomial theorem to expand the expression :
(3x + y)^5 and simplify.
(b) find the middle term in the expansion of
(1/x+√x)^4 and simplify your unswer.
(c) determine the coefficient of x^11 in the expansion of (x^2 +1/x)^10, simplify your answer.

Answers

Answer:

a) [tex](3x+y)^5=243x^5+405x^4y+270x^3y^2+90x^2y^3+15xy^4+y^5[/tex].

b) The middle term in the expansion is [tex]\frac{6}{x}[/tex].

c) The coefficient of [tex]x^{11}[/tex] is 120.

Step-by-step explanation:

Remember that the binomial theorem say that [tex](x+y)^n=\sum_{k=0}^{n} \binom{n}{k}x^{n-k}y^{k}[/tex]

a) [tex](3x+y)^5=\sum_{k=0}^5\binom{5}{k}3^{n-k}x^{n-k}y^k[/tex]

Expanding we have that

[tex]\binom{5}{0}3^5x^5+\binom{5}{1}3^4x^4y+\binom{5}{2}3^3x^3y^2+\binom{5}{3}3^2x^2y^3+\binom{5}{4}3xy^4+\binom{5}{5}y^5[/tex]

symplifying,

[tex](3x+y)^5=243x^5+405x^4y+270x^3y^2+90x^2y^3+15xy^4+y^5[/tex].

b) The middle term in the expansion of [tex](\frac{1}{x} +\sqrt{x})^4=\sum_{k=0}^{4}\binom{4}{k}\frac{1}{x^{4-k}}x^{\frac{k}{2}}[/tex] correspond to k=2. Then [tex]\binom{4}{2}\frac{1}{x^2}x^{\frac{2}{2}}=\frac{6}{x}[/tex].

c) [tex](x^2+\frac{1}{x})^{10}=\sum_{k=0}^{10}\binom{10}{k}x^{2(10-k)}\frac{1}{x^k}=\sum_{k=0}^{10}\binom{10}{k}x^{20-2k}\frac{1}{x^k}=\sum_{k=0}^{10}\binom{10}{k}x^{20-3k}[/tex]

Since we need that 11=20-3k, then k=3.

Then the coefficient of [tex]x^{11}[/tex] is [tex]\binom{10}{3}=120[/tex]

Prochlorperazine (Compazine) for injection is available in 10-mL multiple dose vials containing 5 mg/mL. How many 2-mg doses can be withdrawn from the vial?

Answers

Answer:

25

Step-by-step explanation:

Given:

Volume of Prochlorperazine injection available = 10 mL

Dose per vial = 5 mg/mL

Now,

The total mass of dose present in 10 mL = Volume × Dose

or

The total mass of dose present in 10 mL = 10 × 5 = 50 mg

Thus,

The number of 2 mg dose that can be withdrawn = [tex]\frac{\textup{50 mg}}{\textup{2 mg}}[/tex]

or

The number of 2 mg dose that can be withdrawn = 25

Answer: 25 doses of 2 mg each from the 10-mL vial

Step-by-step explanation:

To determine how many 2-mg doses can be withdrawn from a 10-mL vial containing Prochlorperazine at a concentration of 5 mg/mL, you can use the following calculation:

1. Calculate the total amount of Prochlorperazine in the vial:

  Total amount = Concentration × Volume

  Total amount = 5 mg/mL × 10 mL

  Total amount = 50 mg

2. Now, calculate how many 2-mg doses can be withdrawn:

  Number of 2-mg doses = Total amount / Dose per patient

  Number of 2-mg doses = 50 mg / 2 mg/dose

  Number of 2-mg doses = 25 doses

So, you can withdraw 25 doses of 2 mg each from the 10-mL vial of Prochlorperazine.

If you travel south from the equator to 25°S, how far will you have to travel? The circumference of the earth is approximately 40,000 km or 24, 900 mi.

Answers

Answer:

2,777.8 km or 1,729.2 mi

Step-by-step explanation:

first think about how many degrees would you travel if you wanted to do a whole circunference always going south: it would take 360 degress to complete a circunference.

Then you can use a rule of three to find the answer:

If the whole circunference is 40,000km and in degrees is 360, then how much 25 degrees would be?

[tex]x= \frac{25}{360}*40,000[/tex]

[tex]x= 2777.8[/tex]

10,101 base 2 + 11,011 base 2 =

Answers

Answer:

110,000 base 2

Step-by-step explanation:

column 1 [the first position in the number]:

1+1=0, (carry 1)

column 2:

0+1 +1 (carried)=0, (carry 1)

column 3:

1+0+1 (carried)=0, (carry 1)

column 4:

0+1+1 (carried)=0, (carry 1)

column 5:

1+1+1=1, (carry 1)

then you write the last 1 'cause there is n number to add with:

[tex]10,101_{2}+11,011_{2}=110,000_{2}[/tex]

In binary system the highest number to write is 1, if you add 1+1, it jumps to 0, and you have to carry 1 to the next position.

If you are not sure about the sum, you can convert the numbers in base 2, to base 10, so you can know if it is correct:

[tex]10,101_{2}=21_{10}\\11,011_{2}=27_{10}\\110,000_{2}=48_{10}[/tex]

So 21+27=48.

In decimal system when you add 9+1, it jumps to 0 and then you have to carry 1 to the next position, because the the highest number you can write is 9.

In order to make some extra money in the summer, you water your neighbor's lawn and walk their dog. You water their lawn every 6 days and walk the dog every 4 days. Your neighbor pays you $5 each time you walk the dog and $6 each time you water the lawn.When you do both jobs on the same day. she gives you an exrta $3. On june 1, you dont have ro complete either job, because your neighbor did them both the day before. if you worked for your neighbor from june 1 to july 20 ( there 30 days in june and 31 days in july ), how many times would you do both jobs on the same day ? how much total money would earn?​

Answers

Answer:

$114

Step-by-step explanation:

make a calender and count every 4 days for dogs and every 6 days for the lawn. Then add all the money up.

the answer is $114 Hope this helps ! :-)

In a class of 19 students, 3 are math majors. A group of four students is chosen at random. (Round your answers to four decimal places.) (a) What is the probability that the group has no math majors? (b) What is the probability that the group has at least one math major? (c) What is the probability that the group has exactly two math majors?

Answers

Answer:

(a) The probability is 0.4696

(b) The probability is 0.5304

(c) The probability is 0.0929

Step-by-step explanation:

The total number of ways in which we can select k elements from a group n elements is calculate as:

[tex]nCx=\frac{n!}{x!(n-x)!}[/tex]

So, the number of ways in which we can select four students from a group of 19 students is:

[tex]19C4=\frac{19!}{4!(19-4)!}=3,876[/tex]

On the other hand, the number of ways in which we can select four students with no math majors is:

[tex](16C4)*(3C0)=(\frac{16!}{4!(16-4)!})*(\frac{3!}{0!(3-0)!})=1820[/tex]

Because, we are going to select 4 students form the 16 students that aren't math majors and select 0 students from the 3 students that are majors.

At the same way, the number of ways in which we can select four students with one, two and three math majors are 1680, 360 and 16 respectively, and they are calculated as:

[tex](16C3)*(3C1)=(\frac{16!}{3!(16-3)!})*(\frac{3!}{1!(3-1)!})=1680[/tex]

[tex](16C2)*(3C2)=(\frac{16!}{2!(16-2)!})*(\frac{3!}{2!(3-1)!})=360[/tex]

[tex](16C1)*(3C3)=(\frac{16!}{1!(16-1)!})*(\frac{3!}{3!(3-3)!})=16[/tex]

Then, the probability that the group has no math majors is:

[tex]P=\frac{1820}{3876} =0.4696[/tex]

The probability that the group has at least one math major is:

[tex]P=\frac{1680+360+16}{3876} =0.5304[/tex]

The probability that the group has exactly two math majors is:

[tex]P=\frac{360}{3876} =0.0929[/tex]

Final answer:

In short, to calculate the probability of certain events in a group selection, you would identify the total possible groups, and then calculate how many of these groups satisfy your desired conditions. The probability is then calculated as the favorable events over the total possibilities.

Explanation:

This problem is a classic example of combinatorics and probability. The total number of ways to select four students from a total of 19 is given by the combination function: 19 choose 4. The denominator for all our probability calculations will be this total number of possible groups.

(a) To find the probability that the group has no math majors, we want all four students to be from the 16 non-math majors. This is calculated as combinations of 16 choose 4. Thus, the probability is (16 choose 4) / (19 choose 4).(b) The probability that the group has at least one math major is calculated as 1 minus the probability that the group has no math majors.(c) The probability that the group has exactly two math majors can be calculated by considering the combinations of selecting 2 math majors from the 3 (3 choose 2) and 2 non-math majors from the remaining 16 (16 choose 2). That gives us the probability of (3 choose 2)*(16 choose 2) / (19 choose 4).

Learn more about Combinatorics and Probability here:

https://brainly.com/question/31293479

#SPJ11

Adhesive tape made from fabric has a tensile strength of not less than 20.41 kg/2.54 cm of width. Reduce these quantities to grams and millimeters.

Answers

Answer:

[tex]\frac{20,410 \text{ grams}}{254\text{ mm}}[/tex]

Step-by-step explanation:

We have been given that adhesive tape made from fabric has a tensile strength of not less than 20.41 kg/2.54 cm of width. We are asked to reduce these quantities to grams and millimeters.

We know 1 kg equals 1000 grams and 1 cm equals 10 mm.

[tex]\frac{20.41\text{ kg}}{\text{2.54 cm}}[/tex]

[tex]\frac{20.41\text{ kg}}{\text{2.54 cm}}\times \frac{\text{1 cm}}{\text{10 mm}}[/tex]

[tex]\frac{20.41\text{ kg}}{2.54\times\text{10 mm}}[/tex]

[tex]\frac{20.41\text{ kg}}{254\text{ mm}}[/tex]

[tex]\frac{20.41\text{ kg}}{254\text{ mm}}\times \frac{\text{1000 grams}}{\text{1 kg}}[/tex]

[tex]\frac{20.41\times \text{1000 grams}}{254\text{ mm}}[/tex]

[tex]\frac{20,410 \text{ grams}}{254\text{ mm}}[/tex]

Therefore, our required measurement would be [tex]\frac{20,410 \text{ grams}}{254\text{ mm}}[/tex].

A recent study found a correlation between gum disease and heart disease. This result indicates that gum disease causes people to develop heart disease.
True or False?

Answers

Answer:

False

Step-by-step explanation:

Correlation measures the strength of the relation between two variables.

Further, Correlation is said to be positive if increasing/decreasing the one variable, also increases/decreases the values of another variable.

Correlation is said to be negative if increasing/decreasing the one variable, also decreases/increases the values of another variable.

Since we don't know here exists a positive correlation or negative correlation.

So here are two possible conditions:

The person who has Gum disease also has heart disease.

And, the person has Gum disease can never have heart disease.

Thus, the given statement is false.

Final answer:

The statement is false because a correlation found in a study does not necessarily mean one factor (gum disease) is the cause of the other (heart disease). The cause and effect relationship must be established through further studies.

Explanation:

The statement 'A recent study found a correlation between gum disease and heart disease. This result indicates that gum disease causes people to develop heart disease.' is False. A correlation implies a relationship between two elements, but it does not indicate a cause and effect relationship.

This means although the study shows a link or association between gum disease and heart disease, it does not mean gum disease causes heart disease. It could be that people with poor gum health also tend to have poor overall health including heart health. Alternatively, there could be a third underlying factor that leads to both conditions. Therefore, the cause and effect relationship must be established through further studies.

Learn more about Correlation and Causation here:

https://brainly.com/question/30912507

#SPJ12

3/4x -1/2y= 8 and 2x +y=40

Answers

Answer:

The value of x is 16 and the value of y is 8.

Step-by-step explanation:

Consider the provided equation.

[tex]\frac{3}{4}x -\frac{1}{2}y= 8\ and\ 2x +y=40[/tex]

Isolate x for [tex]\:\frac{3}{4}x-\frac{1}{2}y=8[/tex]

[tex]\frac{3}{4}x-\frac{1}{2}y+\frac{1}{2}y=8+\frac{1}{2}y[/tex]

[tex]\frac{3}{4}x=8+\frac{1}{2}y[/tex]

Multiply both side by 4 and simplify.

[tex]3x=32+2y[/tex]

[tex]x=\frac{32+2y}{3}[/tex]

Substitute the value of x in [tex]2x +y=40[/tex]

[tex]2\cdot \frac{32+2y}{3}+y=40[/tex]

[tex]\frac{64}{3}+\frac{7y}{3}=40[/tex]

[tex]64+7y=120[/tex]

[tex]7y=56[/tex]

[tex]y=8[/tex]

Now substitute the value of y in [tex]x=\frac{32+2y}{3}[/tex]

[tex]x=\frac{32+2\cdot \:8}{3}[/tex]

[tex]x=16[/tex]

Hence, the value of x is 16 and the value of y is 8.

Other Questions
f(x) = x^2. What is g(x)? Ship A is located 4.1 km north and 2.3 km east of ship B. Ship A has a velocity of 22 km/h toward the south and Ship B has a velocity of 40 km/h in a direction 38 north of east. What are the (a) x-component and (b) y-component of the velocity of A relative to B? a security camera is mounted 9 feet above the floor .whatangle of depression should be used if the camera is to bedirectedto a spot 6 feet above the floor and 12 feet from the wall? 15 - 2w - 2 = 2(w 15)-1 Suppose the genes for eye color and wing shape are both on the X chromosome (they are linked) and are known to be 68 map units apart. In a mating between a Xw+m+Xwm female and a XwmY male that produces 1000 progeny, how many recombinant progeny would you expect to observe? What companies represent the 4Cs well, and why are these companies so successful at practicing the 4Cs? An infinitely long line charge of uniform linear charge density = -3.00 C/m lies parallel to the y axis at x = -3.00 m. A point charge of 3.00 C is located at x = 1.00 m, y = 2.00 m. Find the electric field at x = 2.00 m, y = 1.50 m. i neeeeekeksisj helwppop what's 1/4 + x = 3? show your work In 2022, Spencer Realty considered conducting a survey of every home to determine which homes may be put on the market within the next year. This information would be included in their financial statements as a predictor of potential future revenue. The cost of the survey would be $2.6 million, and the results would not differentiate potential business for Spencer Realty compared to other realtor companies. If Spencer Realty decided to not conduct the survey, that decision is likely based on which concept? You probably believe that the earth is spherical, but it is obvious that the earth is flat. Look around; where do you see the curvature? One classmate suggests that if you call someone on the "other side" of the world by phone, he or she will answer and, for instance, it will be midnight there at the instant it is noon here. Another student reminds you of the picture taken of the spherical earth from the moon landing. Your teacher explains the ancient observation that when the sun was directly overhead on one day near the equator, a pole some hundreds of miles away to the north still cast a shadow. What is the best scientific basis for still considering that the earth is spherical? What are features in personal finance? 4.3d+7.5=5.8d I need help!!!! Nicola borrows 50000 dollars from a bank that charges interest at an annual rate of 8 percent, compounded monthly. Calculate the monthly payment that Nicola would have to make in order for the loan to be paid off after exactly 25 years. (Give your answer, in dollars, to the nearest cent. You should not include the dollar sign or any commas in your answer.) Please answer this correctly Early recognition of cardiac arrest and activation of an emergency response protocol; immediate high-quality CPR; rapid defibrillation; effective BLS and ALS care and transportation; and effective post-cardiac arrest care at a hospital are the links in which chain of survival? A blueprint of a bedroom has a scale of 1/4 inch is equivalent to 1 foot. If the closet measures 1/2 inch by 3/4 inch on the blueprint, what are the actual dimensions of the closet? The bedroom closet will measure feet by feet. 2 PointsWhich of the following is not a risk associated with using legal drugs withoutmedical supervision?A. Taking inappropriate or dangerous dose amounts,OB. Ignoring or not recognizing the side effects.C. Paying too much on the black market instead of getting aprescriptionD. Not having a guarantee of purity or potency of the drug,SUBMIT When a colloid such as gelatin forms, which molecule does the process of protein coagulation entrap? You place a glass of water in the freezer. Hours later the glass of water has frozen solid. What happened to the particles in the glass?A. They started to move freely.B. They slowed down and packed together.C. They moved faster and packed together.D. They slowed down and moved freely.