Fresh water flows through a horizontal tapered pipe. At the wide end its speed is 8 m/s. The difference in pressure between the two ends is 5338 Pa. What is the speed (in m/s) of the water at the narrow end? Round your answer to the nearest tenth.

Answers

Answer 1

Answer:

8.64 m/s

Explanation:

v1 = 8 m/s, v2 = ?, P2 - P1 = 5338 Pa, density of water, d = 1000 kg/m^3

By the use of Bernoulli's theorem

P 1 + 1/2 x d x v1^2 = P2 + 1/2 x d x v2^2

P2 - P1 = 1/2 x d x (v2^2 - v1^2)

5338 = 0.5 x 1000 x (v2^2 - 64)

10.676 = v2^2 - 64

v2^2 = 74.676

v2 = 8.64 m/s  


Related Questions

A baseball is hit so that it travels straight upward after being struck by the bat. A fan observes that it takes 3.00 s for the ball to reach its maximum height. Find (a) the ball’s initial velocity and (b) the height it reaches.

Answers

Answer:

Initial velocity = [tex]29.43m/s[/tex] b) Height it reaches = 44.145 m

Explanation:

Using the first equation of motion we have

[tex]v=u+at[/tex]

here

v is the final velocity

u is the initial velocity

a is the acceleration of the object

t is time

When the ball reaches it's highest point it's velocity will become 0 as it will travel no further

Also the acceleration in our case is acceleration due to gravity ([tex]-9.8m/s^{2}[/tex]) as the ball moves in it's influence alone with '-' indicating downward direction

Thus applying the values we get

[tex]0=u-(9.81)m/s^{2}\times 3\\\\u=19.43m/s[/tex]

b)

By 3rd equation of motion we have

[tex]v^{2}-u^{2}=2gs[/tex]

here s is the distance covered

Applying the value of u that we calculated we get

[tex]s=\frac{-u^{2}}{2g}\\\\s=\frac{-29.43^{2}}{-2\times 9.81}\\\\s=44.145m[/tex]

A cosmic ray proton moving toward the Earth at 3.5x 10^7 ms experiences a magnetic force of 1.65x 10^-16 N. What is the strength of the magnetic field if there is a 45° angle between it and the proton's velocity?

Answers

Answer:

Magnetic field, [tex]B=4.16\times 10^{-5}\ T[/tex]

Explanation:

It is given that,

Velocity of proton, [tex]v=3.5\times 10^7\ m/s[/tex]

Magnetic force, [tex]F=1.65\times 10^{-16}\ N[/tex]

Charge of proton, [tex]q=1.6\times 10^{-19}\ C[/tex]

We need to find the strength of the magnetic field if there is a 45° angle between it and the proton's velocity. The formula for magnetic force is given by :

[tex]F=qvB\ sin\theta[/tex]

[tex]B=\dfrac{F}{qv\ sin\theta}[/tex]

[tex]B=\dfrac{1.65\times 10^{-16}}{1.6\times 10^{-19}\times 3.5\times 10^7\times sin(45)}[/tex]

B = 0.0000416 T

[tex]B=4.16\times 10^{-5}\ T[/tex]

Hence, this is the required solution.

Final answer:

The strength of the magnetic field, given the force on the proton, its charge, and velocity, and the angle between the velocity and the magnetic field, is approximately 4.21 x 10^-5 T.

Explanation:

The strength of a magnetic field can be calculated using the formula for the force exerted on a moving charge in a magnetic field, which is F = q * v * B * sin(θ). Here, F is the magnetic force, q is the charge of the particle, v is the speed of the particle, B is the strength of the magnetic field, and θ is the angle between the velocity and the magnetic field direction.

In this problem, the magnetic force (F) is given as 1.65 x 10^-16 N, the charge of a proton (q) is +1.6 x 10^-19 C, the speed of the proton (v) is 3.5 x 10^7 m/s, and the angle between the velocity and the magnetic field direction (θ) is 45 degrees. Hence we can rearrange the formula to find the magnetic field (B), getting B = F / (q * v * sin(θ)).

Replacing the values into the equation gives: B = 1.65 x 10^-16 N / (+1.6 x 10^-19 C * 3.5 x 10^7 m/s * sin(45°)) which gives the strength of the magnetic field as approximately 4.21 x 10^-5 T.

Learn more about Magnetic Field Strength here:

https://brainly.com/question/28104888

#SPJ3

A 1200 kg car traveling north at 14 m/s is rear-ended by a 2000 kg truck traveling at 30 m/s. What is the total momentum before and after the collision?

Answers

Final answer:

The Physics question involves calculating the total momentum before and after a traffic collision. Total momentum before the collision is 76800 kg·m/s northward. Assuming a perfectly inelastic collision where the vehicles stick together, the total momentum remains unchanged after the collision.

Explanation:

To calculate the total momentum before the collision, we use the formula: momentum = mass × velocity. For the 1200 kg car traveling north at 14 m/s, its momentum is 1200 kg × 14 m/s = 16800 kg·m/s northward.

For the 2000 kg truck traveling at 30 m/s, its momentum is 2000 kg × 30 m/s = 60000 kg·m/s northward. The total momentum before the collision is the sum of these two momenta, so 76800 kg·m/s northward.

Assuming the collision is perfectly inelastic and the two vehicles stick together, the law of conservation of momentum states that the total momentum before the collision must be equal to the total momentum after the collision.

Therefore, the total momentum after the collision will also be 76800 kg·m/s northward.

Batman (mass = 88.8 kg) jumps straight down from a bridge into a boat (mass = 530 kg) in which a criminal is fleeing. The velocity of the boat is initially +14.5 m/s. What is the velocity of the boat after Batman lands in it?

Answers

Answer:

The velocity of the boat after Batman lands in it is 2.08 m/s.

Explanation:

Given that,

Mass of batman [tex]m_{1}= 88.8\ kg[/tex]

Mass of boat [tex]m_{2}=530\ kg[/tex]

Initial velocity = 14.5 m/s

We need to calculate the velocity of boat

Using conservation of momentum

[tex]m_{1}u=(m_{1}+m_{2})v[/tex]...(I)

Where, [tex]m_{1}[/tex]=mass of batman

[tex]m_{2}[/tex] =mass of boat

u=initial velocity

v = velocity of boat

Put the value in the equation

[tex]88.8\times14.5=530+88.8\times v[/tex]

[tex]v=\dfrac{88.8\times14.5}{530+88.8}[/tex]

[tex]v=2.08\ m/s[/tex]

Hence, The velocity of the boat after Batman lands in it is 2.08 m/s.

A charged capacitor is connected to an inductor to form an LC circuit with a frequency of oscillation f = 1.6 Hz. At time t = 0 the capacitor is fully charged. At a given instant later the charge on the capacitor is measured to be Q = 3 μC and the current in the circuit is equal to 75 μA. What is the maximum charge of the capacitor?

Answers

Answer:

[tex]Q = 8.61 \times 10^{-4} C[/tex]

Explanation:

Since in LC oscillation there is no energy loss

so here we can say that

initial total energy of capacitor = energy stored in capacitor + energy stored in inductor at any instant of time

so we can say

[tex]\frac{Q^2}{2C} = \frac{q^2}{2C} + \frac{1}{2}Li^2[/tex]

now we have

[tex]q = 3\mu C[/tex]

[tex]i = 75 \mu A[/tex]

now we have

[tex]Q^2 = q^2 + (LC) i^2[/tex]

we also know that

[tex]2\pi f = \frac{1}{\sqrt{LC}}[/tex]

[tex]2\pi(1.6) = \frac{1}{\sqrt{LC}}[/tex]

[tex]LC = 9.89 \times 10^{-3}[/tex]

now from above equation

[tex]Q^2 = (3\mu C)^2 + (9.89 \times 10^{-3})(75 \mu A)[/tex]

[tex]Q = 8.61 \times 10^{-4} C[/tex]

Final answer:

To find the maximum charge of the capacitor in the LC circuit, set up a cosine equation using the initial charge and current value.

Explanation:

To find the maximum charge of the capacitor in the LC circuit, we need to utilize the relationship between the charge on the capacitor and the current in the circuit. At time t = 0, the capacitor is fully charged, so the initial charge is Q = 3 µC. The current in the circuit is equal to 75 µA. Knowing these values, we can set up a cosine equation to find q(t). By solving the equation, we can find the maximum charge of the capacitor.

Learn more about LC circuit here:

https://brainly.com/question/32606892

#SPJ3

A cosmic ray proton moving toward the Earth at 5.00×107 m/s experiences a magnetic force of 1.70×10−16 N . What is the strength of the magnetic field if there is a 45º angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface?

Answers

Explanation:

It is given that,

Speed of proton, [tex]v=5\times 10^7\ m/s[/tex]

Magnetic force, [tex]F=1.7\times 10^{-16}\ N[/tex]

(1) The strength of the magnetic field if there is a 45º angle between it and the proton’s velocity. The magnetic force is given by :

[tex]F=qvB\ sin\theta[/tex]

[tex]B=\dfrac{F}{qv\ sin\theta}[/tex]

[tex]B=\dfrac{1.7\times 10^{-16}\ N}{1.6\times 10^{-19}\ C\times 5\times 10^7\ m/s\ sin(45)}[/tex]

B = 0.00003 T

or

B = 0.03 mT

The magnitude of Earth's magnitude of 25 to 65 Tesla. The value obtained in part (a) is not consistent with the known strength of the Earth’s magnetic field on its surface.

A cat named SchrÖdinger walks along a uniform plank that is 4.00 m long and has a mass of 7.00 kg. The plank is supported by two sawhorses, one that is 0.44 m from the left end of the plank, and the other that is 1.50 m from the right end. When the cat reaches the very right end of the plank, the plank starts to tip. What is Schrodinger’s mass? Note: Just when the plank begins to tip, the normal force on the plank from the sawhorse on the left will go to zero.

Answers

Answer:

2.3 kg

Explanation:

L = length of the plank = 4 m

M = mass of the plank = 7 kg

m = mass of cat = ?

[tex]F_{c}[/tex] = Weight of the cat = mg

[tex]F_{p}[/tex] = Weight of the plank = Mg = 7 x 9.8 = 68.6 N

ED = 2 m

CD = 1.5 m

EC = ED - CD = 2 - 1.5 = 0.5 m

Using equilibrium of torque about sawhorse at C

[tex]F_{p}[/tex] (EC) = [tex]F_{c}[/tex] (CD)

(68.6) (0.5) = (mg) (1.5)

(68.6) (0.5) = (m) (1.5) (9.8)

m = 2.3 kg

Determine the length of a copper wire that has a resistance of 0.172 ? and cross-sectional area of 7.85 × 10-5 m2. The resistivity of copper is 1.72 × 10-8 ?·m.

Answers

Final answer:

To determine the length of a copper wire given its resistance, cross-sectional area, and the resistivity of copper, use the formula L = (R·A)/ρ. The length of the copper wire, based on the provided resistance of 0.172 Ω, cross-sectional area of 7.85 × [tex]10^-^5[/tex] m², and resistivity of 1.72 × [tex]10^-^8[/tex]Ω·m, is calculated to be 7.85 meters.

Explanation:

The question involves determining the length of a copper wire given its resistance, cross-sectional area, and the resistivity of copper. The formula to calculate the length of the wire is derived from Ohm's law, which in terms of resistivity (ρ) is expressed as R = ρL/A, where R is the resistance, L is the length of the wire, A is the cross-sectional area, and ρ is the resistivity of the material.

We are provided with the resistance (R) as 0.172 Ω, the cross-sectional area (A) as 7.85 × [tex]10^-^5[/tex] m², and the resistivity (ρ) of copper as 1.72 × [tex]10^-^8[/tex] Ω·m. By rearranging the formula to solve for L, we get L = (R·A)/ρ. Substituting the given values into the formula, we find the length of the copper wire.

Let's calculate: L = (0.172 Ω × 7.85 × [tex]10^-^5[/tex] m^2) / (1.72 × [tex]10^-^8[/tex] Ω·m) = 7.85 m. Therefore, the length of the copper wire is 7.85 meters.

At a certain instant after jumping from the airplane A, a skydiver B is in the position shown and has reached a terminal (constant) speed vB = 52 m/s. The airplane has the same constant speed vA = 52 m/s, and after a period of level flight is just beginning to follow the circular path shown of radius ρA = 2330 m. (a) Determine the velocity and acceleration of the airplane relative to the skydiver. (b) Determine the time rate of change of the speed vr of the airplane and the radius of curvature ρr of its path, both as observed by the nonrotating skydiver.

Answers

Final Answer:

(a) The velocity of the airplane relative to the skydiver is 52 m/s, and the acceleration is directed radially inward. (b) The time rate of change of the speed [tex]\(v_r\)[/tex] of the airplane, as observed by the skydiver, is 0 m/s², and the radius of curvature [tex]\(\rho_r\)[/tex] of its path is 2330 m.

Explanation:

(a) The velocity of the airplane relative to the skydiver is the vector difference of their individual velocities. Since both have the same constant speed of 52 m/s, the relative velocity is 52 m/s. The acceleration of the airplane, as observed by the skydiver, is directed radially inward due to the circular motion.

(b) The time rate of change of speed [tex](\(v_r\))[/tex] is the radial component of acceleration, which is 0 m/s² since the airplane is moving at a constant speed. The radius of curvature [tex](\(\rho_r\))[/tex] of its path is given as 2330 m, representing the circular path's curvature.

These results are derived from principles of relative motion and circular motion, providing insights into the dynamics of the airplane-skydiver system.

A proton moving to the right at 6.2 × 105 ms-1 enters a region where there is an electric field of 62 kNC-1 directed to the left. Describe qualitatively the motion of the proton in this filed. What is the time taken by the proton to come back to the point where it entered the field? (Use the standard values of the mass and charge of a proton)

Answers

Answer:

2.06 x 10^-7 s

Explanation:

For going opposite to the applied electric field

u = 6.2 x 10^5 m/s, v = 0 ,  q = 1.6 x 19^-19 C, E = 62000 N/C,

m = 1.67 x 106-27 Kg, t1 = ?

Let a be the acceleration.

a = q E / m = (1.6 x 10^-19 x 62000) / (1.67 x 10^-27) = 6 x 10^12 m/s^2

Use first equation of motion

v = u + a t1

0 = 6.2 x 10^5 - 6 x 10^12 x t1

t1 = 1.03 x 10^-7 s

Let the distance travelled is s.

Use third equation of motion

V^2 = u^2 - 2 a s

0 = (6.2 x 10^5)^2 - 2 x 6 x 10^12 x s

s = 0.032 m

Now when the proton moves in the same direction of electric field.

Let time taken be t2

use second equation of motion

S = u t + 1/2 a t^2

0.032 = 0 + 1/2 x 6 x 10^12 x t2^2

t2 = 1.03 x 10^-7 s

total time taken = t = t1 + t2

t =  1.03 x 10^-7 +  1.03 x 10^-7 =  2.06 x 10^-7 s

A car is traveling at 50 mi/h when the brakes are fully applied, producing a constant deceleration of 48 ft/s2. What is the distance covered before the car comes to a stop

Answers

Answer:

Distance covered by the car is 56.01 feet.

Explanation:

It is given that,

Initial velocity, u = 50 mi/h = 73.33 ft/s

Constant deceleration of the car, [tex]a=-48\ ft/s^2[/tex]

Final velocity, v = 0

Let s is the distance covered before the car comes to rest. It can be calculated using third equation of motion as :

[tex]v^2-u^2=2as[/tex]

[tex]s=\dfrac{v^2-u^2}{2a}[/tex]

[tex]s=\dfrac{0^2-(73.33\ ft/s^2)^2}{2\times -48\ ft/s^2}[/tex]

s = 56.01 ft

So, the distance covered before the car comes to a stop is 56.01 feet. Hence, this is the required solution.

The distance covered by the car as it comes to rest is 17.1 m.

To calculate the distance covered before the car come to stop, we use the formula below.

Formula:

v² = u²+2as............... Equation 1

Where:

s = distance covered by the carv = final velocityu = initial velocitya = acceleration of the car

make s the subject of the equation

s = (v²-u²)/2a........................Equation 2

From the question,

Given:

v = 50 mi/h = (50×0.447) = 22.35 m/su = 0 m/sa = 48 ft/s² = (48×0.3048) = 14.63 m/s²

Substitute these values into equation 2

s = (22.35²-0²)/(2×14.63)s = 17.1 m

Hence, the distance covered by the car as it comes to rest is 17.1 m.

Learn more about distance here: https://brainly.com/question/17273444

A criminal is escaping across a rooftop and runs off the roof horizontally at a speed of 4.2 m/s, hoping to land on the roof of an adjacent bullding Air resistance is negligible. The horlzontal distance between the two buildings is D, and the roof of the adjacent building is 2.1 m below the jumping off polint Find the maximum value for D. (g 9.80ms

Answers

Answer:

Maximum separation between buildings, D = 1.806 m

Explanation:

Vertical motion of criminal

Initial speed = 0 m/s

Acceleration = 9.81 m/s²

Displacement = 2.1 m

We need to find time when he moves vertically 2.1 m.

We have

         s = ut + 0.5at²

        2.1 = 0 x t + 0.5 x 9.81 x t²

           t = 0.43 s.

Horizontal motion of criminal

Initial speed = 4.2 m/s

Acceleration =0 m/s²

Time = 0.43 s

We need to find displacement.

We have

         s = ut + 0.5at²

        s = 4.2 x 0.43 + 0.5 x 0 x 0.43²

       s = 1.806 m

So maximum separation between buildings, D = 1.806 m

 A 100-lb load is suspended by two chains in a room. The angle between each and the horizontal ceiling is 45°. What is the magnitude of the force each chain must be support?

Answers

Magnitude of force on each chain suspended with 100 ib load in a room, must be support is 314.54 N.

What is static equilibrium state of hanging load?

If the load, is hanging on chain or rope, and is in the equilibrium state, then the sum of all the horizontal component of it must is equal to zero.

Given information-

The load suspended by two chains in a room is 100-ib.

The angle between each chain and the horizontal ceiling is 45°.

The image attached below shows the given situation.

First convert the 100-ib into unit of N as,

[tex]F=100\rm ib=100\times4.4482\rm N\\F=444.82N[/tex]

As the load suspended by two chains in a room is 100-ib and the angle between each chain and the horizontal ceiling is 45°. Thus, the vertical component of the,

[tex]\sin (45)=\dfrac{F_y}{444.82}\\F_y=314.54\rm N[/tex]

Hence, the magnitude of the force each chain must be support is 314.54 N.

Learn more about the equilibrium state here;

https://brainly.com/question/1233365

Thus, the magnitude of the force each chain must support is approximately 70.7 lb.

To find the magnitude of the force each chain must support, you can use the principles of equilibrium.

Given:

A 100-lb load is suspended by two chains.The angle between each chain and the horizontal ceiling is 45°.

Since the system is in equilibrium, the vertical forces must balance the weight of the load, and the horizontal components of the forces must cancel each other out.

1. Determine the vertical component of the force in each chain:

Each chain supports part of the total load. Let [tex]\( F \)[/tex] be the force in each chain.

Since the chains are symmetric, each chain supports half the load.

The vertical component of the force in each chain is given by:

[tex]\[ F_{\text{vertical}} = F \sin(45^\circ) \][/tex]

where [tex]\( \sin(45^\circ) = \frac{\sqrt{2}}{2} \)[/tex].

2. Calculate the vertical component for each chain:

For equilibrium, the sum of the vertical components of the forces in the two chains must equal the total load:

[tex]\[ 2 \times F \sin(45^\circ) = 100 \text{ lb} \][/tex]

Substitute [tex]\( \sin(45^\circ) = \frac{\sqrt{2}}{2} \)[/tex] :

[tex]\[ 2 \times F \times \frac{\sqrt{2}}{2} = 100 \][/tex]

Simplify:

[tex]\[ F \sqrt{2} = 100 \][/tex]

Solve for [tex]\( F \)[/tex]:

[tex]\[ F = \frac{100}{\sqrt{2}} \][/tex]

Rationalize the denominator:

[tex]\[ F = \frac{100 \sqrt{2}}{2} = 50 \sqrt{2} \][/tex]

3. Approximate the force:

Using [tex]\( \sqrt{2} \approx 1.414 \)[/tex]:

[tex]\[ F \approx 50 \times 1.414 = 70.7 \text{ lb} \][/tex]

A major-league pitcher can throw a baseball in excess of 41.0 m/s. If a ball is thrown horizontally at this speed, how much will it drop by the time it reaches a catcher who is 17.0 m away from the point of release?

Answers

Final answer:

The ball thrown by a major-league pitcher to a catcher 17.0m away, with a speed of 41.0m/s, would drop approximately 0.84 meters due to the gravitational acceleration.

Explanation:

The subject of this question involves physics, specifically the concept of projectile motion. When a pitcher throws a ball with a horizontal speed, the ball also experiences a vertical motion due to gravity. Therefore, even though the ball is thrown horizontally, it will gradually drop as it travels towards the catcher. To figure out how far it drops, we can use the physics equation for motion under constant acceleration: distance = 0.5 * acceleration * time2.

Here, the acceleration is due to gravity, which is approximately 9.8m/s2. The time can be calculated by dividing the horizontal distance (17.0 m) by the horizontal speed (41.0 m/s), giving us approximately 0.4146 s. Substituting these into the equation: 0.5 * 9.8m/s2 * (0.4146s)2 = 0.84 meters, the drop of the ball is approximately 0.84 meters.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ3

A simple pendulum is made from a 0.75-m-long string and a small ball attached to its free end. The ball is pulled to one side through a small angle and then released from rest. After the ball is released, how much time elapses before it attains its greatest speed?

Answers

Answer:

It takes 0.43 seconds before the pendulum attains the maxium speed.

Explanation:

L= 0.75m

g= 9.8 m/s²

T= 2π * √(L/g)

T=1.73 sec

T(vmax) = T/4

T(vmax) = 0.43 sec

Final answer:

The time elapsed before a simple pendulum attains its greatest speed is given by t = T/4 = π√(L/g)/2, where T is the period and L is the length of the pendulum.

Explanation:

When a simple pendulum is released from rest, it oscillates back and forth. The time it takes for the pendulum to reach its greatest speed depends on the length of the pendulum. The formula for the period of a simple pendulum is given by:

T = 2π√(L/g)

Where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity. To find the time it takes for the pendulum to reach its greatest speed, we can divide the period by 4. This is because the pendulum reaches its greatest speed when it is at the bottom of its swing, which is halfway through one period.

So, the time elapsed before the pendulum attains its greatest speed is:

t = T/4 = (2π√(L/g))/4 = π√(L/g)/2

Learn more about Simple Pendulum here:

https://brainly.com/question/35140817

#SPJ3

A person fires a 38 gram bullet straight up into the air. It rises, then falls straight back down, striking the ground with a speed of 345 m/s. The bullet embeds itself into the ground a distance of 8.9 cm before coming to a stop. What force does the ground exert on the bullet? Express your answer in newtons.

Answers

Answer:

Force exerted = 25.41 kN

Explanation:

We have equation of motion

      v² = u²+2as

u = 345 m/s, s = 8.9 cm = 0.089 m, v = 0 m/s

     0² = 345²+2 x a x 0.089

       a = -668679.78 m/s²

Force exerted = Mass x Acceleration

Mass of bullet = 38 g = 0.038 kg

Acceleration = 668679.78 m/s²

Force exerted = 25409.83 N = 25.41 kN

In a particular case of Compton scattering, a photon collides with a free electron and scatters backwards. The wavelength after the collision is exactly double the wavelength before the collision. What is the wavelength of the incident photon?

Answers

Answer:

hence initial wavelength is [tex]\lambda =4.86\times10^{-12}m[/tex]

Explanation:

shift in wavelength due to compton effect is given by

[tex]\lambda ^{'}-\lambda =\frac{h}{m_{e}c}\times(1-cos\theta )[/tex]

λ' = the wavelength after scattering

λ= initial wave length

h= planks constant

m_{e}= electron rest mass

c= speed of light

θ= scattering angle = 180°

compton wavelength is

[tex]\frac{h}{m_{e}c}= 2.43\times10^{-12}m[/tex]

[tex]\lambda '-\lambda =2.43\times10^{-12}\times(1-cos\theta )[/tex]

[tex]\lambda '-\lambda =2.43\times10^{-12}\times(1+1 )[/tex]  ( put cos 180°=-1)

also given λ'=2λ

putting values and solving we get

[tex]\lambda =4.86\times10^{-12}m[/tex]

hence initial wavelength is [tex]\lambda =4.86\times10^{-12}m[/tex]

Consider a grain of table salt which is made of positive

and negative ions (Na+and Cl−). Suppose each of these ions carries a charge of 1.60x10^−19 C and are 5.29x10^−11mapart. What is the magnitude of the electrostatic force

between them?

Answers

Answer:

Force, [tex]F=8.23\times 10^{-8}\ N[/tex]

Explanation:

It is given that,

Each ion in Na⁺ and Cl⁻ has a charge of, [tex]q=1.6\times 10^{-19}\ C[/tex]

Distance between two ions, [tex]d=5.29\times 10^{-11}\ m[/tex]

We need to find the electrostatic force. It is given by :

[tex]F=k\dfrac{q_1q_2}{d^2}[/tex]

[tex]F=9\times 10^9\times \dfrac{(1.6\times 10^{-19})^2}{(5.29\times 10^{-11})^2}[/tex]

[tex]F=8.23\times 10^{-8}\ N[/tex]

So, the magnitude of electrostatic force between them is [tex]F=8.23\times 10^{-8}\ N[/tex]. Hence, this is the required solution.

Express 79 m in units of (a) centimeters
(b) feet
(c) inches and
(d) miles.

Answers

Answer: a) 7,00 centimeters

(b) 259. 19 feet

(c) 3110.28 inches

(d) 0.049 miles

Explanation:

(a) We know that 1 meter = 100 centimeters

Therefore,

[tex]79\ m= 7,900\text{ centimeters}[/tex]

(b)Since 1 meter = 3.28084 feet

Then, [tex]79\ m= 79\times3.28084=259.18636\approx 259.19\text{ feet}[/tex]

(c) Since, 1 feet = 12 inches.

[tex]79\ m=259.19\text{ feet}=259.19\times12=3110.28\text{ inches}[/tex]

(d) [tex]\text{Since 1 feet= }\dfrac{1}{5280}\text{ mile}[/tex]

[tex]79\ m=259.19\text{ feet}=\dfrac{259.19}{5280}= 0.0490890151515\approx0.049\text{ miles}[/tex]

A proton and an alpha particle (q = +2e, m = 4 u) are fired directly toward each other from far away, each with an initial speed of 0.010c. What is their distance of closest approach, as measured between their centers?

Answers

Answer:

Distance of closest approach, [tex]r=1.91\times 10^{-14}\ m[/tex]

Explanation:

It is given that,

Charge on proton, [tex]q_p=e[/tex]

Charge on alpha particle, [tex]q_a=2e[/tex]

Mass of proton, [tex]m_p=1.67\times 10^{-27}\ kg[/tex]

Mass of alpha particle, [tex]m_a=4m_p=6.68\times 10^{-27}\ kg[/tex]

The distance of closest approach for two charged particle is given by :

[tex]r=\dfrac{k2e^2(m_p+m_a)}{2m_am_pv_p^2}[/tex]

[tex]r=\dfrac{9\times 10^9\times 2(1.6\times 10^{-19})^2(1.67\times 10^{-27}+6.68\times 10^{-27})}{2\times 6.68\times 10^{-27}\times 1.67\times 10^{-27}(0.01\times 3\times 10^8)^2}[/tex]

[tex]r=1.91\times 10^{-14}\ m[/tex]

So, their distance of closest approach, as measured between their centers [tex]1.91\times 10^{-14}\ m[/tex]. Hence, this is the required solution.

A vertical straight wire carrying an upward 24-A current exerts an attractive force per unit length of 88 X 104N/m on a second parallel wire 7.0 cm away. What current (magnitude and direction) flows in the second wire?

Answers

Answer:

The current flows in the second wire is [tex]1.3\times10^{10}\ A[/tex]

Explanation:

Given that,

Upward current = 24 A

Force per unit length[tex]\dfrac{F}{l} =88\times10^{4}\ N/m [/tex]

Distance = 7.0 cm

We need to calculate the current in second wire

Using formula of magnetic force

[tex]F=ILB[/tex]

[tex]\dfrac{F}{l}=\dfrac{\mu I_{1}I_{2}}{2\pi r}[/tex]

Where,

[tex]\dfrac{F}{l}[/tex]=force per unit length

I₁= current in first wire

I₂=current in second wire

r = distance between the wires

Put the value into the formula

[tex]88\times10^{4}=\dfrac{4\pi\times10^{-7}\times24\times I_{2}}{2\pi \times7\times10^{-2}}[/tex]

[tex]I_{2}=\dfrac{88\times10^{4}\times7\times10^{-2}}{2\times\times10^{-7}\times24}[/tex]

[tex]I_{2}=1.3\times10^{10}\ A[/tex]

Hence, The current flows in the second wire is [tex]1.3\times10^{10}\ A[/tex]

Consider two cubes, one of aluminum and one of copper. If each cube measures 8 cm along an edge, calculate the mass of each cube.

Answers

Answer:

≈1,39 and 4.56 kg.

Explanation:

for more details see the attachment. Note, the ρ(Cu) means 'Density of copper', ρ(Al) means 'Density of aluminium'.

Which of the following are true (choose all that apply)? Sound can travel through a vacuum. -Sound can travel through water. Light can travel through a vacuum Sound can travel through air. Light can travel through air Light can travel through water

Answers

Answer:

option (B) - true

option (C) - true

option (D) - true

option (E) - true

option (F) - true

Explanation:

A uniform non-conducting ring of radius 2.2 cm and total charge 6.08 µC rotates with a constant angular speed of 2.01 rad/s around an axis perpendicular to the plane of the ring that passes through its center. What is the magnitude of the magnetic moment of the rotating ring?

Answers

Answer:

The magnitude of the magnetic moment of the rotating ring is [tex]2.96\times10^{-9}\ Am^2[/tex]

Explanation:

Given that,

Radius = 2.2 cm

Charge [tex]q = 6.08\times10^{-6}\ C[/tex]

Angular speed = 2.01 rad/s

We need to calculate the time period

[tex]T = \dfrac{2\pi}{\omega}[/tex]

Now, The spinning produced the current

Using formula for current

[tex] I = \dfrac{q}{T}[/tex]

We need to calculate the magnetic moment

Using formula of magnetic moment

[tex]M = I A[/tex]

Put the value of I and A into the formula

[tex]M=\dfrac{q}{T}\times A[/tex]

[tex]M=\dfrac{q\times\omega}{2\pi}\times \pi\times r^2[/tex]

Put the value into the formula

[tex]M=\dfrac{6.08\times10^{-6}\times2.01\times(2.2\times10^{-2})^2}{2}[/tex]

[tex]M=2.96\times10^{-9}\ Am^2[/tex]

Hence, The magnitude of the magnetic moment of the rotating ring is [tex]2.96\times10^{-9}\ Am^2[/tex]

Final answer:

The magnetic moment of the rotating ring with a radius of 2.2 cm, a total charge of 6.08 µC, and an angular velocity of 2.01 rad/s is approximately 1.176 x 10⁻⁵ A⋅m².

Explanation:

The magnitude of the magnetic moment (μ) of a rotating charged ring can be found using the formula given by the product of the charge (Q) and the angular velocity (ω) and the radius (r) squared, as μ = Qωr²/2. For a uniform non-conducting ring rotating about an axis perpendicular to its plane, this relationship can be used to determine the magnetic moment generated by its rotation.

To calculate the magnetic moment for the given scenario:

Convert the radius from centimeters to meters: r = 2.2 cm = 0.022 m.Use the given charge (Q): 6.08 µC = 6.08 x 10-6 C.Apply the given angular speed (ω): 2.01 rad/s.Substitute these values into the formula: μ = (6.08 x 10-6 C)(2.01 rad/s)(0.022 m)2/2.

Carrying out the multiplication gives the magnetic moment:

μ = (6.08 x 10-6 C)(2.01 rad/s)(0.000484 m2)/2 = 0.01176 x 10-6 C⋅m2/s

This results in a magnetic moment of approximately μ ≈ 1.176 x 10-5 A⋅m2.

A flywheel in the form of a uniformly thick disk of radius 1.93 m has a mass of 92.1 kg and spins counterclockwise at 419 rpm. Calculate the constant torque required to stop it in 1.25 min.

Answers

Answer:

Torque = 99.48 N-m²

Explanation:

It is given that,

Radius of the flywheel, r = 1.93 m

Mass of the disk, m = 92.1 kg

Initial angular velocity, [tex]\omega_i=419\ rpm=43.87\ rad/s[/tex]

Final angular speed, [tex]\omega_f=0[/tex]

We need to find the constant torque required to stop it in 1.25 min, t = 1.25 minutes = 75 seconds

Torque is given by :

[tex]\tau=I\times \alpha[/tex]...........(1)

I is moment of inertia, for a solid disk, [tex]I=\dfrac{mr^2}{2}[/tex]

[tex]\alpha[/tex] is angular acceleration

[tex]I=\dfrac{92.1\ kg\times (1.93\ m)^2}{2}=171.53\ kgm^2[/tex]..............(2)

Now finding the value of angular acceleration as :

[tex]\omega_f=\omega_i+\alpha t[/tex]

[tex]0=43.87+\alpha \times 75[/tex]

[tex]\alpha =-0.58\ m/s^2[/tex]..........(3)

Using equation (2) and (3), solve equation (1) as :

[tex]\tau=171.53\ kgm^2\times -0.58\ m/s^2[/tex]

[tex]\tau=-99.48\ N-m^2[/tex]

So, the torque require to stop the flywheel is 99.48 N-m². Hence, this is the required solution.

The overall energy involved in the formation of CsCl from Cs(s) and Cl2(g) is −443 kJ/mol. Given the following information: heat of sublimation for Cs is +76 kJ/mol, bond dissociation energy for 12Cl2 is +121 kJ/mol, Ei1 for Cs is +376 kJ/mol, and Eea for Cl(g) is −349 kJ/mol. What is the magnitude of the lattice energy for CsCl?

Answers

Answer :  The magnitude of the lattice energy for CsCl is, 667 KJ/mole

Explanation :

The steps involved in the born-Haber cycle for the formation of [tex]CsCl[/tex] :

(1) Conversion of solid calcium into gaseous cesium atoms.

[tex]Cs(s)\overset{\Delta H_s}\rightarrow Cs(g)[/tex]

[tex]\Delta H_s[/tex] = sublimation energy of calcium

(2) Conversion of gaseous cesium atoms into gaseous cesium ions.

[tex]Ca(g)\overset{\Delta H_I}\rightarrow Ca^{+1}(g)[/tex]

[tex]\Delta H_I[/tex] = ionization energy of calcium

(3) Conversion of molecular gaseous chlorine into gaseous chlorine atoms.

[tex]Cl_2(g)\overset{\frac{1}{2}\Delta H_D}\rightarrow Cl(g)[/tex]

[tex]\Delta H_D[/tex] = dissociation energy of chlorine

(4) Conversion of gaseous chlorine atoms into gaseous chlorine ions.

[tex]Cl(g)\overset{\Delta H_E}\rightarrow Cl^-(g)[/tex]

[tex]\Delta H_E[/tex] = electron affinity energy of chlorine

(5) Conversion of gaseous cations and gaseous anion into solid cesium chloride.

[tex]Cs^{1+}(g)+Cl^-(g)\overset{\Delta H_L}\rightarrow CsCl(s)[/tex]

[tex]\Delta H_L[/tex] = lattice energy of calcium chloride

To calculate the overall energy from the born-Haber cycle, the equation used will be:

[tex]\Delta H_f^o=\Delta H_s+\Delta H_I+\Delta H_D+\Delta H_E+\Delta H_L[/tex]

Now put all the given values in this equation, we get:

[tex]-443KJ/mole=76KJ/mole+376KJ/mole+121KJ/mole+(-349KJ/mole)+\Delta H_L[/tex]

[tex]\Delta H_L=-667KJ/mole[/tex]

The negative sign indicates that for exothermic reaction, the lattice energy will be negative.

Therefore, the magnitude of the lattice energy for CsCl is, 667 KJ/mole

The magnitude of  Lattice energy of CsCl is  -676 kJ/mol.

Given Here,

Enthalpy of sublimation of Cs  [tex]\rm \bold{ \Delta H(sub ) }[/tex] = +76 kJ/mo

Ionization Energy for Potassium  IE(Cs) = +376 kJ/mol

Electron affinity for Chlorine is EA(Cl)  =  −349 kJ/mol.

Bond dissociation energy of Chlorine, BE(Cl)  = +121 kJ/mol

Enthalpy of formation for CsCl,  [tex]\rm \bold{ \Delta H(f) }[/tex] =   −436.5 kj/mol .

The lattice energy of KCl can be calculated from the formula,

[tex]\rm \bold {U(CsCl) = \Delta Hf(CsCl) - [ \Delta H(sub) + IE(Cs) +BE(Cl_2) + EA(Cl)]}[/tex]

U( CsCl)  = -436 - [+76  +376   +121 kJ/mol  -349]

U( CsCl)  = -676 kJ/mol

Hence we can calculate that the magnitude of  Lattice energy of CsCl is  -676 kJ/mol.

To know more about Lattice Energy, refer to the link:

https://brainly.com/question/18222315?referrer=searchResults

A spacecraft of mass 1500 kg orbits the earth at an altitude of approximately 450 km above the surface of the earth. Assuming a circular orbit, what is the attractive force that the earth exerts to keep the spacecraft+ in orbit? Answer: (a) 1.28x 10^7 (N) (b) 2.99 x 10^7 (N) (c) 3.56 x 10^7 (N). (d) 4.11 x 10^7 (N) (e) 5.06x 10^7 (N)

Answers

Answer:

1.28 x 10^4 N

Explanation:

m = 1500 kg, h = 450 km, radius of earth, R = 6400 km

Let the acceleration due to gravity at this height is g'

g' / g = {R / (R + h)}^2

g' / g = {6400 /  (6850)}^2

g' = 8.55 m/s^2

The force between the spacecraft and teh earth is teh weight of teh spacecraft

W = m x g' = 1500 x 8.55 = 1.28 x 10^4 N

The windpipe of a typical whooping crane is about 4.6 ft long. What is the lowest resonant frequency of this pipe, assuming that it is closed at one end? Assume a temperature of 33°C. ans in hz

Answers

Answer:

Frequency, f = 481.8 Hz

Explanation:

Given that,

Length of windpipe, l = 4.6 ft = 0.182 m

We need to find the lowest resonant frequency of this pipe at 33 degrees Celcius. Firstly, we will find the speed of sound at 33 degrees Celcius as :

[tex]v=331+0.6T[/tex]

[tex]v=331+0.6\times 33[/tex]

v = 350.8 m/s

At resonance, wavelength is equal to 4 times length of pipe i.e.

λ = 4 l

We need that, [tex]f=\dfrac{v}{\lambda}[/tex]

[tex]f=\dfrac{350.8\ m/s}{4\times 0.182\ m}[/tex]

f = 481.8 Hz

So, the resonant frequency of the windpipe is 481.8 Hz. Hence, this is the required solution.

Final answer:

The lowest resonant frequency of the whooping crane's windpipe, assuming it is closed at one end and a temperature of 33°C, is approximately 62.82 Hz.

Explanation:

The lowest resonant frequency of the whooping crane's windpipe, which can be thought of as a pipe that is closed at one end, can be found using the formula for the fundamental frequency of such a pipe: f = v/λ, where f is the frequency, v is the speed of sound, and λ is the wavelength. In this case, the speed of sound is dependent on the temperature and can be approximated as v = 331.4 + 0.6*T m/s, where T is the temperature in degrees Celsius.

At a temperature of 33°C, the speed of sound, v, is approximately 351.8 m/s. Note that we need to convert the length of the windpipe from feet to meters, with 4.6 ft being approximately 1.4 m. The fundamental wavelength for a pipe closed at one end is four times the length of the pipe (λ=4L), so in this case, λ=4*1.4 m = 5.6 m.

Substituting these values into the frequency formula gives us f = v/λ = 351.8 m/s / 5.6 m = 62.82 Hz. So, the lowest resonant frequency of the whooping crane's windpipe is approximately 62.82 Hz.

Learn more about Resonant Frequency here:

https://brainly.com/question/32273580

#SPJ11

 A ballet dancer has a maximum net torque of 45 Nm, and the moment of inertia of his body is 30 kg mA2. if he starts twirling from rest and keeps accelerating for 95 seconds, how fast will he be rotating? a) b) if he holds rocks in his hands, which variables in this problem would change, in which direction, and why?

Answers

Answer:

(a) 142.5 rad/s

Explanation:

Torque = 45 Nm

Moment of inertia = 30 kgm^2

w0 = 0, t = 95 second

(a) Let it is rotating with angular speed w.

Torque = moment of inertia x angular acceleration

45 = 30 x α

α = 1.5 rad/s^2

Use first equation of motion for rotational motion

w = w0 + α t

w = 0 + 1.5 x 95

w = 142.5 rad/s

(b) if he hold rocks, then the moment of inertia change and then angular acceleration change and then final angular velocity change.

Because of your knowledge of physics and interest in weapons, you've got a summer job with the FBI, your job is to determine if the weapon that was found at the scene of a crime was precisely the same with which the crime. For this your boss has asked you to determine the speed of exit of the weapon that was in the scene. Design an experiment in detail where you explain the results.

Answers

Answer:

The criminal justice field spans a wide variety of jobs and interests. Criminal justice jobs may involve collecting evidence, analyzing crime scenes, performing investigations or arresting perpetrators.

Federal, state, and local government agencies as well as the private sector provide a wide array of criminal justice jobs. Jobs are found in areas such law enforcement, forensic science, corrections, legal services, homeland security and more.

Some criminal justice careers require a college degree; colleges and universities offer a variety of degrees related to the criminal justice sector, including online degrees. Criminal justice degree jobs cover a wide range of areas.

Our huge list provides a wide variety of jobs including criminal justice entry-level jobs and criminal justice government jobs. The list includes criminal justice salaries and educational requirements.

Explanation:

Other Questions
Identify statements true of metals. Choose one or more :A.Metals can conduct electricity.B.Metals are malleable.C.Metals are radioactive.D.Copper is an example of a metal. The Turning-Point Of My Life from What Is Man? And Other Stories by Mark Twain (extract) Now what interests me, as regards these details, is not the details themselves, but the fact that none of them was foreseen by me, none of them was planned by me, I was the author of none of them. Circumstance, working in harness with my temperament, created them all and compelled them all. I often offered help, and with the best intentions, but it was rejectedas a rule, uncourteously. I could never plan a thing and get it to come out the way I planned it. It came out some other waysome way I had not counted upon. And so I do not admire the human beingas an intellectual marvelas much as I did when I was young, and got him out of books, and did not know him personally. When I used to read that such and such a general did a certain brilliant thing, I believed it. Whereas it was not so. Circumstance did it by help of his temperament. The circumstance would have failed of effect with a general of another temperament: he might see the chance, but lose the advantage by being by nature too slow or too quick or too doubtful. Once General Grant was asked a question about a matter which had been much debated by the public and the newspapers; he answered the question without any hesitancy. "General, who planned the march through Georgia?" "The enemy!" He added that the enemy usually makes your plans for you. He meant that the enemy by neglect or through force of circumstances leaves an opening for you, and you see your chance and take advantage of it. Circumstances do the planning for us all, no doubt, by help of our temperaments. I see no great difference between a man and a watch, except that the man is conscious and the watch isn't, and the man TRIES to plan things and the watch doesn't. The watch doesn't wind itself and doesn't regulate itselfthese things are done exteriorly. Outside influences, outside circumstances, wind the MAN and regulate him. Left to himself, he wouldn't get regulated at all, and the sort of time he would keep would not be valuable. Some rare men are wonderful watches, with gold case, compensation balance, and all those things, and some men are only simple and sweet and humble Waterburys. I am a Waterbury. A Waterbury of that kind, some say. A nation is only an individual multiplied. It makes plans and Circumstance comes and upsets themor enlarges them. Some patriots throw the tea overboard; some other patriots destroy a Bastille. The PLANS stop there; then Circumstance comes in, quite unexpectedly, and turns these modest riots into a revolution. And there was poor Columbus. He elaborated a deep plan to find a new route to an old country. Circumstance revised his plan for him, and he found a new WORLD. And HE gets the credit of it to this day. He hadn't anything to do with it.Why does the author use examples from history in this passage?A. to help readers relate to the characters in the essayB. to advance the plot of the essayC. to support and develop the main ideaD. to keep readers attentive and interested Atmospheric air at 25 C and 8 m/s flows over both surfaces of an isothermal (179C) flat plate that is 2.75m long. Determine the heat transfer rate per unit from the plate for 3 width different values of the critical Reynolds number: 100,000; 500,000; and 1,000,000 A summer camp cookout is planned for the campers and their families. There is room for 200 people. Each adult costs $4, and each camper costs $3. There is a maximum budget of $750. Write the system of inequalities to represent this real-world scenario, where x is the number of adults and y is the number of campers.A.[tex]x + y \leqslant 200 \\ 4x + 3y \leqslant 750[/tex]B.[tex]x + y \leqslant 750 \\ 4x + 3y \leqslant 200[/tex]C.[tex]x + y \leqslant 200 \\ 3x + 4y \leqslant 750[/tex]D.[tex] x + y \leqslant 750 \\ 3x + 4y \leqslant 200[/tex] what contribution did Thomas jefferson make A meteorologist wants to create a visual aid different gases in earths atmosphere which type of chart or graph would best convey the data The coordinates of the preimage are: A(8,8) B(10,6) C(2,2) We want to reflect over y=1 first. Our new coordinates are: A(8, ) B(10, ) C(2, ) Now we will reflect over y=7 and our new coordinates will be: A(8, ) B(10, ) C(2, ) We can also see that 7(1)=6. We know that two reflections is the same as a translation of 2h units. So 2(6) is a translation of 12 units down. Only financial institutions can purchase treasury bonds? True or false Explain very briefly the traditional casting and non-traditional casting process. NED HELP FAST!!!!!!!!!!!John the trainer has two solo workout plans that he offers his clients: Plan A and Plan B. Each client does either one or the other (not both). On Friday there were 3 clients who did Plan A and 5 who did Plan B. On Saturday there were 9 clients who did Plan A and 7 who did Plan B. John trained his Friday clients for a total of 6 hours and his Saturday clients for a total of 12hours. How long does each of the workout plans last? A pendulum of length L is suspended from the ceiling of an elevator. When the elevator is at rest the period of the pendulum is T. How would the period of the pendulum change if the supporting chain were to break, putting the elevator into freefall? What type of slide show is a dynamic and eye-catching way to familiarize potential customers with what your company has to offer? A. Photo album B. OLE C. Office Clipboard D. Brochure Determine the axis of symmetry for the function f(x) = -2(x + 3)2 5.Ox=3Ox=-3Ox=5Ox=-5 What are the 7 bones that make up the orbit? Write a Java program that calculates and prints the monthly pay check for an employee. The net pay is calculated after taking the following deductions:Federal Income Tax: 15%State Tax: 3.5%Social Security Tax: 5.75%Medicare/Medicaid Tax: 2.75%Pension Plan: 5%Health Insurance: $75.00 Why is the pineal gland sometimes called the timekeeper of the body?a. It uses information regarding changing light levels to adjust its output of the hormone, melatonin.b. Melatonin levels increase during the night and decrease during the day, regulating the body's sleep cycle.c. Melatonin levels increase during the night and decrease during the day, regulating the body's internal clock.d. All of the above contribute to the pinal gland being called the body's timekeeper. Find the sum: (3x2 + 5x 8) + (5x2 - 13x - 5)OA. 8x2 + 8x - 13WWWOB. 8x2 - 8x + 13C. 8x2 - 8x - 13D.8x2 - x - 13 PLEASE HELP ME I REALLY NEED HELP :(WILL MARK BRAINLIEST 11.5.4 Quiz: Experimental Design2 PointsOn March 23, 1989, the chemists Stanley Pons of the University of Utah andMartin Fleischmann of the University of Southampton announced to the worldthat they had achieved cold fusion. That is, with a solution of salts in a simpledesktop apparatus, they had caused hydrogen atoms to "fuse," or combineinto helium atoms. This reaction had previously been achieved only inhydrogen-bomb blasts and in giant research projects lasting many decadesand costing many billions of dollars.The two chemists claimed that they had been able to measure the energyreleased by the fusion process in their simple setup. The scientific world wasin an uproar, because if this were really true, cold fusion would be the greatestdiscovery in 1000 years - a practically infinite source of cheap, safe energy.However, no matter how hard they tried, no other scientists were able to getthe same results. Pons and Fleischmann had dozens of excuses, but none ofthem were shown to have merit. Ultimately, both scientists resigned indisgrace.What primary principle of experimental design did their experiment fail?OA. ControlOB. RandomizationOC. ReplicationPREVIOUS A campground official wants to measure the distance across an irregularly-shaped lake, but can't do so directly. He picks a point south of the lake. From that point to the left side of the lake, the distance is 105 meters. From that point to the right side of the lake is 119 meters. The angle between these two measurements is 83 degrees. How far is it across the lake?