Hclo is a weak acid (ka = 4.0 × 10–8) and so the salt naclo acts as a weak base. what is the ph of a solution that is 0.030 m in naclo at 25 °c?

Answers

Answer 1

Chemical reaction 1: NaClO(aq) → Na⁺(aq) + ClO⁻(aq).
Chemical reaction 2: ClO⁻(aq) + H₂O(l) ⇄ HClO(aq)+ OH⁻(aq).
c(NaClO) = 0,030 M.
[ClO⁻] = 0,03 M - x.
Ka(HClO) = 4·10⁻⁸.
Ka · Kb = 10⁻¹⁴.
Kb(ClO⁻) = 2,5·10⁻⁷.
Kb(ClO⁻) = [OH⁻] · [HClO] / [ClO⁻].
[OH⁻] = [HClO] = x.
2,5·10⁻⁷ = x² / (0,03 M -x).
Solve quadratic equation: x = [OH⁻] = 0.0000893 M.
pOH = -log(0.0000893 M) = 4.05.
pH = 14 - 4.05.
pH = 9.95.


Related Questions

The presence of which magnetic feature best explains why a magnet can act at a distance on other magnets or on objects containing certain metals?

Answers

The magnetic forces exerted by the magnet can act at a distance on other magnets or on objects containing certain metals. The magnetic fields showcase the presence of magnetic forces. The magnetic forces arise due to attraction and repulsion of the poles inside the material. Opposite poles attract each other while similar poles repel each other.

Answer:

Magnetic fields.

Explanation:

Hello,

The presence of a magnetic fields best explains why a permanent magnet can act on another magnetic objects when are separated by a certain distance. There exist magnetic field lines which are emanated from the north pole to the south pole whose path is curved. Now, take into account that the longer the distance between the objects, the lower the magnetic field or force.

Best regards.

What is the mass of a 4.50-μci 146c source? the half-life of 146c is 5730 yr.
express your answer to three significant figures and include the appropriate units?

Answers

The activity of the sample is:
R₀ = 4.5 x 10⁻⁶ Ci (3.70 x 10¹⁰ decays/s / 1 Ci)
     = 166500 decays / s

The number of nuclei is:
N₀ = (166500 decays/s) / (5730 yr * 3.154 x 10⁷s /1yr)  = 9.2 x 10⁻⁷

The mass of a ₆C¹⁴ source is:
m = N₀m₀ = (9.2 x 10⁻⁷) * (2.34 x 10⁻²⁶) = 2.16 x 10⁻³² kg

What is the [H+] if the pH of a solution is 7.90

Answers

pH scale is used to determine how acidic, basic or neutral a solution is.
pH is calculated using the hydrogen ion concentration 
pH = -log[H⁺]
if we know the pH we can calculate the H⁺ concentration 
[H⁺] = antilog(-pH)
[H⁺] = 1.26 x 10⁻⁸ M
therefore [H⁺] is 1.26 x 10⁻⁸ M

Answer:

1.26 x 10^-8

Explanation

Brainly cant blur this out

If you ix 20.0 ml of a 3.00m sugar solution with 30.0 ml of a 5.69 m sugar solution, you will end up with a sugar solution of?

Answers

Find mow many moles of sugar you have total

20 mL / 1000 mL x 3 M = .06 moles sugar

30 mL / 1000 mL x 5.69 M = .1707 moles sugar

Total = .2307 moles

Find how many mL of solution you have. 20 mL + 30 mL = 50 mL

1000 mL / 50 mL x .2307 moles = 4.614 M solution

If a person mixes 20.0 ml of a 3.00m sugar solution with 30.0 ml of a 5.69m sugar solution, you will end up with a sugar solution of:

4.614m solution

According to the given question, we can see that there is a mixture of 20 milliliters of 3 moles of sugar solution with 30 milliliters of 5.69 moles of another sugar solution, then we need to find the total sugar solution from the mixtures.

As a result of this, we need to first convert the milliliters to moles.

20 mL/1000 mL x 3 moles = 0.06 moles of sugar

30 mL/ 1000 mL x 5.69 moles = 0.1707 moles of sugar

Please note that we are dividing by 1000 mL to convert to liters.

Now, we add up the two values, 0.06 + 0.1707 = 0.2307 moles

Next, we add the total millimeters we have so far which would be

20 mL + 30 mL = 50 mL

Finally, we would convert the 50 mL to liters before we get our final answer.

1000 mL / 50 mL = 20 L

Now, we multiply 20 L by 0.2307 moles = 4.614 M solution

 

Read more here:

https://brainly.com/question/24247427

What is the final step in the scientific method

Answers

Conclusion
 
Hope this helps!
Once a hypothesis has been formed, it must be tested. This is done by conducting a carefully designed and controlled experiment. The experiment is one of the most important steps in the scientific method, as it is used to prove a hypothesis right or wrong, and to formulate scientific theories.

Click to select the correct answers. Click again to unselect answers. Leave the incorrect answers unselected.



Nuclear fission and fusion both affect the nucleus of an atom. Choose all of the items below that are correct.


The final products of fission and fusion are elements that are different than the original


Fusion involves the splitting apart of large atoms into smaller ones


Fission occurs mostly with elements heavier than lead on the periodic table


Two hydrogen atoms can go through fission to form helium

Fusion and fission involve a loss or gain of electrons

Answers

Correct answers:
Nuclear fission and fusion both affect the nucleus of an atom. 

The final products of fission and fusion are elements that are different than the original.

Fission occurs mostly with elements heavier than lead on the periodic table.

The answer options about a nuclear reaction which are correct include the following:

A. Nuclear fission and fusion both affect the nucleus of an atom.

B. The final products of fission and fusion are elements that are different than the original.

D. Fission occurs mostly with elements heavier than lead on the periodic table.

A nuclear reaction refers to a reaction in which the nucleus of an atom is transformed or transmuted by either joining (fusion) or splitting (fission) the nucleus of another atom of a radioactive element. Also, a nuclear reaction is always accompanied by a release of energy.

Generally, the two (2) main types of nuclear reaction are:

Nuclear fusion: it involves the joining of two smaller nuclei of atoms to form a single massive or heavier nucleus with the release of energy. Nuclear fission: it involves the collision of a heavy atomic nucleus with a neutron, thereby causing a split and release of energy.

From the above, we can deduce the following about a nuclear reaction:

I. The nucleus of an atom is affected by both nuclear fission and fusion.

II. The final products of both nuclear fission and fusion are chemical elements that are different than the original radioactive chemical elements.

III. Nuclear fission occurs mostly with chemical elements heavier than lead (Pb) on the periodic table because the nuclear force holding their atoms together is lesser than the electromagnetic force pushing the nucleus apart.

Read more: https://brainly.com/question/24040465

What element is found in all organic compounds?
a.carbon?

Answers

The element that is found in all organic compounds is Carbon

Suppose a student titrates a 10.00-ml aliquot of saturated ca(oh)2 solution to the equivalence point with 16.08 ml of 0.0199 m hcl. what was the initial [oh − ]?

Answers

Following chemical reaction is involved upon titration of Ca(OH)2 with HCl,
Ca(OH)2 + 2HCl ↔ CaCL2 + 2H2O

Above is an example of acid-base titration to generate salt and water. Here, H+ ions of acid (HCl) combines with OH- (ions) of base [Ca(OH)2] to generated H2O

Given,
concentration of HCl = 0.0199 M
Total volume of HCl consumed during titration = 16.08 mL = 16.08 X 10^(-3) L

∴, number of moles of H+ consumed = Molarity X Vol. of HCl (in L)
                                                           = 0.0199 X 16.08 X 10^(-3)
                                                           = 3.1999 X 10^-4 mol
Thus, total number of moles of [OH-] ions present initial = 3.1999 X 10-4 mol
So, initial conc. [OH-] ion = 
[tex] \frac{number of moles of [OH-]}{volume of solution (L)} [/tex] = [tex] \frac{3.1999 X 10^(^-^4^)}{10 X 10^(^-^3^)} [/tex] = 0.03199 M

What type(s) of intermolecular forces are expected between ch3conhch3 molecules?

Answers

Hydrogen bonds.
________________
Final answer:

The intermolecular forces between CH3CONHCH3 molecules are dipole-dipole attractions and hydrogen bonding.

Explanation:

The type of intermolecular forces that are expected between CH3CONHCH3 molecules are dipole-dipole attractions and hydrogen bonding.

CH3CONHCH3, also known as acetamide, has a polar carbonyl group (C=O) and an amide group (C-NH). The oxygen atom in the carbonyl group is more electronegative than the carbon atom, resulting in a partial negative charge on the oxygen and a partial positive charge on the carbon. This dipole moment allows for dipole-dipole attractions between acetamide molecules.

In addition, the hydrogen atoms in the amide group can form hydrogen bonds with the lone pairs of electrons on the nitrogen atom of neighboring acetamide molecules. Hydrogen bonding is a stronger type of dipole-dipole attraction and is responsible for the high boiling point and other properties of acetamide.

Which statement about ionic bonds is true?
A. In ionic bonds atoms share electrons to achieve a stable outer shell.
B. Ionic bonds occur between non-metals.
C. Ionic bonds occur between two metals.
D. In ionic bonds one atom accepts electrons from another atom to achieve a stable outer shell.

Answers

Option D is the correct one.

In ionic bonds one atom accepts electrons from another atom to achieve a stable outer shell.

Answer:

In ionic bonds one atom accepts electrons from another atom to achieve a stable outer shell.

Explanation:

Answer via Educere/ Founder's Education

The voltage generated by the zinc concentration cell described by the line notation zn(s) ∣∣ zn2+(aq,0.100 m) ∥∥ zn2+(aq,? m) ∣∣ zn(s) is 14.0 mv at 25 °c. calculate the concentration of the zn2+(aq) ion at the cathode.

Answers

Answer: The concentration of [tex]Zn^{2+}[/tex] ion at cathode is 0.295 M

Explanation:

The half reactions for the cell is:

Oxidation half reaction (anode):  [tex]Zn(s)\rightarrow Zn^{2+}(0.100M,aq.)+2e^-[/tex]

Reduction half reaction (cathode):  [tex]Zn^{2+}(?M,aq.)+2e^-\rightarrow Zn(s)[/tex]

In this case, the cathode and anode both are same. So, [tex]E^o_{cell}[/tex] will be equal to zero.

To calculate cell potential of the cell, we use the equation given by Nernst, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Zn^{2+}]_{anode}}{[Zn^{2+}]_{cathode}}[/tex]

where,

n = number of electrons in oxidation-reduction reaction = 2

[tex]E_{cell}[/tex] = 14.0 mV = 0.014 V    (Conversion factor:  1 V = 1000 mV)

[tex][Zn^{2+}]_{anode}[/tex] = 0.100 M

[tex][Zn^{2+}]_{cathode}[/tex] = ? M

Putting values in above equation, we get:

[tex]0.014=0-\frac{0.0592}{2}\log \frac{0.100M}{[Zn^{2+}]_{cathode}}[/tex]

[tex][Zn^{2+}]_{cathode}=0.295M[/tex]

Hence, the concentration of [tex]Zn^{2+}[/tex] ion at cathode is 0.295 M

The concentration of Zn²⁺  ion at cathode is 0.295 M

Redox half equations

The redox half equations are those of oxidation and reduction

Oxidation half reaction: Zn(s) ---> Zn²⁺ + 2 e⁻ [Zn⁺] = 0.100 M

reduction half reaction: Zn²⁺ (aq) + 2 e⁻ ----> Zn (s)  [Zn⁺] = y

The Ecell = 14.0mV = 0.014 V

Using the Nernst equation:

Ecell = E°cell - 0.0592/n * log([Zn⁺]anode/[Zn⁺]cathode)since it is a concentration cell, E°cell = 0

where n is number moles; n = 2

0.014 =  0 - 0.0592/2 * log (0.1/y)

y = 0.295 M

Therefore, the concentration of Zn²⁺  ion at cathode is 0.295 M

Learn more about concentration cells at: https://brainly.com/question/15394851

Na has an atomic mass of 23.0g and O has an atomic mass of 16.0g. How many grams of Na are needed to completely react with 40.0g of O2?

Answers

The grams of Na that are needed to complete  to react with 40..0 g of O2 is calculated as  below

find the moles of O2 used = mass/molar mass

= 40 g/32g/mol = 1.25  moles

write the reacting equation
4Na+ O2 = 2Na2O

by use of mole ratio between Na to O2 which is 4 :1

the moles of Na = 1.25 x 4 = 5 moles

mass of Na = mass x molar mass

=  5 moles x 23 g /mol= 115  moles

Final answer:

To completely react with 40.0g of O2, 115.0g of Na are required. This calculation uses stoichiometry and the balanced chemical equation 4Na + O2 → 2Na2O, considering the atomic masses of Na and O.

Explanation:

The question relates to how many grams of sodium (Na) are needed to react completely with 40.0 grams of oxygen (O2). This is a stoichiometry problem that involves understanding the molar mass of the reactants and the chemical reaction equation. The first step is to understand the reaction between sodium and oxygen, which typically forms sodium oxide (Na2O). The balanced chemical equation for this reaction is:

4Na + O2 → 2Na2O

From this equation, we can see that 4 moles of Na react with 1 mole of O2 to produce 2 moles of Na2O. Using the given atomic mass of O (16.0 g/mol) and knowing that oxygen is diatomic in its normal state (O2), the molar mass of O2 is 32.0 g/mol. Therefore, 40.0 g of O2 corresponds to 40.0 g / 32.0 g/mol = 1.25 moles of O2.

Since 4 moles of Na are required for every 1 mole of O2, the moles of Na needed is 4 * 1.25 moles = 5 moles of Na. Given the atomic mass of Na as 23.0 g/mol, the mass of Na required is 5 moles * 23.0 g/mol = 115.0 grams. Therefore, to completely react with 40.0 grams of O2, 115.0 grams of Na are needed.

What is the molarity of a solution which contains 58.4 g of sodium chloride dissolved in of solution?

Answers

Final answer:

The molarity of a solution is calculated by the formula: Molarity = moles of solute divided by volume of solution in liters. For the mentioned solution, we have roughly 1 mole of sodium chloride. The molarity can be obtained by dividing this number by the volume of the solution in liters.

Explanation:

The molarity of a solution is given by the formula: Molarity (M) = moles of solute / volume of solution in liters.

Via the provided information, we know that one mole of sodium chloride (NaCl) weighs 58.44 g, and we have 58.4 g NaCl in our solution, roughly equivalent to 1 mole. The volume of the solution unfortunately is not given in the question. If this missing value can be retrieved, the molarity can be calculated by dividing the number of moles (which is 1 in this case) by the volume of the solution in liters.

Assuming a 1 L solution for simplicity, the molarity will be: 1 mol NaCl / 1 L solution = 1 M NaCl solution.

Learn more about Molarity here:

https://brainly.com/question/8732513

#SPJ3

Marshall determines that a gas has a gage pressure of 276 kPa what's the absolute pressure of this gas

Answers

To determine the absolute pressure of this gas, all you need to do is to add the value of atmospheric pressure and the value of gage pressure.

Atmospheric pressure is equivalent to 100 kPa. 
Gage pressure is 276 kPa.

Then, we add both values. 

N = 100 kPa + 276 kPa
N =  376 kPa

The absolute pressure of this gas is 376 kPa.

Hope this helps :)

And object has a mass of 120 KG’s on the moon what is the force of gravity acting on the object of the moon

Suppose that 26.89 ml of vinegar solution requires 33.23 ml of the 0.09892 m sodium hydroxide solution to reach the endpoint. calculate the molar concentration of the vinegar solution.

Answers

Number of millimoles of NaOH consumed in present titration =33.23 X 0.09892
                                                                                                 = 3.287

Thus, number of millimoles of vinegar present in sample = 3.287

Now, Molarity of vinegar solution = [tex] \frac{\text{number of millimoles of vinegar}}{\text{volume of solution (ml)}} [/tex]
                                                     = [tex] \frac{3.287}{26.89} [/tex]
                                                     = 0.1222 mol/dm3

Molar concentration of vinegar present in sample solution is 0.1222 M 


Carbon tetrachloride will have which shape?
A) bent
B) linear
C) tetrahedral
D) triangular

Answers

Your answer should be A
I believe the answer is C) tetrahedral. I hope this helps! :)

What is the effect of removing some so3 from a system initially at equilibrium?

Answers

The reaction is as follow,

                             2 SO₂(g) + O₂ (g)     ⇄     2 SO₃ (g)

According to Le Chatelier's Principle," when a system at equilibrium is subjected to any external stress (like changing temperature, pressure or concentration) the system will tend to adjust itself in such a way to minimize the effect of that stress.

In given reaction, when the equilibrium is disturbed by removing SO₃ from the system then the equilibrium will shift in the forward direction resulting in consumption of more reactants. Or if the Oxygen gas is in excess then the concentration of SO₂ will decrease more.

Answer:

Right

Left

Left

Right

Explanation:

For the equilibrium system described by this equation, what will happen if SO3 is removed?

The equilibrium shifts to the

✔ right

What will happen if NO is added?

The equilibrium shifts to the  

✔ left

.For the equilibrium system described by this equation, what will happen if SO2 is removed?

The equilibrium shifts to the  

✔ left

.

What will happen if NO2 is added?

The equilibrium shifts to the  

✔ right

Identify the lowest energy lewis structure for nitrogen oxide

Answers

Below attachment shows the four possible lewis structures of Nitrogen Oxide (Nitrous Oxide).

Answer:
              Among given Lewis structures, Structure-C has the lowest energy.

Explanation:
                     The greater the stability of any compound the lesser will be its energy. Among different Lewis structures of N₂O or any other compound, the one which comprises of less number of formal charges will be having lesser energy. I have selected structure-C but not Structure-B (as both have same number of formal charges) because in structure-C oxygen has a formal charge of -1. Being more electronegative oxygen tends to attract electrons toward itself. While, in structure-B one of the Nitrogen atom is having -1 charge which is not feasible and makes the structure energetically high.

Note:
        Formula for calculating formal charge is as follow,

Formal Charge  =  # of Valence e⁻s - [e⁻s in lone pairs + 1/2 bonding e⁻s]

If 255 g of water has 10.0 g of NaCl dissolved into initially, how much NaCl must be added in order to raise the mass percent of NaCl by 10%?

Answers

m(H₂O) = 255 g.
m₁(NaCl) = 10.0 g.
m₁(solution) = 255 g + 10 g = 265 g.
ω₁ = 10 g / 265 g · 100%.
ω₁ = 3.77% ÷ 100% = 0.0377.
ω₂= 10% ÷ 100% = 0.1.
ω₂= m₁(NaCl) + m₂(NaCl) / m₁(solution) + m₂(NaCl).
0.1 = 10 g + m₂(NaCl) / 265 g + m₂(NaCl).
26.5 g + 0.1·m₂(NaCl) = 10 g + m₂(NaCl).
0.9·m₂(NaCl) = 16.5 g.
m₂(NaCl) = 18.33 g.

A gas sample of argon, maintained at constant temperature, occupies a volume of 500. l at 4.00 atm. what is the new volume if the pressure were charged to 8.0 atm

Answers

Boyle's law gives the relationship between pressure and volume of gas. 
It states that at constant temperature, pressure is inversely proportional to volume of gas.
PV = k
where P - pressure, V - volume and k - constant 
P1V1 = P2V2
where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation 
substituting these values in the equation 
4.00 atm x 500 L = 8.0 atm x V
V = 250 L 
new volume is 250 L

More people need to get a profile picture


Give the oxidation state of the metal species in each complex. ru(cn)(co)4 -

Answers

The given complex ion is as follow,

                                              [Ru (CN) (CO)₄]⁻

Where;
            [ ]  =  Coordination Sphere

            Ru  =  Central Metal Atom  =  Ruthenium

            CN  =  Cyanide Ligand

            CO  =  Carbonyl Ligand

The charge on Ru is calculated as follow,

                               Ru + (CN) + (CO)₄  =  -1
Where;
            -1  =  overall charge on sphere

             0  =  Charge on neutral CO

            -1  =  Charge on CN

So, Putting values,


                               Ru + (-1) + (0)₄  =  -1

                               Ru - 1 + 0  =  -1

                               Ru - 1  =  -1

                               Ru  =  -1 + 1

                               Ru  =  0
Result:
          Oxidation state of the metal species in each complex [Ru(CN)(CO)₄]⁻ is zero.

The oxidation state of the Ru metal in the complex [tex]{\left[{{\text{Ru}}\left({{\text{CN}}}\right){{\left({{\text{CO}}}\right)}_4}}\right]^-}[/tex] is [tex]\boxed{{\text{zero}}}[/tex] .

Further explanation:

Oxidation number:

The oxidation number is used to represent the formal charge on an atom. It also shows that gain or loss of electrons by the atom. Oxidation number can be a positive or negative number but cannot be fractional.

The rules to identify the oxidation state:

(1) The oxidation state of an atom in the elemental form is zero.

(2) The total charge on the species is equal to the sum of the oxidation state of individual atoms.

(3) The oxidation state of halides is -1. For example, fluorine, chlorine, bromine, iodine have -1 oxidation state.

(4)Hydrogen has a +1 oxidation state.

(5) Oxygen has an oxidation state -2.

(6) In a coordination compound, neutral ligands have zero oxidation state and negative ligands such as CN have -1 oxidation.

The given compound is [tex]{\left[{{\text{Ru}}\left({{\text{CN}}}\right){{\left({{\text{CO}}}\right)}_4}}\right]^-}[/tex]

Here, CN is a negative ligand thus oxidation state is -1 and CO is a neutral ligand thus it has 0 oxidation state. Also, the complex has -1 negative charge.

The expression to calculate the oxidation state in [tex]{\left[{{\text{Ru}}\left({{\text{CN}}}\right){{\left({{\text{CO}}}\right)}_4}}\right]^-}[/tex] is,

[tex]\left[{\left({{\text{oxidation state of Ru}}}\right)+\left({{\text{oxidation state of CN}}}\right)+4\left({{\text{oxidation state of CO}}}\right)}\right]=-1[/tex]

…… (1)

Rearrange equation (1) for the oxidation state of Ru.

[tex]{\text{Oxidation state of Ru}}=\left[{-\left({{\text{oxidation state of CN}}}\right)-4\left({{\text{oxidation state of CO}}}\right)-1}\right][/tex]

…… (2)  

Substitute -1for the oxidation [tex]{\text{state}}[/tex]  of CN and 0 for the oxidation state of CO in equation (2).

[tex]\begin{aligned}{\text{Oxidation state of Ru}}&=\left[{-\left({-{\text{1}}}\right)-4\left({\text{0}}\right)-1}\right]\\&=0\\\end{aligned}[/tex]

The oxidation state of Ru is zero.

Learn more:

1. General statement that is not applied on metals: https://brainly.com/question/2474874

2. The neutral element represented by the excited state electronic configuration: https://brainly.com/question/9616334

Answer details:

Grade: Senior school

Subject: Chemistry

Chapter: Coordination complex

Keywords: Oxidation state, metal complex, ru(cn)(co)4-, formal charge, cynide, carbonyl, zero, hydrogen, oxygen, 0 and -1.

In the nuclear transmutation represented by 168o(p, \alpha) 137n, the emitted particle is ________. in the nuclear transmutation represented by o(p, \alpha) n, the emitted particle is ________. a beta particle. a proton. an alpha particle. a neutron. a positron.

Answers

In the nuclear transmutation represented by 168o(p, \alpha) 137n, the emitted particle is alpha. in the nuclear transmutation represented by o(p, \alpha) n, the emitted particle is alpha.

In nuclear reactions, an alpha particle is a common emitted particle. An alpha particle is a relatively heavy particle compared to others, consisting of two protons and two neutrons. The emission of an alpha particle is a form of nuclear decay or transmutation, and it is frequently observed in certain nuclear reactions involving heavy elements.

The emission of an alpha particle is often associated with nuclear decay or transmutation processes. In these processes, the nucleus of an unstable atom transforms into a more stable one by releasing an alpha particle. This helps reduce the excess energy and stabilize the nucleus.

Alpha decay is more commonly observed in heavy elements, particularly those with a high atomic number. Elements with larger atomic nuclei tend to be less stable, and alpha decay is one way for them to reach a more stable configuration.

Which of these do not obey the octet rule? select all that apply. select all that apply. clo clo− clo2− clo3− clo4−?

Answers

[tex]\boxed{{\text{ClO,ClO}}_{\text{2}}^ - {\text{,ClO}}_{\text{3}}^ - {\text{,ClO}}_{\text{4}}^ - }[/tex] does not follow the octet rule.

Further Explanation:

Octet rule: states that for the stability of any element it must have a valence shell of eight electrons (octet means a group of eight). This rule is given by Kossel and Lewis.

Atoms of same or different elements with an incomplete electronic configuration that is having electrons less than 8 are unstable and they combine together to form stable molecules with a complete octet. They can combine by sharing of electrons or loss or gain of electrons.

In [tex]{\mathbf{ClO}}[/tex], Chlorine (Cl) has 7 electrons in its outer shell and oxygen  has 6 electrons in its outer shell. So chlorine and oxygen share 2 electrons each to complete their octet and attain stability. Chlorine atom in the compound has ten electrons in its outer shell so it doesn’t follow the octet rule.

In [tex]{\mathbf{Cl}}{{\mathbf{O}}^ - }[/tex], Chlorine(Cl) has 7 electrons in its outer shell and oxygen has a unit negative charge on it [tex]\left( {{{\text{O}}^ - }} \right)[/tex] so, it has 7 electrons also in its outer shell. So chlorine and oxygen share one electron each to complete their octet and attain stability. All the atoms have eight electrons in their outer shell so they follow the octet rule.

In [tex]{\mathbf{ClO}}_2^ -[/tex], Chlorine (Cl) has 7 electrons in its outer shell and there is 2 oxygen attached to Cl. One has a unit negative charge on it [tex]\left( {{{\text{O}}^ - }} \right)[/tex] and the other is neutral. So, chlorine and neutral oxygen share 2 electrons each to get a stable octet and form a double bond. Similarly, chlorine shares 1 electron with oxygen ion with a negative charge on it forming a single bond with it. A chlorine atom has ten electrons in its outer shell so the compound doesn’t follow the octet rule.

In [tex]{\mathbf{ClO}}_3^ -[/tex], Chlorine (Cl) has 7 electrons in its outer shell and there is 3 oxygen attached to Cl. One has a unit negative charge on it [tex]\left( {{{\text{O}}^ - }} \right)[/tex] and the other two are neutral. So, chlorine and both neutral oxygen share 2 electrons to get a stable octet and form a double bond. Similarly, chlorine shares 1 electron with oxygen ion with a negative charge on it, forming a single bond with it. Here, Cl has ten electrons in its outer shell, so it doesn’t follow the octet rule.

In [tex]{\mathbf{ClO}}_4^ -[/tex] , Chlorine (Cl) has 7 electrons in its outer shell and there is 4 oxygen attached to Cl. One has a unit negative charge [tex]\left( {{{\text{O}}^ - }} \right)[/tex]on it and the other three are neutral. So, chlorine and both neutral oxygen share 2 electrons to get a stable octet and form a double bond. Similarly, chlorine shares 1 electron with oxygen ion with a negative charge on it, forming a single bond with it.  

Here, Cl has fourteen electrons in its outer shell, so it doesn’t follow the octet rule.

Learn more:

1. The octet rule states that:https://brainly.com/question/1601832

2. How many covalent bond nitrogen forms: https://brainly.com/question/5974553

Answer details:

Grade: Secondary School

Subject: Chemistry

Chapter: Chemical Bonding

Keywords: octet rule, stability, oxygen, chlorine, covalent, sharing, ClO2-, ClO3-, ClO4-, ClO-and ClO.

The species that do not obey the octet rule are; ClO, ClO2^-, ClO3^-, ClO4^-.

The octet rule states that atoms must have eight electrons in their outermost shell in order to attain stability. Hence, stable molecules, ions and atoms are expected to contain atoms that obey the octet rule.

However, in some chemical species, atoms of elements do not obey the octet rule. For instance, in ClO, chlorine has seven valence electrons and oxygen has six electrons. The octet rule is clearly violated in this case.

Again, chlorine is able to expand its octet (contain more than eight valence electrons). This is seen in the ions; ClO2^- and ClO3^- in which chlorine contains ten valence electrons  and  ClO4^- in which chlorine contains fourteen valence electrons.

Learn more: brainly.com/question/1601832

Fill in the missing blank 2C4H6 + _______ → 8CO2 + 6H2O

Answers

 the  missing blank is filled by 11 O2
that is
= 2C4H6 + 11O2 = 8 CO2 + 6H2O

C4H6 reacted with oxygen (O2 )through the process of combustion to form carbon iv oxide (CO2)  and water (H2O) . 11 infront  of  O2 is to make sure the molecules of O2 is balanced in both reactant side and the  product side

Select the single best answer. why is the boiling point of propanamide, ch3ch2conh2, considerably higher than the boiling point of n,n−dimethylformamide, hcon(ch3)2 (213°c vs. 153°c), even though both compounds are isomeric amides?

Answers

The reason for higher boiling point of Propanamide as compared to N,N−dimethylformamide although both are isomers of each other is due to the difference in the intermolecular interactions among their molecules. 

As shown below, propanamide contains two hydrogen atoms directly attached to Nitrogen atom. In this case the hydrogen atoms become partially positive and can form Hydrogen Bond Interactions with the Nitrogen atoms of neighbor propanamide molecule.

Due to the involvement of Hydrogen bonding which is strongest among intermolecular interactions increases the boiling point of propanamide which are absent in N,N−dimethylformamide.
Final answer:

The higher boiling point of propanamide compared to N,N-dimethylformamide is due to the ability of propanamide to form stronger intermolecular hydrogen bonds, requiring more energy to break and hence, raising its boiling point.

Explanation:

The boiling point of propanamide, CH3CH2CONH2, is considerably higher than that of N,N-dimethylformamide, HCON(CH3)2 because propanamide can form robust intermolecular hydrogen bonds within its molecules. These require a significant amount of energy to break, hence increasing its boiling point. However, in N,N-dimethylformamide, hydrogen bonding is inhibited because the hydrogen atoms are bonded to carbon rather than a more electronegative element like nitrogen or oxygen, which would contribute to stronger hydrogen bonding. Therefore, the boiling point of N,N-dimethylformamide is lower.

Learn more about Boiling Point of Compounds here:

https://brainly.com/question/36036751

A gas sample contains 4.00g of CH4 and 2.00g of He. What is the volume of the sample at STP?

Answers

As we know that 1 mole of any gas when acting perfectly / ideally occupies 22.4 L of volume.

It means that in order to calculate volume occupied both by CH₄ and He, we must calculate their moles.

Hence,
Moles are given as,
                                     Moles  =  Mass / Mass

Moles of CH₄;
                                     Mole-CH₄  =  4 g / 16 g.mol⁻¹

                                     Mole-CH₄  =  0.25 mol

Moles of He;
                                     Mole-He  =  2 g / 4 g.mol⁻¹

                                     Mole-He  =  0.5 mol

Now adding moles of both gases,
          
                                     =  0.25 + 0.5

                                     =  0.75 mol

Therefore, when,

                          1 mole of gas occupy  =  22.4 L of Volume

Then,

                            0.75 mol will occupy  =  X L of Volume

Solving for X,
                                   X  =  (0.75 mol × 22.4 L) ÷ 1 mole

                                   X  =  16.8 L
Final answer:

To calculate the volume of the gas sample at standard temperature and pressure (STP), we find the moles of each gas (CH4 and He) using their molar masses and then multiply by the molar volume (22.4 L/mol) to get their individual volumes at STP. Adding these volumes together gives us the total volume of the gas sample, which is 16.8 L.

Explanation:

To calculate the volume of a gas sample at standard temperature and pressure (STP), we can use the molar volume concept where one mole of any gas occupies 22.4 liters at STP. Methane (CH4) has a molar mass of 16.00 g/mol, and helium (He) has a molar mass of 4.00 g/mol.

To find the moles of CH4, we divide 4.00 g by its molar mass, 16.00 g/mol, which gives us 0.250 moles. Similarly, for He, we divide 2.00 g by its molar mass, 4.00 g/mol, which gives us 0.500 moles. To find the total volume, we sum the volumes of CH4 and He after multiplying their mole quantities by the molar volume (22.4 L/mol).

Total volume of CH4 = 0.250 moles × 22.4 L/mol = 5.60 L

Total volume of He = 0.500 moles × 22.4 L/mol = 11.2 L

Therefore, the total volume of the gas sample at STP is 5.60 L + 11.2 L = 16.8 L.

How many grams of NAOH are contained within 0.785 moles of NAOH?

Answers

When you do the dimensional analysis for this problem you should end up with the answer 31.4 grams of NAOH.

Answer: The mass of NaOH for given number of moles is 31.4 grams.

Explanation:

To calculate the mass for given number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

We are given:

Molar mass of NaOH = 40 g/mol

Moles of NaOH = 0.785 moles

Putting values in above equation, we get:

[tex]0.785mol=\frac{\text{Mass of NaOH}}{40g/mol}\\\\\text{Mass of NaOH}=(0.785mol\times 40g/mol)=31.4g[/tex]

Hence, the mass of NaOH for given number of moles is 31.4 grams.

Magnesium hydroxide (Mg(OH)2): g/mol Iron(III) oxide (Fe2O3): g/mol

Answers

Answer:

Magnesium hydroxide (Mg(OH)2): 58.33 g/mol

Iron(III) oxide (Fe2O3): 159.70 g/mol

Explanation:

To find the molar masses of both magnesium hydroxide and iron(III) oxide, add each  molar mass in each compound.

Solving:

[tex]\section*{Molar Mass of Magnesium Hydroxide (Mg(OH)_2):}\textbf{Identify Atomic Masses}\begin{itemize} \item Magnesium (Mg): 24.31 g/mol \item Oxygen (O): 16.00 g/mol (2 oxygen atoms) \item Hydrogen (H): 1.01 g/mol (2 hydrogen atoms)\end{itemize}[/tex]

[tex]\textbf{Calculate Molar Mass:}\[\text{Molar mass of Mg(OH)}_2 = \text{Mg} + 2 \times (\text{O} + \text{H})\]\[= 24.31 \, \text{g/mol} + 2 \times (16.00 \, \text{g/mol} + 1.01 \, \text{g/mol})\]\\\[= 24.31 \, \text{g/mol} + 2 \times 17.01 \, \text{g/mol}\]\[= 24.31 \, \text{g/mol} + 34.02 \, \text{g/mol} = \boxed{58.33 \, \text{g/mol}}\][/tex]

[tex]\hrulefill[/tex]

[tex]\section*{Molar Mass of Iron(III) Oxide (Fe_2\text{O}_3):}\textbf{Identify Atomic Masses}\begin{itemize} \item Iron (Fe): 55.85 g/mol (2 iron atoms) \item Oxygen (O): 16.00 g/mol (3 oxygen atoms)\end{itemize}[/tex]

[tex]\textbf{Calculate Molar Mass:}\[\text{Molar mass of Fe}_2\text{O}_3 = 2 \times \text{Fe} + 3 \times \text{O}\]\\\[= 2 \times 55.85 \, \text{g/mol} + 3 \times 16.00 \, \text{g/mol}\]\\\[= 111.70 \, \text{g/mol} + 48.00 \, \text{g/mol} = \boxed{159.70 \, \text{g/mol}}\][/tex]

[tex]\hrulefill[/tex]

Ydrogen and fluorine combine according to the equation h2(g) + f2(g) → 2 hf(g) if 5.00 g of hydrogen gas are combined with 38.0 g of fluorine gas, the maximum mass of hydrogen fluoride that could be produced is

Answers

 Molar mass (H2)=2*1.0=2.0 g/mol
Molar mass (F2)=2*19.0=38.0 g/mol
Molar mass (HF)=1.0+19.0=20.0 g/mol

5.00 g H2 * 1mol H2 /2 g H2=2.50 mol H2 
38.0 g F2*1mol F2/38.0 g F2=1.00 mol F2

                                   H2(g) + F2(g) → 2 HF(g)
From reaction        1 mol      1 mol
From problem      2.50 mol   1 .00mol

We can see that  excess of H2, and that F2 is a limiting reactant.
So, the amount of HF is limited by the amount of F2.

                                 H2(g) + F2(g) → 2 HF(g)
From reaction                      1 mol       2  mol
From problem                      1.00 mol  2.00mol

2.00 mol HF can be formed.

2.00 mol HF*20.0g HF/1mol HF=40.0 g HF can be formed

How many grams of cah2 are needed to generate 143 l of h2 gas if the pressure of h2 is 827 torr at 22 ∘c? g.com?

Answers

The  grams  of caH2  that  are  needed to  generate 143 L  of H2  is calculated  as follows
by  use of ideal  gas  equation Pv=nRT  where n  is  number  of moles, calculate   the  moles of H2  produced
by making n  the subject  of the formula  
n= PV/RT
p= 827 torr
R(gas  constant)= 62.36 L.torr/mol.K
T= 273 +22=295 k
V=143 L
n  =(827 torr  x143 L)/ 62.36 L.torr/mol.k x295 k) =6.43   moles

write the  reacting equation
that is caH2 +2H2O= Ca(OH)2 + 2H2

by  use of mole  ratio between CaH2  to H2  which is  1 :2 the moles of CaH2 = 6.43 x1/2=3.215  moles

mass of CaH2 is therefore= moles  of CaH2  x molar mass of CaH2

=3.215  moles x 42 g/mol = 135.03  grams

Other Questions
Define what is meant by the phrase "planning materiality threshold" The person responsible for the current system of naming organisms is After disposing of waste in the dumpster the dumpster lid should be how is a universal genetic code similar to the hypothesis about the origin of life on Earth? At what position does the ball have its maximum potential energy A) aB) d C) f D) g Emma enjoys flying kites. her red kite has a maximum altitude of 117.46 meters, and her black kite has a maximum altitude of 362.26 feet. one foot is the same as 0.3048 meters. which kite has a higher maximum altitude, and how many feet higher is it? What percentage of texas prison inmates have been convicted of drug offenses? What set of simple machines would be needed to create the complex machine shown here? What new information is learned about district 4 through Octavias complaints Which do you think exerts a stronger influence on criminal behavior, biology or environment? The authors of your text present evidence that suggest that witnesses who can identify a suspect in a lineup in under ________ are probably more likely to correctly identify the suspect. Which of the following sentences uses commas correctly? Question 3 options: A On her way to the beach, Lisa was loaded with her beach umbrella, volleyball and picnic basket. B On her way to the beach Lisa was loaded with her beach umbrella, volleyball, and picnic basket.C On her way to the beach, Lisa was loaded with her beach umbrella, volleyball, and picnic basket. D On her way to the beach, Lisa was loaded with her beach umbrella volleyball and picnic basket. Most jobs opening in the next few years will A) be open from millennial retiring B) be accessible without any post secondary education or training C) be in newly created jobs D) be accessible through and apprenticeship In a well-balanced ecosystem, squirrels eat nuts, raccoons feed on squirrels, and bears feed on raccoons. It was observed that there were more squirrels and fewer raccoons. This situation indicates that . The least amount of energy from the Sun will be received by the In spermatogenesis, meiosis results in the formation of Determine the hydroxide ion concentration in a solution that is 0.0033 m hno3. answer in units of m. Which of the following foods is the most nutrient-dense per serving? olive oil, french fries, grape juice, soy milk? A student is planning a field study of a pond in which a large increase in algae populations has been observed. large numbers of dead fish have also been observed in the pond. to find out what caused the death of the fish, the student should do each of these except - A rectangular bathtub is 5 1/2 feet Long, 1 1/2 feet wide, and 3 feet high. Daniel fills the tub to a depth of 2 feet. What is the volume of the water in the tub? This was the meeting that took place in february of 1945 between the heads of state of the wwii allied powers. the purpose of the meeting was to discuss the reorganization of europe after wwii.