How do you solve this?

How Do You Solve This?

Answers

Answer 1

Answer:

It's asking for you to calculate the volume of a cylinder and multiply it by 2/3. This is because the question is asking how much water is in a cylindrical vase with the height and radius.

The formula to calculate the volume of a cylinder is : 3.14 (r^2) (h)

R being the radius and H being the height.

Plug in the values then multiply it all by 2/3

Hoped this help you solve your problem.

Answer 2

[tex]\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=5\\ h=14 \end{cases}\implies V=\pi (5)^2(14)\implies V=350\pi \\\\\\ \stackrel{\pi =3.14}{V=1099}~\hfill \stackrel{\textit{how much is }\frac{2}{3}\textit{ of that?}}{1099\cdot \cfrac{2}{3}\implies \cfrac{2198}{3}}\implies \stackrel{\textit{rounded up}}{732.7}[/tex]


Related Questions

The tempature is changing every day by -3/16 degree fahrenhiet. What will be the change in the tempature after 4 days

Answers

Answer:

-3/4 degree Fahrenheit

Step-by-step explanation:

The temperature is decreasing by 3/16 each day

We write that as -3/16

There are 4 days in which we are measuring

Total temperature change = rate of change* number of days

                                            =-3/16 * 4

                                            = -12/16

We can simplify this by dividing the top and bottom by 4

-12/4 =3

16/4 =4

                                         =12/16 = -3/4

Answer:

-3/4 degree Fahrenheit

Step-by-step explanation:

If the tempature is changing every day by -3/16 degree fahrenhiet, the change in the tempature after 4 days is -3/4 degree Fahrenheit.

Evaluate the expression for the given values. (5 x - 4 y) 2 given x = 1 and y = -1.

Answers

[tex]((5 \times 1) - (4 \times - 1) = \\ 5 - ( - 4) = \\ 5 + 4 = \\ 9[/tex]

Determine whether quadrilateral ABCD with vertices
A(-4,-5), B(-3,0), C(0, 2), and D(5, 1) is a trapezoid.

Answers

Answerits not

Step-by-step explanation:

Answer:

Step 1: 5

Step 2: -1/5

Step 3: 2/3

Step 4: 2/3

Only one pair of opposite sides is parallel

Step-by-step explanation:

The graph of f(x) = 0.6x is replaced by the graph of g(x) = 0.6x + k. If g(x) is obtained by shifting f(x) up by 6 units, then what is the value of k?

A.=-6
B.=-1/6
C.=1/6
D.=6​

Answers

Answer:

k = 6

Step-by-step explanation:

i got it right on the test and i also graphed it

Please mark brainliest!

by the way when you need to graph something use a website called Desmos.  or just go onto the search bar on the top of your screen adn type in desmos. com

The transformation of a function may involve any change. The correct option is D.

How does the transformation of a function happen?

The transformation of a function may involve any change.

If the original function is y = f(x), assuming the horizontal axis is the input axis and the vertical is for outputs, then:

Up by d units: y = f(x) + dDown by d units: y = f(x) - d

Given that f(x) = 0.6x is replaced by the graph of g(x) = 0.6x + k. And g(x) is obtained by shifting f(x) up by 6 units. Therefore, the value of k is 6.

Learn more about Transforming functions:

https://brainly.com/question/17006186

#SPJ5

This is what I am supposed to do, I’m confused on what to do on 3,4, and 5. PLEASE HELP ASAP!!!!!! 30 POINTS!!!!!

Answers

Answer:

see explanation

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

To calculate m use the slope formula

m = (y₂ - y₁ ) / (x₂ - x₁ )

3

Using (x₁, y₁ ) = (0, 0) and (x₂, y₂ ) = (- 3, 6)

m = [tex]\frac{6-0}{-3-0}[/tex] = [tex]\frac{6}{-3}[/tex] = - 2

Since the line passes through the origin (0, 0) then y- intercept is 0

y = - 2x ← equation of line

4

let (x₁, y₁ ) = (6, 0) and (x₂, y₂ ) = (0, 3)

m = [tex]\frac{3-0}{0-6}[/tex] = [tex]\frac{3}{-6}[/tex] = - [tex]\frac{1}{2}[/tex]

note the line crosses the y- axis at (0, 3) ⇒ c = 3

y = - [tex]\frac{1}{2}[/tex] x + 3 ← equation of line

5

let (x₁, y₁ ) = (0, 3) and (x₂, y₂ ) = (-2, - 3)

m = [tex]\frac{-3-3}{-2-0}[/tex] = [tex]\frac{-6}{-2}[/tex] = 3

note the line crosses the y- axis at (0, 3) ⇒ c = 3

y = 3x + 3 ← equation of line

Simplify the following expression: square root of -36 + square root of -100 +7

Answers

Answer:

[tex]\large\boxed{\sqrt{-36}+\sqrt{-100}+7=7+16i}[/tex]

Step-by-step explanation:

[tex]\sqrt{-1}=i\\\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\=====================\\\\\sqrt{-36}=\sqrt{(36)(-1)}=\sqrt{36}\cdot\sqrT{-1}=6i\\\sqrt{-100}=\sqrt{(100)(-1)}=\sqrt{100}\cdot\sqrt{-1}=10i\\\\\sqrt{-36}+\sqrt{-100}+7=6i+10i+7=7+16i[/tex]

Answer:

The answer is [tex]16i+7[/tex]

Step-by-step explanation:

In order to determine the answer, we have to know about imaginary numbers.

The imaginary numbers are different to real numbers because they use a new unit called "imaginary unit":

[tex]i=\sqrt{-1}[/tex]

i: imaginary unit

This new unit is applied like a factor when we have even roots with negative numbers inside.

In this case:

[tex]\sqrt{-36}=\sqrt{-1}*\sqrt{36}=6i\\\sqrt{-100}=\sqrt{-1}*\sqrt{100}=10i\\   \\\sqrt{-36}+\sqrt{-100}+7\\ 6i+10i+7\\16i+7[/tex]

Finally, the answer is [tex]16i+7[/tex]

Figure ABCD has vertices A(−4, 1), B(2, 1), C(2, −5), and D(−4, −3). What is the area of figure ABCD?

Answers

Answer:

24

Step-by-step explanation:

The area of the given figure ABCD with respective coordinates is

24 square units.

What is the area of quadrilateral?

The area of a quadrilateral is nothing but the region enclosed by the sides of the quadrilateral.

Given the coordinates of the quadrilateral as; A(−4, 1), B(2, 1), C(2, −5), and D(−4, −3).

By inspection, we see that the y coordinates of A and B are the same. Thus, their length will be the difference of their x coordinates. Thus;

AB = 2 - (-4)

AB = 6

Similarly, B and C have same x coordinates. Thus;

BC = -5 - 1 = -6

A and D have same x coordinate and as such;

AD = -3 - 1 = -4

AB and BC are perpendicular to each other because of opposite signs of same Number and since AD has a different length, then we can say that the figure ABCD is a rectangle.

Thus;

Area of figure = 6 × 4 = 24 square units.

The area of the given figure ABCD with respective coordinates is

24 square units.

Find out more information about quadrilateral here

https://brainly.com/question/5715879

#SPJ2

Solve.

11m - 15 -5m= 9

Answers

Answer:

m=4

Step-by-step explanation:

11m - 15 -5m= 9

Combine like terms

6m -15 =9

Add 15 to each side

6m - 15+15 = 9+15

6m = 24

Divide each side by 6

6m/6 =24/6

m = 4

Reflect the triangle across the y-axis, and then translate the image 5 units down.
The final image is the same as which of the following transformations?
1.Translate 5 units down, and then reflect over the x-axis.
2.Translate 5 units down, and then reflect over the y-axis.
3.Rotate 180° about the origin.
4.Reflect over the x-axis, and then translate 5 units left.

Answers

This question is based on the slide reflection. Therefore, the correct option is (2), that is, translate 5 units down, and then reflect over the y-axis.

Given:

Reflect the triangle across the y-axis, and then translate the image 5 units down.

We have to choose the correct option as per given question.

According to the question,

It is a slide reflection.  

In this case, the order of sliding and reflection is not necessary, if the gliding is parallel to the line of reflection.

Hence, the equivalent to translate five units down, and then reflect over the y-axis.

In general,  that rotations will not be equivalent to an odd number of reflections.

Therefore, the correct option is (2), that is, translate 5 units down, and then reflect over the y-axis.

For more details, please refer this link:

https://brainly.com/question/8668014

help asap!! interpret the meaning of the expression

Answers

Answer:

D

Step-by-step explanation:

This is exponential growth, and to my understanding, the format goes:

initial amount (percent growth/ decay)^time

percent growth = (decimal percent + 1)

percent decay = (1 - decimal percent)

Your equation:

1500(1.02)^t

Using the above format, 1500 appears to be the initial amount, which increases by 2% per annum.

i think

Using the figure below, select the two pairs of alternate exterior angles.



1 and 4
2 and 3
6 and 7
5 and 8

Answers

Answer:

1 and 4

5 and 8  are alternate exterior angles

2 and 3

6 and 7 are alternate interior angles

Step-by-step explanation:

The alternate exterior angles are the angles on the outside that are opposite each other

1 and 4 are alternate exterior angles

5 and 8 are alternate exterior angles

The alternate interior angles are the angles on the inside that are opposite each other

2 and 3 are alternate interior angles

6 and 7 are alternate interior angles

Answer:

1 and 4 , 5 and 8

Step-by-step explanation:

Write the standard form of the line that passes through (-1,-3) and (2,1)

Answers

Answer:

4x - 3y = 5

Step-by-step explanation:

The equation of a line in standard form is

Ax + By = C ( A is a positive integer and B, C are integers )

First obtain the equation in point- slope form

y - b = m(x - a)

where m is the slope and (a, b) a point on the line

Calculate m using the slope formula

m = (y₂ - y₁ ) / (x₂ - x₁ )

with (x₁, y₁ ) = (- 1, - 3) and (x₂, y₂ ) = (2, 1)

m = [tex]\frac{1+3}{2+1}[/tex] = [tex]\frac{4}{3}[/tex]

Using (a, b) = (2, 1), then

y - 1 = [tex]\frac{4}{3}[/tex] (x - 2) ← in point- slope form

Multiply both sides by 3

3y - 3 = 4(x - 2) ← distribute and rearrange

3y - 3 = 4x - 8 ( add 8 to both sides )

3y + 5 = 4x ( subtract 3y from both sides )

5 = 4x - 3y, so

4x - 3y = 5 ← in standard form

Sure, let's find the equation of the line that passes through the points (-1, -3) and (2, 1) step-by-step.
1. First, calculate the slope (m) of the line using the formula:
  \[
  m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - (-3)}{2 - (-1)}
  \]
  \[
  m = \frac{1 + 3}{2 + 1} = \frac{4}{3}
  \]
2. The slope-intercept form of a line equation is \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept.
  We already found the slope \( m = \frac{4}{3} \), so we just need to find \( b \).
  Using the first point (-1, -3), plug the values into the slope-intercept form:
  \[
  -3 = \frac{4}{3}(-1) + b
  \]
  Calculate \( b \):
  \[
  -3 = -\frac{4}{3} + b
  \]
  Add \( \frac{4}{3} \) to both sides:
  \[
  b = -3 + \frac{4}{3}
  \]
  \[
  b = -\frac{9}{3} + \frac{4}{3}
  \]
  \[
  b = -\frac{5}{3}
  \]
3. Now we have \( y = \frac{4}{3}x - \frac{5}{3} \) in slope-intercept form.
4. Next, we will convert this to standard form, which is \( Ax + By = C \), where \( A \), \( B \), and \( C \) are integers, and \( A \) is positive.
  Multiply both sides of the slope-intercept equation by 3, the common denominator, to eliminate fractions:
  \[
  3y = 4x - 5
  \]
5. Rewriting in standard form, we move the \( x \)-term to the left side:
  \[
  -4x + 3y = -5
  \]
6. In standard form, \( A \) should be positive. If we multiply the entire equation by -1, we will make \( A \) positive:
  \[
  4x - 3y = 5
  \]
7. This is already simplified since the greatest common divisor (GCD) of 4, -3, and 5 is 1. Thus, the coefficients are already in their simplest integer values.
The final equation for the line in standard form is:
\[ 4x - 3y = 5 \]

The tangent ratio is used for _
triangles.
acute

Obtuse

Right
All

Answers

Your answer is a right triangle, reason is because they usually use it for right triangles, not obtuse nor acute. Tangent ratio is used to find the length for the right triangle sides and it also gives the degree for each right triangle angle (right triangle has three angles, where there are 2 angles and 1 right angle.)

Hope this helped!

Nate

Answer:

The tangent ratio is used for right  triangles.

Step-by-step explanation:

We have been given an incomplete statement. We are supposed to fill in the given blank for statement using correct option.

Statement:

The tangent ratio is used for _  triangles.

We know that tangent is a trigonometric ratio, which represent relation between opposite side of right triangle to its adjacent side.

Therefore, the correct term for our given statement is 'right' and option C is the correct choice.

Name the postulate or theorem you can use to prove AKS E ATL

Answers

Answer:

ASA postulate

Step-by-step explanation:

The sum of the measures of interior angles of triangle is always 180°, so

∠LRT=180°-∠RTL-∠RLT=180°-∠2-∠4;

∠KST=180°-∠STK-∠SKT=180°-∠1-∠3.

Since

∠1≅∠2 and ∠3≅∠4, we have that ∠LRT ≅ ∠KST.

The ASA (Angle-Side-Angle) postulate states that if two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent. (The included side is the side between the vertices of the two angles.)

In your case:

∠1 ≅ ∠2;∠LRT ≅ ∠KST;TS ≅ TR (included sides)

Triangles TKS and TLR are congruent by ASA postulate.

Choose the equation that represents a line that passes through points (−6, 4) and (2, 0). x + 2y = 2 2x − y = −16 x + 2y = −8 2x + y = 4

Answers

Answer:

x + 2y = 2

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

================================================

We have the points (-6, 4) and (2, 0).

Substitute:

[tex]m=\dfrac{0-4}{2-(-6)}=\dfrac{-4}{8}=-\dfrac{1}{2}[/tex]

Put the value of the slope and coordinates of the point (2, 0) to the equation of a line:

[tex]0=-\dfrac{1}{2}(2)+b[/tex]

[tex]0=-1+b[/tex]          add 1 to both sides

[tex]1=b\to b=1[/tex]

The equation of a line in the slope-intercept form:

[tex]y=-\dfrac{1}{2}x+1[/tex]

Convert to the standard form [tex]Ax+By=C[/tex]

[tex]y=-\dfrac{1}{2}x+1[/tex]           multiply both sides by 2

[tex]2y=-x+2[/tex]             add x to both sides

[tex]x+2y=2[/tex]

Answer:

Option 1.

Step-by-step explanation:

It is given that the line passes through the points (-6,4) and (2,0).

If a line passes through two points, then the equation of line is

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

Using the above formula the equation of line is

[tex]y-(4)=\dfrac{0-4}{2-(-6)}(x-(-6))[/tex]

[tex]y-4=\dfrac{-4}{8}(x+6)[/tex]

[tex]y-4=\dfrac{-1}{2}(x+6)[/tex]

Muliply both sides by 2.

[tex]2y-8=-x-6[/tex]

[tex]x+2y=-6+8[/tex]

[tex]x+2y=2[/tex]

Therefore, the correct option is 1.

Find the vertex form of y=(x+2)(x-3)

Answers

Answer:

y = (x - [tex]\frac{1}{2}[/tex] )² - [tex]\frac{25}{4}[/tex]

Step-by-step explanation:

Given

y = (x + 2)(x - 3) ← expand factors

  = x² - x - 6

Use the method of completing the square

add/ subtract ( half the coefficient of the x- term )² to x² - x

y = x² + 2(- [tex]\frac{1}{2}[/tex]) x + [tex]\frac{1}{4}[/tex] - [tex]\frac{1}{4}[/tex] - 6

  = (x - [tex]\frac{1}{2}[/tex] )² - [tex]\frac{25}{4}[/tex]

Help !!!!!!!!!!!!!!!!!!!

Answers

Answer:

Shown below

Step-by-step explanation:

No graph has been plotted, but the question is answerable either way and I'll be happy to help you. In this problem, we have the following inequality:

[tex]x-y-2\geq 0[/tex]

Before we focus on getting the shaded region, let's graph the equation of the line:

[tex]x-y-2=0[/tex]

So let's write this equation in slope intercept form [tex]y=mx+6[/tex]:

STEP 1: Write the original equation.

[tex]x-y-2=0[/tex]

STEP 2: Subtract -x from both sides.

[tex]x-y-2-x=0-x \\ \\ \\ Group \ like \ terms \ on \ the \ left \ side: \\ \\ (x-x) - y-2=-x \\ \\ The \ x's \ cancel \ out \ on \ the \ left: \\ \\ -y-2=-x[/tex]

STEP 3: Add 2 to both sides.

[tex]-y-2+2=-x+2 \\ \\ -y=-x+2[/tex]

STEP 4: Multiply both sides by -1.

[tex](-1)(-y)=(-1)(-x+2) \\ \\ y=x-2[/tex]

So, [tex]m=1[/tex] and [tex]b=-2[/tex]. The graph of this line passes through these points:

[tex]If \ x=0 \ then: \\ \\ y=x-2 \therefore y=(0)-2 \therefore y=-2 \\ \\ Passes \ through \ (0,-2) \\ \\ \\ If \ y=0 \ then: \\ \\ y=x-2 \therefore 0=x-2 \therefore x=2 \\ \\ Passes \ through \ (2,0)[/tex]

By plotting this line, we get the line shown in the first figure below. To know whether the shaded region is either above or below the graph, let's take point (0,0) to test this, so from the inequality:

[tex]x-y-2\geq 0 \\ \\ Let \ x=y=0 \\ \\ 0-0-2\geq 0 \\ \\ -2\geq 0 \ False![/tex]

Since this statement is false, then the conclusion is that the region doesn't include the origin, so the shaded region is below the graph as indicated in the second figure below. The inequality includes the symbol ≥ so this means points on the line are included in the region and the line is continuous.

If a bike tire has 16 spokes spaced evenly apart, name its angles of rotation.

Can you please solve and explain it

Answers

Answer:

22.5°

Step-by-step explanation:

We are given that a bike has 16 spokes which are spaced evenly apart.

We are to find the measure of angles of rotation.

Spoke is basically the rod which comes from the center of the tire, connecting it to the round surface.

Since the total measure of angles for a circle is 360° and 16 spokes are places evenly, so each angle of rotation = [tex]\frac{360}{16}[/tex] = 22.5°

What is the value of x?
х= 32
х= 36
х = 37
x= 40

Answers

The answer is 40 because 5x=200 and so X must equal 40

Answer:

x = 40 deg

Step-by-step explanation:

Given that the line at the base of the triangle is a continuous straight line,

x + (4x-20) = 180 degrees

x + 4x  - 20 = 180

5x = 180 + 20

5x = 200

x = 40 deg

Please help me with this problem. Urgent

Answers

Answer:

[tex]\frac{x-1}{x^{2} +2x-3}[/tex]

[tex]\frac{1}{x+3}[/tex]

Step-by-step explanation:

first, subtract the two fractions

You will have

[tex]\frac{x-1}{x^{2} +2x-3}[/tex] the un-simplified difference of those expressions

Lets try to simplify that

Lets find the roots of the polynomial from the bottom using the formula for quadratic equation, (-b +/- sqrt( b2-4*a*c)) /(2*a)

Which are x=-3, and x=1

Thus, you have (x+3)*(x-1)

So

[tex]\frac{x-1}{x^{2} +2x-3} = \frac{x-1}{(x+3) (x-1)}= \frac{1}{x+3}[/tex]

A child's set of wooden building blocks includes a cone with a diameter of 6 cm and a height of 8 cm. What is the volume of the cone? Use 3.14 for π . Enter your answer in the box as a decimal to the nearest cubic centimeter. cm³ A right circular cone with circular base. The diameter is labeled as 6 centimeters. The height is labeled as 8 centimeters. The angle between the vertical line and diameter is marked perpendicular.

Answers

Answer:

75 cubic centimeters

Step-by-step explanation:

Volume of a cone is the area of the base times a third of the height.

The base is a circle.

The formula for the area of a circle is [tex]\pi \cdot r^2[/tex].

We are given that we want to use [tex]3.14[/tex] for [tex]\pi[/tex] and

r=(diameter)/2=6/2=3 cm.

So the area of the base is [tex]3.14 \cdot 3^2=28.26[/tex].

Now the height of the cone is 8 cm.

A third of the height is 8/3 cm.

So we want to compute area of base times a third of the height.

Let's do that:

[tex]\frac{8}{3} \cdot 28.26[/tex]

75.36 cubic centimeters

To the nearest cubic centimeters this is 75

To calculate the volume of a cone, we use the formula for the volume of a cone, which is:
\[ V = \frac{1}{3} \pi r^2 h \]
Where:
- \( V \) is the volume of the cone
- \( \pi \) is the constant Pi (approximated as 3.14)
- \( r \) is the radius of the cone's base
- \( h \) is the height of the cone
Given that the diameter of the cone is 6 cm, we find the radius by dividing the diameter by 2:
\[ r = \frac{diameter}{2} = \frac{6 cm}{2} = 3 cm \]
Now we have the radius and the height (which is given as 8 cm), we can substitute these values into the formula:
\[ V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \times 3.14 \times (3 cm)^2 \times 8 cm \]
First, square the radius:
\[ (3 cm)^2 = 9 cm^2 \]
Now, perform the multiplication:
\[ V = \frac{1}{3} \times 3.14 \times 9 cm^2 \times 8 cm \]
\[ V = 3.14 \times 3 cm^2 \times 8 cm \]
\[ V = 9.42 cm^2 \times 8 cm \]
\[ V = 75.36 cm^3 \]
Finally, you want to round the volume to the nearest cubic centimeter. Since \( 75.36 \) is already a decimal to the nearest hundredth and has no fractional part in cubic centimeters, we simply round it to the nearest whole number:
\[ V \approx 75 \]
So, the volume of the cone is approximately \( 75 \) cubic centimeters.

Tyrese works each day and earns more money per hour the longer he works. Write a function to represent a starting pay of $20 with an increase each hour by 3%. Determine the range of the amount Tyrese makes each hour if he can only work a total of 8 hours.
A. 20 ≤ x ≤ 22.07
B. 20 ≤ x ≤ 24.60
C. 20 ≤ x ≤ 25.34
D. 20 ≤ x ≤ 26.10

Answers

Answer:

Option B - [tex]20\leq x\leq 24.60[/tex]  

Step-by-step explanation:

Given : Tyrese works each day and earns more money per hour the longer he works. Write a function to represent a starting pay of $20 with an increase each hour by 3%.

To find : Determine the range of the amount Tyrese makes each hour if he can only work a total of 8 hours.

Solution :

A starting pay is $20.

let x be the number of hours.

There is pay of $20 with an increase each hour by 3%.

i.e. Increment is [tex]\frac{3}{100}\times 20\times x=\frac{3}{5}x[/tex]

Total earnings a function can represent is

[tex]y=20+\frac{3}{5}x[/tex]

We have given, he can only work a total of 8 hours.

So, The maximum amount she make in 8 hours is

[tex]y=20+\frac{3}{5}\times 8=20+4.8[/tex]

[tex]y=24.8[/tex]

Initial amount is $20.

Therefore, The range of the amount Tyrese makes each hour if he can only work a total of 8 hours is [tex]20\leq x\leq 24.80[/tex]

So, Approximately the required result is option B.

Find m(arc) IJ of circle H.

If:


m(arc) KJ=110 degrees


a=100,b=150,c=110,d=250

Answers

Answer:

100 degrees (first choice)

Step-by-step explanation:

So we can actually find the degree measure of arc KI because there is a theorem that says this twice the angle IJK.

75(2)=150 is the degree measure of arc KI.

So a full rotation around a circle is 360 degrees.

This means the following equation should hold:

m(arc)KJ+m(arc)IJ+m(arc)IK=360

Inserting the values given for the arc measures we know:

110         +m(arc)IJ+    150    =360

Add 110 and 150:

260     +m(arc)IJ                   =360

Subtract 260 on both sides:

             m(arc)IJ                   =100

So m(arc)IJ is 100 degrees.


[tex]if \: ( \frac{3}{4} )^{6} \times ( \frac{16}{9} )^{5} = ( \frac{4}{3} )^{x + 2} . \: find \: x[/tex]

Answers

Answer:

2

Step-by-step explanation:

[tex](\frac{3}{4})^6 \times (\frac{16}{9})^5=(\frac{4}{3})^{x+2}[/tex]

[tex]\frac{3^6}{4^6} \cdot \frac{16^5}{9^5}=\frac{4^{x+2}}{3^{x+2}}[/tex]

[tex]\frac{3^6}{4^6} \cdot \frac{(4^2)^5}{(3^2)^5}=\frac{4^{x+2}}{3^{x+2}}[/tex]

[tex]\frac{3^6}{4^6} \cdot \frac{4^{10}}{3^{10}}=\frac{4^{x+2}}{3^{x+2}}[/tex]

[tex]\frac{3^6}{3^{10}} \cdot \frac{4^{10}}{4^6}=\frac{4^{x+2}}{3^{x+2}}[/tex]

[tex]3^{-4} \cdot 4^{4}=4^{x+2}3^{-(x+2)}[/tex]

This implies

x+2=4

and

-(x+2)=-4.

x+2=4 implies x=2 since subtract 2 on both sides gives us x=2.

Solving -(x+2)=-4 should give us the same value.

Multiply both sides by -1:

x+2=4

It is the same equation as the other.

You will get x=2 either way.

Let's check:

[tex](\frac{3}{4})^6 \times (\frac{16}{9})^5=(\frac{4}{3})^{2+2}[/tex]

[tex](\frac{3}{4})^6 \times (\frac{16}{9})^5=(\frac{4}{3})^{4}[/tex]

Put both sides into your calculator and see if you get the same thing on both sides:

Left hand side gives 256/81.

Right hand side gives 256/81.

Both side are indeed the same for x=2.

A pyramid whose length= 12 ft,width = 7ft,and height = 10ft.​

Answers

Answer:

if you mean volume its 840

Step-by-step explanation:

i just multiplied the 3 numbers

a line of best fit predicts that when x equals 32
, y will equal 34.215 but y actually equals 30. what is the residual in this case

Answers

Answer:

Residual in this case is -4.215

Step-by-step explanation:

A residual can be defined by

Residual = Actual value - Predicted value

We are given:

Predicted value of y = 34.215

Actual value of y = 30

Putting values in the formula:

Residual = Actual value - Predicted value

Residual = 30 - 34.215

Residual = -4.215

So, residual in this case is -4.215

WILL MARK BRAINLEST PLEASE HELP!!!!!

Answers

Answer:

C

Step-by-step explanation:

hey

your answer will be option number

(3) {(1,1),(2,9),(4,8)}

I hopes its help's u

please follow me..!!

@Abhi.

The diagonal of a square is x units. What is the area of the square in terms of x?

Answers

Answer:

[tex]\frac{1}{2}[/tex] x²

Step-by-step explanation:

let the length of the side be l

Then using Pythagoras' identity on the right triangle formed by the diagonal ( hypotenuse ) and the 2 sides

The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is

l² + l² = x²

2l² = x² ( divide both sides by 2 )

l² = [tex]\frac{1}{2}[/tex] x² ( since A of square = l² )

Use picture attached:
Stardust the unicorn cover a distance of 50 miles on his first trip to the forest. On a later trip he traveled 300 miles while going three times as fast. Is the new time compared with the old time was:?

A. The same time
B. A third as much
C. Three times as much
D. Twice as much

Answers

I think the answer is C.

Answer:

correct answer is option D

Step-by-step explanation:

assume the speed of the unicorn for the first time to cover 50 mile be 'x'

we know,

distance = speed × time

    50  =  x  × time

     t₁ = 50 / x...............................(1)

when unicorn travel 300 mile with speed of '3x'

distance = speed × time

300  = 3 x  × time

    t₂ = 100/ x...............................(2)

dividing equation (2)/(1)

[tex]\dfrac{t_2}{t_1}  =  \dfrac{100/x}{50/x}[/tex]

    t₂ = 2 × t₁

hence, the time will be twice the first one.

correct answer is option D

A miner dug to a point 1680 feet below sea level.
Write a signed number to represent this elevation.

Answers

Answer:

-1680

Step-by-step explanation:

Above would be positive.

Below would be negative.

You have 1680 below, so the answer as a signed number for the elevation would be -1680.

The signed number - 1680 feet addresses the excavator's exhuming point 1680 feet underneath ocean level (negative worth demonstrates beneath ocean level).

How to write a signed number to represent this elevation.

The signed number addressing the height of the point 1680 feet beneath ocean level is - 1680 feet. The negative sign demonstrates that the worth is beneath the reference point, which for this situation is ocean level.

With regard to heights, we utilize positive numbers to address positions over the reference point (ocean level) and negative numbers to address positions beneath it.

The miner dug downward in this scenario, lowering the elevation above sea level. Since it is below the reference point, the elevation is negative.

The greatness of - 1680 feet shows the separation from ocean level to the place of removal, and the negative sign demonstrates the bearing beneath ocean level.

Learn more about elevation here:

https://brainly.com/question/88158

#SPJ2

Other Questions
A spring with a mass of 0.7 kg is hanging on it and has an angular frequency of 2.4 when in oscillation. What is the spring constant? Calculate to one decimal place. What are the differences between a Required RFC and an Elective RFC? What is the product? Sing to me of the man, Muse, the man of twists and turns driven time and again off course, once he had plundered the hallowed heights of Troy. Many cities of men he saw and learned their minds, many pains he suffered, heartsick on the open sea, fighting to save his life and bring his comrades home. But he could not save them from disaster, hard as he strove the recklessness of their own ways destroyed them all, the blind fools, they devoured the cattle of the Sun and the Sun god blotted out the day of their return. Launch out on his story, Muse, daughter of Zeus, start from where you willsing for our time too. (from The Odyssey by Homer)What does the poet tell us about the hero and his situation?A. He was lost and needed his comrades' help to return.B. He tried to save his life and return his comrades home.C. He was roving the seas for places to plunder and destroy.D. He was struggling to fight Troy and the Sun god. Who was the 42nd president of the United States? Boxer Company owned 16,000 shares of King Company that were purchased in 2016 for $440,000. On May 1, 2018, Boxer declared a property dividend of 1 share of King for every 10 shares of Boxer stock. On that date, there were 50,000 shares of Boxer stock outstanding. The market value of the King stock was $22 per share on the date of declaration and $38 per share on the date of distribution. By how much is retained earnings reduced by the property dividend? A solution contains two isomers, n-propyl alcohol and isopropyl alcohol, at 25C. The total vapor pressure is 38.6 torr. What are the mole fractions of each alcohol in the liquid and in the vapor phase? The vapor pressures are 21.0 torr for n-propyl alcohol and 45.2 torr for isopropyl alcohol. A baseball leaves a bat with a horizontal velocity of 20.0 m/s. When it has left the bat for a time of 0.250 s (Assume air resistance is negligible). How far will it have moved horizontally? Questions Modelo You hear: Les vas a servir sopa a los clientes? You read: S, se la voy a servir. No, no se lo voy a servir. You select: S, se la voy a servir. Which of the following is an example of a direct contact transmission? a.An individual contracts rabies after being bitten by a rabid raccoon. b.An individual contracts Human Immunodeficiency Virus after an accidental needlestick with a needle containing contaminated blood. c.An individual contracts bubonic plague after being bitten by a flea carrying Yersinia pestis (the bacterial pathogen). d.An individual contracts Hantavirus by inhaling fresh rodent droppings while cleaning a barn. 3. Which of the following situations is least likely to lead to geographic isolation and allopatric speciation?a. An eight-lane highway divides a population of snails with limited mobility.b. A deep, narrow river divides a population of hummingbirds.c. A deep, narrow river divides a population of white-footed mice (not known for their swimming ability).d. A patch of land bisects a river and divides a population of minnows.e. A mountain range divides a population of moths. 2004 Kumon Institute of EducationSpoken as a first language by about 72 million people in France,Belgium, Switzerland and Canada, French is the official languageof 24 countries. The French-speaking world, including secondlanguage speakers of French, spans the entire planet, and includesregions in Europe, North America, the West Indies, SoutheastAsia and Africa.The French language's prestige extends to the United Nations,where it shares with English the position of the official languageof the International Court of Law. French is also the officiallanguage of the Universal Postal Union.The International Organization of Francophonie, an Organizationthat addresses the political, economic and cultural issues ofFrench-speaking people globally, currently has no less than 55member states.1) What examples of the French language's prestige are given inthe passage? Include two examples in your answer.Examples of the French language's prestige are its[example)and[example) Expand. Your answer should be a polynomial in standard form. (b^2+5)(b^2+7)= Which of the following would best be classified as propaganda?A. A nation's leader rewrites the national anthem, dedicating it tohimselfB. A nation's leader asks his fellow citizens to donate blood after anatural disaster.OC. A nation's leader delivers a speech that draws parallels betweenhis nation and Eden.D. A nation's leader complains that her rival party's leader isdishonest. 2 questions thanks everyone:)) If you deposit $6,100 at the end of each of the next 15 years into an account paying 11.3 percent interest, how much money will you have in the account in 15 years? (Do not round intermediate calculations and round your final answer to 2 decimal places, e.g., 32.16.) Answer the equation below:16-2t=5t+9 What is the square root property of: A.) write an exponential expression: let 10 be the base and an even number between 1 and 10, be the exponent.b.) then write the exponential expression in expanded form and standard form. (note: you may need to copy and paste the expression from a word documentuse the insert equations button, or you may use a "^" to indicate the exponent) Jack is taking a class on Piaget, and as part of an assignment, he is "testing" some youngsters on various tasks. He gives four-year-old Meg a bag of white and striped marbles. They discuss the fact that marbles are made of glass. Meg counts the marbles7 whites and 18 stripes. Jack asks, "Are there more striped marbles or more glass marbles?" Meg answers, "There are more striped marbles." This demonstrates Meg's difficulty with__________.(A) Class inclusion(B) Conservation(C) Identity(D) Transformation