How many colchicine tablets, each containing 600 mcg, may be prepared from 30 g of colchicine?

Answers

Answer 1

Answer:

50,000 tablets may be prepared from 30g of colchicine

Step-by-step explanation:

This problem can be solved as a rule of three problem.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

Unit conversion problems, like this one, is an example of a direct relationship between measures.

First Step:

The first step is knowing how many g are in a tablet.

Each gram has 1,000,000 mcg. So:

1g - 1,000,000 mcg

xg - 600 mcg

1,000,000x = 600

[tex]x = \frac{600}{1,000,000} = 0.0006[/tex]

Each tablet has 0.0006g

Final step:

How many tablets may be prepared from 30g of colchicine?

1 tablet - 0.0006g

x tablets - 30g

0.0006x = 30

[tex]x = \frac{30}{0.0006}[/tex]

x = 50,000

50,000 tablets may be prepared from 30g of colchicine


Related Questions

Why is a graph that’s symmetric with respect of X-axis is not the graph of function.

Answers

Answer:

Because every “x” value has two “y” values.

Step-by-step explanation:

In the graph of a function every value of x has one and only one value of y. So, if we draw a straight line which is parallel to y-axis and it cuts the graph in only one point, this graph will correspond to a function.

A diver's elevation is -5 feet relative to sea level. A
school of fish is swimming at an elevation of -12 feet.
What is the difference in elevation between the diver
and the school of fish?

Answers

Answer:

-7 feet

Step-by-step explanation:

To find the difference in elevation between the diver and the school fish SUBTRACT the elevation of the diver from that of the fish

i.e. difference in elevation = -12 - (-5)

= -12 + 5

= -7 feet

Final answer:

The difference in elevation between the diver at -5 feet and the school of fish at -12 feet is 7 feet, calculated by taking the absolute value of their elevations' difference.

Explanation:

The question asks for the difference in elevation between a diver and a school of fish, with the diver at -5 feet and the fish at -12 feet relative to sea level. To find the difference in elevation, you subtract the diver's elevation from the fish's elevation.

Here is the calculation:

School of fish elevation: -12 feetDiver's elevation: -5 feetDifference in elevation: |-12 - (-5)| = |-12 + 5| = |-7| = 7 feet

The absolute value is used because we are interested in the positive difference in elevation, which is the distance between the two elevations regardless of direction.

Therefore, the difference in elevation between the diver and the school of fish is 7 feet.

Find the error with this proof and explain how it mat be corrected in order to clearly prove the equation.

Prove that if m is an odd integer, then m2 is odd.

Proposed proof: Assume m is an odd integer. By definition of odd integer, m=2k+1, for some integer k.
This means that (2k + 1)^2 = 4k^2 + 1, so m is odd.

Answers

Answer:

Step-by-step explanation:

It is true that for any given odd integer, square of that integer will also be odd.

i.e if [tex]m[/tex] is and odd integer then [tex]m^{2}[/tex] is also odd.

In the given proof the expansion for [tex](2k + 1)^{2}[/tex] is incorrect.

By definition we know,

[tex](a+b)^{2} = a^{2} + b^{2} + 2ab[/tex]

∴ [tex](2k + 1)^{2} = (2k)^{2} + 1^{2} + 2(2k)(1)\\(2k + 1)^{2} = 4k^{2} + 1 + 4k[/tex]

Now, we know [tex]4k^{2}[/tex] and [tex]4k[/tex] will be even values

∴[tex]4k^{2} + 1 + 4k[/tex] will be odd

hence [tex](2k + 1)^{2}[/tex] will be odd, which means [tex]m^{2}[/tex] will be odd.

The error in the proof is in the expansion of the square of an odd integer. The correct expansion is 4k² + 4k + 1, and adding 1 to an even number 4k² + 4k results in an odd number, proving that m² is odd when m is an odd integer.

The proposed proof has a mistake in expanding the square of an odd integer. The correct expansion of (2k + 1)² is 4k² + 4k + 1, not 4k² + 1 as stated in the proof. To correct the proof:

Assume that m is an odd integer.By definition, m can be written as 2k + 1, where k is an integer.Squaring m yields (2k + 1)² = 4k² + 4k + 1.The expression 4k² + 4k is clearly even since it's divisible by 2.Adding 1 to an even number results in an odd number. Hence, m² is odd.

Use a truth table to verify the first De Morgan law (p ∧ q)’ ≡ p’ ∨ q’.

Answers

Answer:

(p ∧ q)’ ≡ p’ ∨ q’

Step-by-step explanation:

First, p and q have just four (4) possibilities, p∧q is true (t) when p and q are both t.

p ∧    q

t t t

t f f

f f t

f f f

next step is getting the opposite

(p∧q)'

    f

    t

    t

    t

Then we get p' V q', V is true (t) when the first or the second is true.

p' V  q'

f  f  f

f  t  t

t  t  f

t  t  t

Let's compare them, is true if the first is equal to the second one.

(p∧q)'       (p' V q')

    f              f

    t              t

    t              t

    t              t

Both are true, so

(p ∧ q)’ ≡ p’ ∨ q’

Twenty girls​ (ages 9-10) competed in the​ 50-meter freestyle event at a local swim meet. The mean time was 43.70 seconds with a standard deviation of 8.07 seconds. The median time was 40.15 with an IQR of 4.98 seconds. Without looking at a graphical​ display, what shape would you expect the distribution of swim times to​ have?

Answers

Final answer:

The distribution of swim times from the data given would most likely be right-skewed, as the mean is larger than the median and the Interquartile Range (IQR) suggests the data is concentrated towards the middle.

Explanation:

From the given data about the 50-meter freestyle event, one can deduce probable distribution shape of the swim times. Notably, the mean of 43.70 seconds significantly exceeds the median of 40.15 seconds. This fact suggests a possible right skewed distribution, with longer swim times occurring less frequently but affecting the mean more strongly due to their higher values. It's called right-skewed because the 'tail' of the distribution curve extends more towards the right.

We can also examine the Interquartile Range (IQR), which measures spread in the middle 50% of the data. This is found by subtracting the lower quartile (first 25% of data) from the upper quartile (last 25% of data). An IQR of 4.98 seconds signifies much of the data is bunched in the middle of the distribution rather than at the ends, reinforcing the notion of a skewed distribution.

Thus, without a graphical representation, the swim times would be expected to exhibit a right-skewed distribution, presenting a positive skewness in the data.

Learn more about Data Distribution here:

https://brainly.com/question/18150185

#SPJ12

The expected shape of the distribution of swim times would be right-skewed.

To determine the expected shape of the distribution, we compare the mean and median of the swim times:

 - The mean time is 43.70 seconds, which is greater than the median time of 40.15 seconds.

- The standard deviation is 8.07 seconds, which is relatively large compared to the mean, indicating a wide spread of times.

- The interquartile range (IQR) is 4.98 seconds, which is relatively small compared to the standard deviation, suggesting that the middle 50% of the data is more tightly clustered.

In a perfectly symmetric distribution, the mean and median would be equal. However, when the mean is greater than the median, it suggests that there are some outliers or a longer tail on the right side of the distribution, pulling the mean up. The relatively large standard deviation in comparison to the IQR reinforces this idea, as it indicates there are some times that are significantly higher than the majority of the times, which are more closely packed around the median.

prove that |a| < b if and only if -b < a < b

Answers

Answer:

Since,

[tex]|x|=\left\{\begin{matrix}x &\text{ if } x \geq 0 \\ -x &\text{ if } x < 0\end{matrix}\right.[/tex]

Here, the given equation is,

|a| < b

Case 1 : if a ≥ 0,

|a| < b ⇒ a < b

Case 2 : If a < 0,

|a| < b ⇒ -a < b ⇒ a > - b

( Since, when we multiply both sides of inequality by negative number then the sign of inequality is reversed. )

|a| < b ⇒ a < b or a > - b ⇒ -b < a < b

Conversely,

If -b < a < b

a < b or a > - b

⇒ a < b or -a <  b

⇒ |a| < b

Hence, proved..

Let a,b,,c and x elements in the group G. In each of the following solve for x in terms of a,b,c, and c.

Solve simultaneously x^2 a=bxc^-1 and acx=xac.

Answers

Answer with Step-by-step explanation:

We are  given that  a, b, c and x are elements in the group G.

We have to find the value of x in terms of a, b and c.

a.[tex]x^2a=bxc^{-1}[/tex]

[tex]x^2ac=bxc^{-1}c=bx[/tex]

[tex]x^{-1}x^2ac=x^{-1}bx=b[/tex] ([tex]x^{-1}bx=b[/tex])

[tex]xac=b[/tex]

[tex]xacc^{-1}=bc^{-1}[/tex]

[tex]xa=bc^{-1}[/tex]    ([tex]cc^{-1}=[/tex])

[tex]xaa^{-1}=bc^{-1}a^{-1}[/tex]

[tex]x=bc^{-1}a^{-1}[/tex]

b.[tex]acx=xac[/tex]

[tex]acxc^{-1}=xacc^{-1}=xa[/tex]  ([tex]cc^{-1}=1,cxc^{-1}=x[/tex])

[tex]axa^{-1}=xaa^{-1}[/tex]  ([tex]aa^{-1}=1,axa^{-1}=x[/tex])

[tex]x=x[/tex]

Identity equation

Hence, given equation has infinite solution and satisfied for all values of a and c.

An amount of $15,000 is invested in a fund that has a return of
6%. How much money is invested in a fund with a 4% return if the
total return on both investments is $1380?

Answers

Answer:

$12000 should be invested in a fund with a 4% return.

Step-by-step explanation:

Consider the provided information.

An amount of $15,000 is invested in a fund that has a return of  6%.

We need to calculate how much money is invested in a fund with a 4% return if the  total return on both investments is $1380.

Let $x should be invested in a fund with a 4% return.

The above information can be written as:

[tex]1380=15000\times 6\%+x\times 4\%[/tex]

[tex]1380=15000\times \frac{6}{100}+x\times \frac{4}{100}[/tex]

[tex]1380=150\times6+x\times 0.04[/tex]

[tex]1380-900=0.04x\\480=0.04x\\x=12000[/tex]

Hence, $12000 should be invested in a fund with a 4% return.

How many rows of 10 make 50

Answers

Answer:

5 rows.

Step-by-step explanation:

Imagine having 10 in each row. If you had 5 rows that means you have 5 groups of 10.

Answer:

Step-by-step explanation:

10 goes into 50, 5 times. I know this because if you multiply 10x5 it gives you 50!

List all element of the following sets

a. { 1/n ∣ n ∈ { 3 , 4 , 5 , 6 } }

b. {x∈Z ∣ x=x+1}

c. {n∈P ∣ n is a factor of 24 }

Answers

Answer:

a) The elements are [tex]\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6}[/tex]

b) The elements are (-∞ ...-1,0,1,2,..∞).

c) The elements are 2 and 3.

Step-by-step explanation:

To find : List all element of the following sets ?

Solution :

a) [tex]\{\frac{1}{n}| n\in \{ 3 , 4 , 5 , 6 \} \}[/tex]

Here, The function is [tex]f(n)=\frac{1}{n}[/tex]

Where, [tex]n\in \{ 3 , 4 , 5 , 6 \}[/tex]

Substituting the values to get elements,

[tex]f(3)=\frac{1}{3}[/tex]

[tex]f(4)=\frac{1}{4}[/tex]

[tex]f(5)=\frac{1}{5}[/tex]

[tex]f(6)=\frac{1}{6}[/tex]

The elements are [tex]\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6}[/tex]

b) [tex]\{x\in \mathbb{Z} | x=x+1\}[/tex]

Here, The function is [tex]f(x)=x+1[/tex]

Where, [tex]x\in \mathbb{Z}[/tex] i.e. integers (..,-2,-1,0,1,2,..)

For x=-2

[tex]f(-2)=-2+1=-1[/tex]

For x=-1

[tex]f(-1)=-1+1=0[/tex]

For x=0

[tex]f(0)=0+1=1[/tex]

For x=1

[tex]f(1)=1+1=2[/tex]

For x=2

[tex]f(2)=2+1=3[/tex]

The elements are (-∞ ...-1,0,1,2,..∞).

c) [tex]\{n\in \mathbb{P}| \text{n is a factor of 24}\}[/tex]

Here, The function is n is a factor of 24.

Where, n is a prime number

Factors of 24 are 1,2,3,4,6,8,12,24.

The prime factor are 2,3.

The elements are 2 and 3.

Find a compact form for generating functions of the sequence 1, 8,27,... , k^3

Answers

This sequence has generating function

[tex]F(x)=\displaystyle\sum_{k\ge0}k^3x^k[/tex]

(if we include [tex]k=0[/tex] for a moment)

Recall that for [tex]|x|<1[/tex], we have

[tex]\displaystyle\frac1{1-x}=\sum_{k\ge0}x^k[/tex]

Take the derivative to get

[tex]\displaystyle\frac1{(1-x)^2}=\sum_{k\ge0}kx^{k-1}=\frac1x\sum_{k\ge0}kx^k[/tex]

[tex]\implies\dfrac x{(1-x)^2}=\displaystyle\sum_{k\ge0}kx^k[/tex]

Take the derivative again:

[tex]\displaystyle\frac{(1-x)^2+2x(1-x)}{(1-x)^4}=\sum_{k\ge0}k^2x^{k-1}=\frac1x\sum_{k\ge0}k^2x^k[/tex]

[tex]\implies\displaystyle\frac{x+x^2}{(1-x)^3}=\sum_{k\ge0}k^2x^k[/tex]

Take the derivative one more time:

[tex]\displaystyle\frac{(1+2x)(1-x)^3+3(x+x^2)(1-x)^2}{(1-x)^6}=\sum_{k\ge0}k^3x^{k-1}=\frac1x\sum_{k\ge0}k^3x^k[/tex]

[tex]\implies\displaystyle\frac{x+4x^3+x^3}{(1-x)^4}=\sum_{k\ge0}k^3x^k[/tex]

so we have

[tex]\boxed{F(x)=\dfrac{x+4x^3+x^3}{(1-x)^4}}[/tex]

Mr Barkley has a box of books. He says the number of books in the box is divisible by 2,3,4,5 and 6. How many books could be in the box? Add another factor so there is only one possible solution.

Answers

Answer:

The number of books in the box is 60.

Step-by-step explanation:

Since it is given that the number of books in the box is divisible by 2,3,4,5 and 6.

So, the number of books in the box is multiple of these numbers.

Thus we have to find Least Common Multiple (L.C.M.) of these number

L.C.M. of (2,3,4,5,6) = 60

Thus the number of books in the box is multiples of 60 i.e. 60, 120, 180, 240,... etc.

The other factor that can we add in statement so there is only one possible solution is: "The number of books in the box is smallest number divisible by 2,3,4,5 and 6".

Answer:

The number is 60

Step-by-step explanation:

So the first way to solve this would be to multiply the greatest numbers in the sequence, you have 5 and 6, the result is 30, since 30 is not divisible by 4 you need to find the next number that is divisible by 5 and 6, that would be 60, since 60 is divisible by 4, then that is the answer, 60 is the first number that is divisible by 2, 3, 4, 5, and 6.

A lawyer researched the average number of years served by 45 different justices on the Supreme Court. The average number of years served was 13.8 years with a standard deviation of 7.3 years. What is the 95% confidence interval estimate for the average number of years served by all Supreme Court justices? Place your limits, rounded to 1 decimal place, in the blanks. Place you lower limit in the first blank.

Answers

Answer:  [tex]11.7<\mu<15.9[/tex]

Step-by-step explanation:

Given : Significance level : [tex]\alpha:1-0.95=0.05[/tex]

Sample size : n=45

Critical value : [tex]z_{\alpha/2}=1.96[/tex]

Sample mean : [tex]\overline{x}=13.8\text{ years}[/tex]

Standard deviation : [tex]\sigma=7.3\text{ years}[/tex]

The confidence interval for population mean is given by :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}\\\\=13.8\pm(1.96)\dfrac{7.3}{\sqrt{45}}\\\\\approx13.8\pm2.1\\\\=(13.8-2.1,\ 13.8-2.1)=(11.7,\ 15.9)[/tex]

Hence, the 95% confidence interval estimate for the average number of years served by all Supreme Court justices is [tex]11.7<\mu<15.9[/tex]

A = ( −2 −1 2 −2 2 3 −4 1 3 ) b = ( −1 −1 4 ) x = ( x1 x2 x3 ) (a) (2 pts) Write down the augmented matrix (A|b). (b) (4 pts) Use Gauss-Jordan elimination to find the Reduced Row Echelon Form (RREF) of the augmented matrix. (c) (2 pts) What is the rank of A? What is the rank of (A|b) (d) (2 pts) State whether the system is consistent or inconsistent. State how many solutions the system has; if there is/are a solution/s, write it/them down.

Answers

Answer:

The augmented matrix is [tex]\left[\begin{array}{ccc|c}-2&-1&2&-1\\-2&2&3&-1\\-4&1&3&4\end{array}\right][/tex]

The Reduced Row Echelon Form of the augmented matrix is [tex]\left[\begin{array}{cccc}1&0&0&-3\\0&1&0&1\\0&0&1&-3\end{array}\right][/tex]

The rank of matrix (A|B) is 3

The system is consistent and the solutions are [tex]x_{1}= -3, x_{2} = 1, x_{3}= -3[/tex]

Step-by-step explanation:

We have the following information:

[tex]A=\left[\begin{array}{ccc}-2&-1&2\\-2&2&3\\-4&1&3\end{array}\right], X=\left[\begin{array}{c}x_{1}&x_{2}&x_{3}\end{array}\right] and \:B=\left[\begin{array}{c}-1&-1&4\end{array}\right][/tex]

    1. The augmented matrix is

We take the matrix A and we add the matrix B we use a vertical line to separate the coefficient entries from the constants.

[tex]\left[\begin{array}{ccc|c}-2&-1&2&-1\\-2&2&3&-1\\-4&1&3&4\end{array}\right][/tex]

    2. To transform the augmented matrix to the Reduced Row Echelon Form (RREF) you need to follow these steps:

Row operation 1: multiply the 1st row by -1/2

[tex]\left[\begin{array}{cccc}1&1/2&-1&1/2\\-2&2&3&-1\\-4&1&3&4\end{array}\right][/tex]

Row Operation 2: add 2 times the 1st row to the 2nd row

[tex]\left[\begin{array}{cccc}1&1/2&-1&1/2\\0&3&1&0\\-4&1&3&4\end{array}\right][/tex]

Row Operation 3: add 4 times the 1st row to the 3rd row

[tex]\left[\begin{array}{cccc}1&1/2&-1&1/2\\0&3&1&0\\0&3&-1&6\end{array}\right][/tex]

Row Operation 4: multiply the 2nd row by 1/3

[tex]\left[\begin{array}{cccc}1&1/2&-1&1/2\\0&1&1/3&0\\0&3&-1&6\end{array}\right][/tex]

Row Operation 5: add -3 times the 2nd row to the 3rd row

[tex]\left[\begin{array}{cccc}1&1/2&-1&1/2\\0&1&1/3&0\\0&0&-2&6\end{array}\right][/tex]

Row Operation 6: multiply the 3rd row by -1/2

[tex]\left[\begin{array}{cccc}1&1/2&-1&1/2\\0&1&1/3&0\\0&0&1&-3\end{array}\right][/tex]

Row Operation 7: add -1/3 times the 3rd row to the 2nd row

[tex]\left[\begin{array}{cccc}1&1/2&-1&1/2\\0&1&0&1\\0&0&1&-3\end{array}\right][/tex]

Row Operation 8: add 1 times the 3rd row to the 1st row

[tex]\left[\begin{array}{cccc}1&1/2&0&-5/2\\0&1&0&1\\0&0&1&-3\end{array}\right][/tex]

Row Operation 9: add -1/2 times the 2nd row to the 1st row

[tex]\left[\begin{array}{cccc}1&0&0&-3\\0&1&0&1\\0&0&1&-3\end{array}\right][/tex]

    3. What is the rank of (A|B)

To find the rank of a matrix, we simply transform the matrix to its row echelon form and count the number of non-zero rows.

Because the row echelon form of the augmented matrix has three non-zero rows the rank of matrix (A|B) is 3

   4. Solutions of the system

This definition is very important: "A system of linear equations is called inconsistent if it has no solutions. A system which has a solution is called consistent"

This system is consistent because from the row echelon form of the augmented matrix we find that the solutions are (the last column of a row echelon form matrix always give you the solution of the system)

[tex]x_{1}= -3, x_{2} = 1, x_{3}= -3[/tex]

Describe the differences between a histogram and a stem-and-leaf display. Check All That Apply A stem-and-leaf display describes the individual observations. A stem-and-leaf display describes the individual observations. A histogram describes the individual observations. A histogram describes the individual observations. A histogram has slightly more information than a stem-and-leaf. A histogram has slightly more information than a stem-and-leaf. A stem-and-leaf display has slightly more information than a histogram.

Answers

Answer:

Step-by-step explanation:

A steam and leaf plot is the arrangement of numerical data into different groups with place value.  For eg, 17,20,21 is shown as

stem  leaf

1         7

2       0,1

A histogram is a bar chart that described frequency distribution.

A stem and leaf plot displays more information than a histogram.

Hence we have the correct answers are:

A stem-and-leaf display describes the individual observations.

A stem-and-leaf display has slightly more information than a histogram.

A stem-and-leaf display provides detailed individual data points and their distribution, while a histogram offers aggregated data into bins, showing the overall data distribution without individual details.

The differences between a histogram and a stem-and-leaf display are significant in how they present data. A stem-and-leaf display retains the individual data values and is beneficial for small datasets, showing the exact values and the frequency of data for each "stem" which provides a clear view of the distribution shape. On the contrary, a histogram groups data into contiguous bins, providing a visual representation of data distribution, showing the spread and most frequent values but without detailing individual data points. Therefore, a stem-and-leaf display has slightly more information than a histogram because it describes individual observations, unlike a histogram that aggregates data into bins.

Show that if a, b e Z, then a^2 - 4b =/ 2

Answers

Step-by-step explanation:

Proposition If a, b [tex]\in[/tex] [tex]\mathbb{Z}[/tex], then [tex]a^{2}-4b \neq2[/tex]

You can prove this proposition by contradiction, you assume that the statement is not true, and then show that the consequences of this are not possible.

Suppose the proposition If a, b [tex]\in[/tex] [tex]\mathbb{Z}[/tex], then [tex]a^{2}-4b \neq2[/tex] is false. Thus there exist integers If a, b [tex]\in[/tex] [tex]\mathbb{Z}[/tex] for which [tex]a^{2}-4b=2[/tex]

From this equation you get [tex]a^{2}=4b+2=2(2b+1)[/tex] so [tex]a^{2}[/tex] is even. Since [tex]a^{2}[/tex] is even, a is even, this means [tex]a=2d[/tex] for some integer d. Next put [tex]a=2d[/tex] into [tex]a^{2}-4b=2[/tex]. You get [tex] (2d)^{2}-4b=2[/tex] so [tex]4(d)^{2}-4b=2[/tex]. Dividing by 2, you get [tex]2(d)^{2}-2b=1[/tex]. Therefore [tex]2((d)^{2}-b)=1 [/tex], and since [tex](d)^{2}-b[/tex] [tex]\in[/tex] [tex]\mathbb{Z}[/tex], it follows that 1 is even.

And that is the contradiction because 1 is not even.  In other words, we were wrong to assume the proposition was false. Thus the proposition is true.

Purchase likelihood 18 dash 34 35 dash 44 45 dash 54 55 plus Total More likely 223 373 384 404 1384 Less likely 26 7 26 13 72 Neither more nor less likely 285 210 169 113 777 Total 534 590 579 530 2233 ​(a) What is the probability that a randomly selected individual is 35 to 44 years of​ age, given the individual is neither more nor less likely to buy a product emphasized as​ "Made in our​ country"? The probability is approximately 0.270 0.270. ​(Round to three decimal places as​ needed.) ​(b) What is the probability that a randomly selected individual is neither more nor less likely to buy a product emphasized as​ "Made in our​ country," given the individual is 35 to 44 years of​ age? The probability is approximately nothing. ​(Round to three decimal places as​ needed.)

Answers

Answer:

  (a)  0.270 . . . . as you know

  (b)  0.356

Step-by-step explanation:

(a) p(35-44 | neither) = (35-44 & neither)/(neither total) = 210/777 ≈ 0.270

__

(b) p(neither | 35-44) = (neither & 35-44)/(35-44 total) = 210/590 ≈ 0.356

After calculating the sample size needed to estimate a population proportion to within 0.05, you have been told that the maximum allowable error (E) must be reduced to just 0.025. If the original calculation led to a sample size of 1000, the sample size will now have to be

Answers

Answer:  40000

Step-by-step explanation:

The formula to find the sample size is given by :-

[tex]n=p(1-p)(\dfrac{z_{\alpha/2}}{E})^2[/tex], where p is the prior estimate of the population proportion.

Here we can see that the sample size is inversely proportion withe square of margin of error.

i.e. [tex]n\ \alpha\ \dfrac{1}{E^2}[/tex]

By the equation inverse variation, we have

[tex]n_1E_1^2=n_2E_2^2[/tex]

Given : [tex]E_1=0.05[/tex]   [tex]n_1=1000[/tex]

[tex]E_2=0.025[/tex]

Then, we have

[tex](1000)(0.05)^2=n_2(0.025)^2\\\\\Rightarrow\ 2.5=0.000625n_2\\\\\Rightarrow\ n_2=\dfrac{2.5}{0.000625}=4000[/tex]

Hence, the sample size will now have to be 4000.

The new sample size will have to be approximately 4000.

The formula to calculate the sample size (n) needed to estimate a population proportion with a given maximum allowable error (E) and confidence level (usually 95% or 1.96 standard deviations for a two-tailed test) is given by:

[tex]\[ n = \left(\frac{z \times \sigma}{E}\right)^2 \][/tex]

Given that the original maximum allowable error was 0.05 and the sample size calculated was 1000, we can set up the equation:

[tex]\[ 1000 = \left(\frac{1.96 \times 0.5}{0.05}\right)^2 \][/tex]

Now, we want to find the new sample size when the maximum allowable error is reduced to 0.025. The new sample size can be calculated by:

[tex]\[ n_{new} = \left(\frac{z \times \sigma}{E_{new}}\right)^2 \][/tex]

Since \( z \) and[tex]\( \sigma \)[/tex] remain constant, and only \( E \) changes, the relationship between the original sample size and the new sample size is inversely proportional to the square of the ratio of the original error to the new error:

[tex]\[ n_{new} = n_{old} \times \left(\frac{E_{old}}{E_{new}}\right)^2 \] \[ n_{new} = 1000 \times \left(\frac{0.05}{0.025}\right)^2 \] \[ n_{new} = 1000 \times \left(\frac{0.05}{0.025}\right)^2 \] \[ n_{new} = 1000 \times \left(2\right)^2 \] \[ n_{new} = 1000 \times 4 \] \[ n_{new} = 4000 \][/tex]

Therefore, the new sample size will have to be approximately 4000 to reduce the maximum allowable error to 0.025."

least to greatest

-4/5, -5/4, -4.5, -0.54, -5, -0.4

Answers

Answer:

[tex]-5[/tex], [tex]-4.5[/tex], [tex]-\frac{5}{4}[/tex], [tex]-\frac{4}{5}[/tex], [tex]-0.54[/tex] and [tex]-0.4[/tex].

Step-by-step explanation:

We are asked to write the given numbers from least to greatest.

-4/5, -5/4, -4.5, -0.54, -5, -0.4

We know that the more negative number has least value.

Let us convert each number into decimal.

[tex]-\frac{4}{5}=-0.8[/tex]

[tex]-\frac{5}{4}=-1.25[/tex]

We can see that -5 is most negative, so it will be least.

Order from more negative to less negative:

[tex]-5[/tex], [tex]-4.5[/tex], [tex]-1.25[/tex], [tex]-0.8[/tex], [tex]-0.54[/tex] and [tex]-0.4[/tex].

Therefore, the least to greatest numbers would be [tex]-5[/tex], [tex]-4.5[/tex], [tex]-\frac{5}{4}[/tex], [tex]-\frac{4}{5}[/tex], [tex]-0.54[/tex] and [tex]-0.4[/tex].

Proof by Contradiction : Show that √ 2 is irrational.

Answers

Answer:

[tex]\sqrt2[/tex] is irrational

Step-by-step explanation:

Let us assume that [tex]\sqrt2[/tex] is rational. Thus, it can be expressed in the form of fraction [tex]\frac{x}{y}[/tex], where x and y are co-prime to each other.

[tex]\sqrt2[/tex] = [tex]\frac{x}{y}[/tex]

Squaring both sides,

[tex]2 = \frac{x^2}{y^2}[/tex]

Now, it is clear that x is an even number. So, let us substitute x = 2u

Thus,

[tex]2 = \frac{(2u)^2}{y^2}\\y^2 = 2u^2[/tex]

Thus, [tex]y^2[/tex]is even, which follows the fact that y is also an even number. But this is a contradiction as x and y have a common factor that is 2 but we assumed that the fraction [tex]\frac{x}{y}[/tex]  was in lowest form.

Hence, [tex]\sqrt2[/tex] is not a rational number. But [tex]\sqrt2[/tex] is a an irrational number.

Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no solution, enter NO SOLUTION. If there are an infinite number of solutions, set x3 and solve for x1 and x2. x1-3x3 =-5 3x1 X2 2x34 2x1 + 2x2 + x3 = 7 Need Help? Read It Talk to a Tutor Submit Answer Save Progress Practice Another Version 1 points LarLinAlg8 1.2.033 Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no solution, enter NO SOLUTION. If the system has an infinite number of solutions, express x, x2, and x3 in terms of the parameter t.) My Notes Ask Your Teach 2x1+ 4x1-3x2 + 7x3 = 2 8x1 - 9x2 15x3 12 3x33 (x1, x2, x3) -

Answers

Therefore, the solution to the system of equations is:

x=0

y=-3t+4

z=t

We can solve the system of equations using Gaussian elimination with back-substitution. Here's how:

Steps to solve:

1. Eliminate x from the second and fourth equations:

x+y+3z=4

0=0 (2x+5y+15z=20)-(x+2y+6z=8)

3y+9z=12

-x+2y+6z=8

2. Eliminate y from the fourth equation:

x+y+3z=4

0=0

3y+9z=12

3y+9z=12 (3y+9z=12)-(3y+9z=12)

0=0

3. Since the last equation is always true, we can ignore it.

4. Solve the remaining equations:

x+y+3z=4

0=0

3y+9z=12

From the second equation, we know that y=-3z+4. Substituting this into the first equation, we get:

x+(-3z+4)+3z=4

x+4=4

x=0

Now that we know x=0, we can substitute it back into the third equation to solve for z:

3(-3z+4)+9z=12

-9z+12+9z=12

12=12

This equation is always true, so there are infinitely many solutions. We can express x, y, and z in terms of the parameter t as follows:

x=0

y=-3z+4

z=t

Complete Question:

Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no solution, enter NO SOLUTION. If the system has an infinite number of solutions, express x, y, and z in terms of the parameter t.)

3x + 3y + 9z = 12

x + y + 3z = 4

2x + 5y + 15z = 20

-x + 2y + 6z = 8

(x, y, z) =

What is the probability of selecting an ace of diamonds from a deck of cards?

5/52

1/52

4/52

1/13

Answers

4/52 i think if it is well your welcome if it’s not i’m sorry

a cell phone tower that is 150 ft tall sits on a mountain that
is 1200 ft above sea level. what is the angle of depression from
the top of the tower to a cell user 5 miles away and 400 ft above
sea level?

Answers

Answer:

angle of elevation will be [tex]2.14^o.[/tex]

Step-by-step explanation:

Given,

height of tower = 150 ft

height of tower = 1200 ft

So, total height of peak of tower = 1200 + 150

                                                       = 1350 ft

distance of user from cell tower = 5 miles

                                                     = 5 x 5280 feet

                                                     = 26,400 feet

Since the height of user from sea level = 400 ft

so, height of peak of tower with respect to user = 1350 - 400 ft

                                                                                = 950 ft

If the angle of depression is assumed as [tex]\theta[/tex], then we can write

[tex]tan\theta\ =\ \dfrac{\textrm{height of peak of tower w.r.t user}}{\textrm{distance of user from tower}}[/tex]

[tex]=>\ tan\theta\ =\ \dfrac{950}{26400}[/tex]

[tex]=>\ tan\theta\ =\ 0.374[/tex]

 [tex]=>\ \theta\ =\ 2.14^o[/tex]

So, the angle of elevation will be [tex]2.14^o.[/tex]


Using a formula estimate the body surface area of a person whose height is 5 feet and who weighs 120 pounds.

A.

1.52 m2

B.

0.32 m2

C.

1.13 m2

D.

55.9 m2

Answers

Answer:

(A)  1.52 m²

Step-by-step explanation:

As per the given data of the question,

Height of a person = 5 feet

As we know that 1 feet = 30.48 cm

∴ Height = 152.4 cm

Weight of a person = 120 pounds

And we know that 1 pound = 0.453592 kg

∴ Weight = 54.4311 kg

The Mosteller formula to calculate body surface area (BSA):

[tex]BSA(m^{2})=\sqrt{\frac{Height (cm)\times Weight(kg)}{3600}}[/tex]

Therefore,

[tex]BSA=\sqrt{\frac{Height (cm)\times Weight(kg)}{3600}}[/tex]

[tex]BSA=\sqrt{\frac{152.4\times  54.4311}{3600}}[/tex]

[tex]BSA= 1.517 m^{2} = 1.52 m^{2}[/tex]

Hence, the body surface area of a person =  1.52 m²

Therefore, option (A) is the correct option.

Find the period and amplitude of the function. y-2sin 6x Give the exact values, not decimal approximations. Period: 2 Amplitude:

Answers

Answer:

Amplitude=2

Period=[tex]\frac{\pi}{3}[/tex]

Step-by-step explanation:

We are given that [tex]y=2sin6x[/tex]

We have to find the value of period and amplitude of the given function

We know that [tex]y=a sin(bx+c)+d [/tex]

Where a= Amplitude of  function

Period of sin function  =[tex]\frac{2\pi}{\mid b \mid}[/tex]

Comparing with the given function

Amplitude=2

Period=[tex]\frac{2\pi}{6}=\frac{\pi}{3}[/tex]

Hence, period of given  function=[tex]\frac{\pi}{3}[/tex]

Amplitude=2


Which of the following is equivalent to the set {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}?

(you may select more than one)

Question 4 options:

{x | x is one of the seven wonders of the ancient world}

{x | x is one of the six nobel prize categories}

{x | x is the number of humans who can breathe unassisted underwater}

{x | x is a letter of the alphabet

{x | x is one of the two lead singers of Van Halen}

{x | x is a day of the week}

Answers

Answer:

The answer is:  {x | x is a day of the week}

Step-by-step explanation:

The mathematical expression {x | x is a day of the week}, uses set theory notation and can be translated as: The set of all x such that x is a day of the week. Since the original set contains all days of the week, therefore it is equivalent to the expression  {x | x is a day of the week}.

Final answer:

The correct equivalent set to { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday} is {x | x is a day of the week}, as both sets contain the days of the week.

Explanation:

The student has asked which option is equivalent to the set {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}. This set represents the seven days of the week. Therefore, the correct option that is equivalent to this set is {x | x is a day of the week}. All other options listed represent different sets with no connection to the days of the week. When comparing sets for equivalence, we look for a one-to-one correspondence between the members of each set, which is only present in the option directly referring to days of the week.

Two fair dice are tossed, and the up face on each die is recorded. Find the probability of observing each of the following events. Answer in fraction form or decimal approximation with 4 decimal places: A:{A:{ A 5 does not appear on either die }} B:{B:{ The difference of the numbers is 2 }} C:{C:{ The sum of the numbers is 10 or more }

Answers

Answer:Probability of getting a die which 5 does not appear on each side is 5/6probability of getting numbers of which the difference is 2 is 1/9Probability of obtaining numbers that the sum is equal to or greater than 10 is 1/12

Step-by-step explanation:

When two dies are tossed, possible outcomes are (1,1) (1,2) ,(1,3) (1,4), (1,5) (1,6),(2,1) (2,2) (2,3) (2,4) (2,5) (2,6), (3,1)(3,2)(3,3)(3,4),(3,5)(3,6)(4,1) (4,2),(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)

so the total sample space =36

From de possible outcome, probability of getting a die that five does not appear on either side is given by total outcome of not getting five from either side/sample space

=30/36 = 5/6

And also probability of getting the difference of numbers to be 2 are (3,1)(4,2) (5,3) (6,4) =4outcomes

the probability of getting a difference of 2 is given by outcome/sample space 4/36 = 1/9

probability of getting the summation of two numbers to be equal to or greater than ten are; Outcome/sample space.

the outcome are (4,6) (5,5) (5,6)(6,4)(6,5)and (6,6)= 6outcomes

=6/36 =1/12.

Final answer:

The probabilities for the three events are approximately 0.6944, 0.2222, and 0.1667 respectively. These figures were achieved by comparing the number of favorable outcomes to the total number of outcomes when rolling two dice.

Explanation:

The subject of this question is probability which involves using numbers for calculation. When you roll two dice, there are 36 possible outcomes.

Event A: The probability that a 5 does not appear on either die can be calculated by subtracting the outcomes where one or both dice show five (11 outcomes) from total outcomes. So the probability is (36-11)/36, or around 0.6944 as a decimal approximation.Event B: The difference of the numbers is 2 happens in 8 cases (3 and 1, 4 and 2, 5 and 3, 6 and 4, 1 and 3, 2 and 4, 3 and 5, 4 and 6). So the probability is 8/36, which simplifies to 2/9 or around 0.2222 in decimal approximation.

Event C: The sum of the numbers is 10 or more happens in 6 cases (5 and 5, 6 and 4, 4 and 6, 6 and 5, 5 and 6, 6 and 6). So the probability is 6/36, which simplifies to 1/6 or around 0.1667 in decimal approximation.

Learn more about probability here:

https://brainly.com/question/22962752

#SPJ2

The numbers 2, 4, 6, and 8 are a set of four consecutive even numbers. Suppose the sum of five consecutive numbers is 320. What is the smallest of the five numbers?

Answers

Final answer:

The smallest of five consecutive numbers, whose sum equals 320, is 62. This is determined by setting up an equation where the sum of these numbers equals 320, then solving for the smallest number 'n'.

Explanation:

The subject at hand involves understanding patterns within consecutive numbers (numbers that follow each other in order, without gaps). In the given example of four consecutive even numbers 2, 4, 6 and 8, we see that the difference between them is constantly 2.

When it comes to the sum of five consecutive numbers equating to 320, let's presume the first (and smallest) number is 'n'. Therefore, the consecutive numbers would be n, (n+1), (n+2), (n+3) and (n+4). Their sum ought to total 320, so we write the expression n + (n+1) + (n+2) + (n+3) + (n+4) = 320. By simplifying, we receive 5n+10 = 320.

Further simplifying, we subtract 10 from both sides to afford: 5n = 310. Divide 310 by 5 to isolate 'n', which results in 'n' equals 62. Consequently, the smallest of the five consecutive numbers is 62.

Learn more about Consecutive Numbers here:

https://brainly.com/question/2493629

#SPJ12

Find the distance between a point (– 2, 3 – 4) and its image on the plane x+y+z=3 measured parallel to a line
(x + 2)/3 = (2y + 3)/4 = (3z + 4)/5

Answers

Answer:

The distance is:  

[tex]\displaystyle\frac{3\sqrt{142}}{10}[/tex]

Step-by-step explanation:

We re-write the equation of the line in the format:

[tex]\displaystyle\frac{x+2}{3}=\frac{y+\frac{3}{2}}{2}=\frac{z+\frac{4}{3}}{\frac{5}{3}} [/tex]

Notice we divided the fraction of y by 2/2, and the fraction of z by 3/3.

In that equation, the director vector of the line is built with the denominators of the equation of the line, thus:

[tex]\displaystyle\vec{v}=\left< 3, 2, \frac{5}{3}\right> [/tex]

Then the parametric equations of the line along that vector and passing through the point (-2, 3, -4) are:

[tex]x=-2+3t\\y=3+2t\\\displaystyle z=-4+\frac{5}{3}t[/tex]

We plug them into the equation of the plane to get the intersection of that line and the plane, since that intersection is the image on the plane of the point (-2, 3, -4)  parallel to the given line:

[tex]\displaystyle x+y+z=3\to -2+3t+3+2t-4+\frac{5}{3}t=3[/tex]

Then we solve that equation for t, to get:

[tex]\displaystyle \frac{20}{3}t-3=3\to t=\frac{9}{10}[/tex]

Then plugging that value of t into the parametric equations of the line we get the coordinates of the intersection:

[tex]\displaystyle x=-2+3\left(\frac{9}{10}\right)=\frac{7}{10}\\\displaystyle y=3+2\left(\frac{9}{10}\right)=\frac{24}{5} \\\displaystyle z=-4+\frac{5}{3}\left(\frac{9}{10}\right)=-\frac{5}{2}[/tex]

Then to find the distance we just use the distance formula:

[tex]\displaystyle d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}[/tex]

So we get:

[tex]\displaystyle d=\sqrt{\left(-2-\frac{7}{10}\right)^2+\left(3-\frac{24}{5}\right)^2+\left(-4 +\frac{5}{2}\right)^2}=\frac{3\sqrt{142}}{10}[/tex]

On three examinations, you have grades of 85, 78, and 84. There is still a final examination, which counts as one grade In order to get an A your average must be at least 90. If you get 100 on the final, what is your numerical average? (Type an integer or a decimal)

Answers

Answer:

The average of the provided grades are 86.75

Step-by-step explanation:

Consider the provided information.

On three examinations, you have grades of 85, 78, and 84. In order to get an A your average must be at least 90.

In the last exam you get 100 marks now calculate the average by using the formula:

[tex]\frac{\text{Sum of observations}}{\text{Number of observations}}[/tex]

[tex]\frac{85+78+84+100}{5}[/tex]

[tex]\frac{347}{5}[/tex]

[tex]86.75[/tex]

86.75 is less than 90 so you will not get A.

The average of the provided grades are 86.75

Other Questions
Retained earnings at the beginning and ending of the accounting period were $650 and $1,400, respectively. Revenues of $2,500 and dividends paid to stockholders of $550 were reported during the period. What was the amount of expenses reported for the period? Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat transfer rate. The air exits the compressor at 20 m/s through a tube of 10 cm diameter. Which is relatively better: a score of 73 on a psychology test or a score of 41 on an economics test? Scores on the psychology test have a mean of 86 and a standard deviation of 15. Scores on the economics test have a mean of 48 and a standard deviation of 7.Choose the correct answer below.(A) The economics test score is relatively better because its z score is less than the z score for the psychology test score.(B) The psychology test score is relatively better because its z score is less than the z score for the economics test score.(C) The economics test score is relatively better because its z score is greater than the z score for the psychology test score.(D) The psychology test score is relatively better because its z score is greater than the z score for the economics test score. 2. Which plan seems like it was the harshest for the Confederates? Why? Lucas and Brianna read three books each last month. a.b.Which of the tables, if any, shows a proportional relationship?Both Lucas and Brianna had specific reading goals they needed to accomplish. What different strategies dideach person employ in reaching those goals? the most important difference between an outline and a finished piece of writing What is the only crainial nerve that enters and leaves the skull? Please Help!!!!!! 98 points!!!!Title:Instructions: Choose a property of water and design an experiment to test the property. Use the following lab template to ensure all lab report components are included.Objective(s):Identify the purpose of your investigation or the question you are attempting to answer. Be sure to tie in the property of water you are testing.Hypothesis:Variables:Independent Variable: Dependent Variable:Controlled VariableMaterials:Procedure:The procedure should be clear and detailed so that others can repeat it. The details should be specific in how the procedure changes the independent variable, controls all variables that need to be controlled, and observes or measures the resulting changes to the dependent variable.Data and Observations:Present all data and observations in a neat and organized manner. Include tables and graphs where appropriate/possible.Conclusion: Be sure to answer the following reflection questions as a summary in the conclusion of your lab report:Was your hypothesis correct? Why or why not? What were the results of your experiment?What changes would you make if you were to repeat the experiment?Questions:Using what you have learned in the lesson and the experiment, answer the following question in complete sentences. Analyze the property of water you investigated and provide some real-world applications of the importance of this property of water.Safety Notes: A group of science students collect bacterial swabs from several locations inside their school. The collected bacterial swabs are spread over an agar-filled petri dish and bacteria colonies are grown. The students then install hand sanitizer dispensers throughout the school. One month later the students collect bacterial swabs from the same locations around the school and bacteria colonies are grown. Bacterial growth is counted for each sample and the data is compared.What might be the question the students are asking in this experiment?A)How long does bacteria liveB)Why does bacteria grow at schoolsC)Does my school have more bacteria than the average school?D)Does the addition of hand sanitizer dispensers throughout the school reduce the amount of bacteria? Unpolarized light with an intensity of 432 W/m^2 passes through three polarizing filters in a row, each of which is rotated 30 degrees from the one before it. Find the intensity of the light that emerges at the end The sun is 1.5 108 km from Earth. The index of refraction for water is 1.349. How much longer would it take light from the sun to reach Earth if the space between them were filled with water rather than a vacuum? Which of the following views hides the ribbon and shows text on the screen in an easy-to-read format?: *a. Full Screen Readingb. Web Layoutc. Print Layoutd. Draft 2.________________ and water, in the presence of light energy, are the reactants in photosynthesis. How do you say "I have two dogs" in Japanese?! Google translate is driving me crazy! Stoopid translator Solve the equation. 3 = n + 4 Question 3 options: 7 1 -1 12 When bacteria are inoculated into a new sterile nutrient broth, their numbers don't begin to increase immediately. Instead, there is a lag phase that may last for an hour or even several days. Why don't bacterial numbers increase immediately? please help please please please please How to find the probability of this? Please explain Thanks! If the interest rate is 7.5 percent, then what is the present value of $4,000 to be received in 6 years? a. $3,040.63 b. $2,420.68 c. $2,996.33 d. $2,591.85 A lottery claims its grand prize is $5 million, payable over 5 years at $1 comma 000 comma 000 per year. If the first payment is made immediately, what is the grand prize really worth? Use an interest rate of 4%.The real value of the grand prize is $nothing. (Round your response to the nearest dollar.)