How much work must be done on a system to decrease its volume from 20.0 l to 13.0 l by exerting a constant pressure of 4.0 atm?

Answers

Answer 1

By exerting the given constant pressure, work done on the system to decrease from initial volume to final volume is 2.84kJ.

Given the data in the question

Initial volume; [tex]v_1 = 20.0L[/tex]Final volume; [tex]v_2 = 13.0L[/tex]Pressure exerted; [tex]P = 4.0 atm[/tex]

The magnitude of the work done when a gas expands is equal to the product of the pressure of the gas and the change in the volume of the gas.

For work done by gas against a constant external pressure, we use the

expression:

[tex]Work\ done = -P\ *\ \delta V[/tex]

We substitute our given values into the equation

[tex]Work\ done = -P\ *\ ( v_2 - v_1)\\\\Work\ done = -4.0atm\ *\ ( 13.0L - 20.0L)\\\\Work\ done = -4.0atm\ *\ -7L\\\\Work\ done = 28L.atm\\\\Work\ done = 28L.atm\ *\ [ \frac{101.3J}{L.atm}] \\\\Work\ done = 2836.4J\\\\Work\ done = 2.84 kJ[/tex]

Therefore, by exerting the given constant pressure, work done on the system to decrease from initial volume to final volume is 2.84kJ.

Learn more: https://brainly.com/question/22393767

Answer 2
Final answer:

To decrease the volume of a system from 20.0 l to 13.0 l by exerting a constant pressure of 4.0 atm, a work of 2836.4 Joules must be done on the system.

Explanation:

In Physics, the concept of work done in a constant-pressure or isobaric process is defined as the product of pressure and the change in volume (W = PΔV). Since the pressure is given as 4.0 atm and must be converted to Joules using the conversion factor (1 atm = 101.3 J/L), the pressure in usable units becomes 4.0 atm * 101.3 J/L = 405.2 J/L. The change in volume is the initial volume subtracted from the final volume, so ΔV = 20.0L - 13.0L = 7.0L.

Substituting the values into our equation, the work done to decrease the volume of the system becomes W = (405.2 J/L) * (7.0 L) = 2836.4 Joules. So, to decrease the volume of the system from 20.0 l to 13.0 l by exerting a constant pressure of 4.0 atm, a work of 2836.4 Joules must be done on the system.

Learn more about Work Done in Isobaric Process here:

https://brainly.com/question/35895510

#SPJ11


Related Questions

A spring whose stiffness is 1140 n/m has a relaxed length of 0.51 m. if the length of the spring changes from 0.26 m to 0.79 m, what is the change in the potential energy of the spring? δu = -9.063 incorrect: your answer is incorrect. j

Answers

Final answer:

The change in potential energy of the spring is 152.19 J.

Explanation:

The potential energy of a spring is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement of the spring. In this case, the change in length of the spring is 0.53 m (0.79 m - 0.26 m). We can calculate the potential energy change using the formula and given values:

PE = (1/2)(1140 N/m)(0.53 m)² = 152.19 J

Therefore, the change in potential energy of the spring is 152.19 J.

what part of the hammer acts as the fulcrum when the hammer is used to remove a nail

Answers

the end of it with the dent

The fulcrum in a hammer when removing a nail is at the part where the hammer pivots.

By applying effort to the handle of a claw hammer, the output force at the nail puller end is increased due to the lever principle. Understanding these concepts aids in efficiently removing nails from wood.

A monatomic ideal gas expands slowly to twice its original volume, doing 230 j of work in the process. part a part complete find the heat added to the gas if the process is isothermal. q = 230 j submitprevious answers correct part b part complete find the change in internal energy of the gas if the process is isothermal. δu = 0 j submitprevious answers correct part c part complete find the heat added to the gas if the process is adiabatic. q = 0 j submitprevious answers correct part d part complete find the change in internal energy of the gas if the process is adiabatic. δu = -230 j submitpreon a warm summer day, a large mass of air (atmospheric pressure 1.01×105pa) is heated by the ground to a temperature of 26.0 ∘c and then begins to rise through the cooler surrounding air.vious answers correct part e find the heat added to the gas if the process is isobaric.

Answers

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - https://brainly.com/question/1581851#readmore

An example of a radioactive isotope is carbon-12. carbon-14. neon-20. neon-22.

Answers

The only one on the list that I know is radioactive is Carbon-14. 

Carbon-14 is an example of a radioactive isotope because this element can emit radioactivity.

What is Radioactivity?

Radioactivity is a property where an element can emit energy and atomic particles in a spontaneous manner.

What is isotope?

Isotopes are two or more types of atoms that have the same atomic number and position in the periodic table, and that differ in nucleon numbers due to different numbers of neutrons in their nuclei.

To learn more about radioactivity here

https://brainly.com/question/1770619

#SPJ2

A flat piece of glass covers the top of a vertical cylinder that is completely filled with water. if a ray of light traveling in the glass is incident on the interface with the water at an angle of θa = 36.0 ∘ , the ray refracted into the water makes an angle of 49.4 ∘ with the normal to the interface. part a what is the smallest value of the incident angle θa for which none of the ray refracts into the water?

Answers

Final answer:

The critical angle is the smallest incident angle at which light is no longer refracted into water, but instead is totally internally reflected. This can be calculated using Snell's law, where the sine of the critical angle is the ratio of the indices of refraction for water and glass.

Explanation:

The smallest value of the incident angle θa for which none of the ray refracts into water, and instead exhibits total internal reflection, is known as the critical angle. To find this critical angle, we can apply Snell's law (n1 × sin(θa) = n2 × sin(θb)), where θa is the incident angle and θb is the refracted angle when θb is 90°, the angle of refraction is at the maximum and therefore indicates the critical angle condition. Using the indices of refraction for glass (n1) and water (n2), we can solve for the critical angle which will indicate the threshold above which light will not refract into water but instead be totally internally reflected.

A block with mass 0.5kg is forced against a horizontal spring of negligible mass, compressing the spring a distance of 0.2m. when the spring is released, the block moves on a horizontal tabletop for 1.00 m before coming to rest. the force constant k is 100n/m. what is the coefficient of kinetic friction μk between the block and the tabletop?

Answers

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - https://brainly.com/question/1581851#readmore

How many turns should a solenoid of cross-sectional area 3.3×10−2 m2 and length 0.30 m have if its inductance is to be 47 mh ?

Answers

The inductance of a solenoid is given by
[tex]L=\mu \frac{N^2}{l} A[/tex]
where
[tex]\mu = 12.56 \cdot 10^{-7}NA^{-2}[/tex] is the magnetic permittivity
N is the number of turns of the solenoid
l is its lenght
A is its cross-sectional area

By re-arranging the formula and replacing the numbers, we get the number of turns of the solenoid:
[tex]N= \sqrt{ \frac{lL}{\mu A} }= \sqrt{ \frac{(4.7\cdot 10^{-3}H)(0.3 m)}{(12.56\cdot 10^{-7}NA^{-2})(3.3\cdot10^{-2}m^2)} } =583[/tex]

With what speed must you approach a source of sound to observe a 25% change in frequency?

Answers

sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:

f = f0(1 + v/c)

115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
v = 51,45 m/s

With the known value of v (speed of sound in the medium, e.g., 343 m/s) and the desired change in frequency (25% or 0.25), you can calculate the speed you must approach the source of sound to observe a 25% change in frequency.

To observe a 25% change in frequency (Doppler effect) when approaching a source of sound, you need to know the relative velocity between you and the source of sound. The Doppler effect occurs when there is relative motion between the observer and the source of the sound.

The formula for calculating the apparent frequency (f') observed by a moving observer due to the Doppler effect is:

f' = f * (v + vo) / (v - vs)

Where:

f' = Apparent frequency observed by the moving observer

f = Actual frequency of the sound emitted by the source

v = Speed of sound in the medium (approximately 343 meters per second in air at room temperature)

vo = Velocity of the observer (positive if moving towards the source, negative if moving away from it)

vs = Velocity of the source of sound (positive if moving away from the observer, negative if moving towards it)

Since  want to observe a 25% change in frequency, the apparent frequency (f') would be 25% different from the actual frequency (f):

f' = 1.25 * f

Assuming the observer is moving towards the source (vo is positive), we can rewrite the equation as:

1.25 × f = f × (v + vo) / (v - vs)

Now, we can solve for the relative velocity vo:

(v + vo) / (v - vs) = 1.25

Cross-multiply:

v + vo = 1.25 * (v - vs)

Now, isolate vo:

vo = 1.25 × (v - vs) - v

With the known value of v (speed of sound in the medium, e.g., 343 m/s) and the desired change in frequency (25% or 0.25), you can calculate the speed you must approach the source of sound to observe a 25% change in frequency.

To know more about frequency

https://brainly.com/question/29739263

#SPJ2

What does it mean to say that science is a “systematic” process?

Answers

Well, "Systematic" means doing something, according to plan, meaning if we play tic-tac-toe, and you go first and i go second, and it keeps repeating the same way, its systematic. Because we played according to the rules. The plan.

A hydrogen electron returns from energy level n = 3 to n = 1 during electron transition. What will the spectral lines emitted by this electron look like under a spectroscope? dark line spectrum white light continuous spectrum bright line spectrum

Answers

The answer is D for plato

Answer:

when electron jump from n=3 to n=1 then the photon coming out is of Lyman series. Here Lyman series photon is also known as Ultraviolet range of photon

Explanation:

As per Bohr's theory we know that when electron make transition from higher energy level to lower energy level then it emits photons of different energy range.

Here we know that when electron makes transition from any higher level to n=1 then it is ultraviolet range of photons.

While if electron makes transition from any higher energy range to n= 2 then it is visible range of photons

and for any higher energy level to n=3 then it is infrared range of photon

So here the spectrum received in this case is of ultraviolet range

A wooden block has a mass of 986 g and a density of 16 g/ cm3. What is the volume?

Answers

Density = Mass / Volume.
Volume = Mass / Density = 986 / 16 = 61.625 cm^3.

At the top of a giant swing on the gymnastics high bar, candy's velocity is 1 m/s, and she is 3.5 m high. if candy's mass is 50 kg, what is her total mechanical energy at this instant?

Answers

The total mechanical energy is the sum of the kinetic energy and the gravitational potential energy:
[tex]E=K+U= \frac{1}{2}mv^2 +mgh[/tex]
where m=3.5 kg is Candy's mass, v=1 m/s is her velocity and h=3.5 m is her height. If we replace these numbers, we find the mechanical energy of the system:
[tex]E= \frac{1}{2} (50 kg)(1m/s)^2 + (50 kg)(9.81 m/s^2)(3.5 m)=1742 J =1.74 kJ [/tex]

At the top of the giant swing on the gymnastics high bar, candy's total mechanical energy is 1740J.

Given the data in the question;

Candy's velocity; [tex]v = 1 m/s[/tex]Candy's height from the ground; [tex]h = 3.5m[/tex]Candy's mass; [tex]m = 50kg[/tex]

Candy's total mechanical energy; [tex]M.E_c = \ ?[/tex]

Total Mechanical Energy (M.E) is the sum of both the potential energy and the kinetic energy of an object.

[tex]Mechanical \ Energy = Potential \ Energy + Kinetic \ Energy[/tex]

[tex]M.E = mgh + \frac{1}{2}mv^2[/tex]

Where m is the mass, g is gravitational acceleration( [tex]9.8m/s^2[/tex] ), h is the height and v is the velocity.

We substitute our values into the equation

[tex]M.E_c = ( 50kg * 9.8m/s^2*3.5m) + ( \frac{1}{2}* 50\ *(1m/s)^2)\\\\M.E_c = 1715kg.m^2/s^2 + 25kg.m^2/s^2\\\\M.E_c = 1740 kg.m^2/m^2\\\\M.E_c = 1740J\\[/tex]

Therefore, at the top of the giant swing on the gymnastics high bar, candy's total mechanical energy is 1740J

Learn more: https://brainly.com/question/5046985

A block sliding across a level surface has a mass of 2.5 kg and a mechanical energy of 20 joules. What is its velocity?

Answers

Hi!

The energy of the block is 4 m/s

To calculate this, you need to use the equation for kinetic energy. The block is sliding (i.e. it's moving). If the object is sliding across a level surface, the only energy it has is kinetic energy, because there is no change in potential energy (which changes with height). So, the mechanical energy will be pure kinetic energy. The equation is the following, derived from the expression for kinetic energy:

[tex]v= \sqrt{ \frac{2*Ke}{m}}=\sqrt{ \frac{2*20 (kg*m^{2}*s^{-2}) }{2,5kg}}=4 m/s[/tex]

Have a nice day!

Which scientists contributed to discovering the universal law of gravitation? Check all that apply. Tycho Brahe Albert Einstein Johannes Kepler Nicolaus Copernicus Sir Isaac Newton Robert Hooke

Answers

Final answer:

Sir Isaac Newton is the primary contributor to the universal law of gravitation, with his precise mathematical formula that unified terrestrial and celestial phenomena. Johannes Kepler's laws of planetary motion were foundational for Newton's work, and Albert Einstein expanded on these ideas with his theory of general relativity.

Explanation:Contributors to the Universal Law of Gravitation

Several prominent individuals contributed to the discovery and understanding of the universal law of gravitation. Sir Isaac Newton is the most well-known figure associated with the law, as he defined the gravitational force, proposing that it was a universal force that explained both why objects fall to Earth and the motions of celestial bodies. He was the first to provide a precise mathematical formula for the law of gravitation.

Before Newton, Johannes Kepler discovered three laws of planetary motion, which Newton found crucial for his own work, as they showed gravitation's effects on planetary orbits. Moreover, Albert Einstein expanded upon the concept of gravitation with his theory of general relativity which showed that there is more to the gravity story than Newton's law suggested. Although their contributions were indirect, scientists such as Galileo Galilei and Robert Hooke, also helped set the stage for Newton's discoveries through their work on planetary motions and gravitational investigations respectively.

An inclined plane of angle θ has a spring of force constant k fastened securely at the bottom so that the spring is parallel to the surface. A block of mass m is placed on the plane at a distance d from the spring. From this position, the block is projected downward toward the spring with speed v as shown in the figure below. By what distance is the spring compressed when the block momentarily comes to rest? (Use any variable or symbol stated above along with the following as necessary: g, the acceleration due to gravity.)

Answers

Final answer:

Using the principles of energy conservation and kinetic energy, the distance the spring compresses when the block comes to rest is found through the equation x = sqrt((m*v*v)/k), where m is the mass, v is the velocity, k is the spring constant, and x is the distance of compression.

Explanation:

To compute the distance the spring is compressed when the block comes to rest, we need to consider both kinetic energy conservation and energy conservation through potential energy of the spring. Our initial kinetic energy supplied by the block sliding down the plane (K1) will turn into a potential energy in the spring when it's compressed (U2). Hence, we have K1 = U2.

Assuming initial kinetic energy (K1) given by 0.5*m*v*v, and potential energy in the spring (U2) equals to 0.5*k*x*x where x is the distance in which spring is compressed.

From the conservation of energy principle, 0.5*m*v*v = 0.5*k*x*x. By simplifying the equation, we get x = sqrt((m*v*v)/k). This equation provides us the distance the spring is compressed when the block comes to rest.

Learn more about Energy Conservation here:

https://brainly.com/question/35373077

#SPJ12

Dario, a prep cook at an italian restaurant, spins a salad spinner and observes that it rotates 20.0 times in 5.00 seconds and then stops spinning it. the salad spinner rotates 6.00 more times before it comes to rest. assume that the spinner slows down with constant angular acceleration. part a what is the magnitude of the angular acceleration of the salad spinner as it slows down?

Answers

For an uniformly accelerated motion, the following relationship is used:

[tex]2 a S=v_f^2 -v_i ^2[/tex] (1)

where a is the acceleration, S the distance covered, and vf and vi the final and initial speeds of the motion.

In our problem we are dealing with a rotational motion. Initially, the salad spinner has constant angular speed, which is given by

[tex]\omega _i = 2 \pi f[/tex]

where f is the rotational frequency, which is the number of revolutions per second:

[tex]f=  \frac{20 rev}{5 s}=4 Hz [/tex]

so the initial angular speed is

[tex]\omega _i = 2 \pi (4 Hz)=25.2 rad/s[/tex]

Then, the salad spinner starts to decelerate with constant deceleration [tex]\alpha[/tex], and during its deceleration it spins for other 6 revolutions, so covering a total angle of

[tex]\theta = 2 \pi (6 rev)=37.7 rad[/tex]

until it stops, so until it reaches a final speed of [tex]\omega _f=0[/tex].

To find the angular acceleration, we can use the equivalent of equation (1) for angular motions:

[tex]2 \alpha \theta = \omega_f^2 - \omega_i^2[/tex]

and so, since the final speed is [tex]\omega _f=0[/tex]:

[tex]\alpha = -  \frac{\omega _i^2}{2 \theta}=- \frac{(25.2 rad/s)^2}{2\cdot 37.7 rad}=-8.4 rad/s^2  [/tex]

where the negative sign means the salad spinner is decelerating.

Answer:

[tex] \alpha = -\frac{(25.132 rad/s)^2}{2* 37.7 rad}= -8.377 rad/s^2[/tex]

And we can convert this into degrees like this:

[tex] \alpha= -8.377 rad/s^2 * (\frac{180}{\pi rad}) =-479.967 rad/s^2[/tex]

Explanation:

For this case we assume that the angular acceleration is constant and the spinner slows down and come to rest at the end

We can calculate the distance traveled each revolution with this formula:

[tex] \theta= 20 rev * \frac{2\pi rad}{1 rev}= 40 \pi rad[/tex]

And since we know that the time to reach the velocity 0 is 5 s we can find the angular velocity like this:

[tex] w_o= \frac{\theta}{t}= \frac{40 \pi rad}{5 s}= 25.132 rad/s[/tex]

We know that the spinner rotates 6 more times before come rest, so the total distance traveled is:

[tex] \theta= 6* 2\pi = 37.699 rad[/tex]

[tex] w_f = 0 rad/s[/tex]

And we have the following formula :

[tex] w^2_f = w^2_i + 2\alpha \theta[/tex]

Since we know that the final angular velocity is 0 we can solve for [tex] \alpha[/tex] the angular acceleration and we got:

[tex] \alpha = -\frac{w^2_o}{2 \theta}[/tex]

And replacing the values that we found before we have this:

[tex] \alpha = -\frac{(25.132 rad/s)^2}{2* 37.7 rad}= -8.377 rad/s^2[/tex]

And we can convert this into degrees like this:

[tex] \alpha= -8.377 rad/s^2 * (\frac{180}{\pi rad}) =-479.967 rad/s^2[/tex]

An object traveling 200 feet per second slows to 50 feet per second in 5 seconds calculate the object

Answers

The object's acceleration is  -30 ft/sec² .

Why does buying locally grown fruits and vegetables decrease your carbon footprint?

A.) They are grown without fertilizers.
B.) Less fuel is used to deliver these products to the market.
C.) They are healthier for you.
D.) Less water is used to grow these products.

Answers

C. less fuel used to deliver
its B less fuel is used to deliver these products to the market 

Which of the following statement is true about image formation using a plane mirror? The distance from the image to the mirror is determined by-

A.the distance from the mirror to the object.

B.the size of the object compared to the mirror.

C.the brightness of the light on the object.

D.the orientation of the object relative to the mirror.

Answers

For a plane mirror, the distance from the image to the mirror
is determined by the distance from the mirror to the object. (A)

Assuming the wind blew the same direction all night, what direction, in degrees north of west, did the wind blow jack during the night?

Answers

Final answer:

The question involves physics and vector subtraction to determine the wind's speed and direction affecting an airplane's travel based on its heading and ground velocity.

Explanation:

The student is asking about determining the wind's speed and direction based on an airplane's velocity relative to the ground and its intended heading. To solve for this, we need to use vector subtraction since the airplane's ground velocity can be thought of as a combination of its own speed and the wind's influence. Given that the airplane is heading north at 45.0 m/s and its ground speed is 38.0 m/s at an angle west of north, the wind's speed and direction are the vectors that need to be added to the airplane's heading to equal the ground speed vector. A vector diagram would need to be drawn, and trigonometry would be used to calculate the magnitude of the wind's vector and its angle relative to the west.

What is the fate of solar radiation that reaches the earth?

Answers

when solar radiation reaches the Earth it quickly dissipates as most of the radiation and UV rays are blocked by ozone layer, but more radiation and UV rays are able to get through because of global warming.

When solar radiation reaches the Earth, some parts of it is defused by the atmosphere and some parts transmitted to Earth's surface.

What is the solar radiation?

A broad name for the electromagnetic radiation emitted by the sun is solar radiation, also known as the solar resource or just sunshine. With the use of various technologies, solar radiation may be absorbed and converted into usable forms of energy like heat and electricity. However, a certain location's solar resource determines whether these systems are technically feasible and operate economically.

Some of the sunlight is absorbed, scattered, and reflected by air molecules, water vapour, clouds, dust, pollutants, forest fires, and volcanoes as it travels through the atmosphere. The term for this is diffuse sun radiation.

Direct beam solar radiation is the type of solar radiation that directly reaches the surface of the Earth. Global solar radiation is the total of both diffuse and direct sun radiation. Direct beam radiation can be reduced by atmospheric conditions by 10% on clear, dry days and by 100% on days with heavy clouds.

Learn more about solar radiation here:

https://brainly.com/question/16525532

#SPJ5

An object has a kinetic energy of 225 j and a momentum of magnitude 28.3 kg · m/s. (a) find the speed of the object. m/s (b) find the mass of the object

Answers

A. hope this helps ;0

Describe a situation in which different units of measure could cause confusion.

Answers

Answer:

When different countries use different forms of measurement there is many different mistakes and confusion that can happen.

Explanation:

Final answer:

Different units of measure can cause confusion and serious mishaps in critical fields like medicine and aviation. Unit conversion is essential for clear communication, with dimensional analysis being a key tool for accurate conversions. Appropriate units must be used in context to avoid misunderstandings.

Explanation:

Different units of measure can lead to confusion, miscommunication, and even dangerous situations if not properly managed. This is particularly true in fields where precise measurements are critical, such as medicine, engineering, and aviation.

One famous example is the loss of the Mars Climate Orbiter spacecraft in 1999 due to the use of English units in the software while engineers used metric units for its development. Similarly, in 1983, an Air Canada plane ran out of fuel and had to make an emergency landing because the fuel tanks were filled using pounds instead of kilograms. Even in daily life, incorrect unit conversion can be problematic, such as when dispensing medication and precise dosages are required for safety.

To avoid such missteps, unit conversion is necessary. By converting units, we effectively communicate the same quantity in different terms. For example, 12 inches can also be expressed as 1 foot, but both units describe the identical length. Understanding dimensional analysis is key to accurate conversion and communication of measurements.

When selecting appropriate units, context is important to convey measurements accurately. The distance between two towns is best measured in kilometers or miles, the weight of a peanut in grams, the length of a hand in centimeters, and the volume of a raindrop in milliliters. Using the correct units ensures clarity and avoids confusion.

When traveling from oxygen to sulfur to selenium, through this group in the periodic table, what is changing?
A) The density of the elements decreases.
B) The number of energy levels increases.
C) The number of valence electrons of the elements decreases.
D) The state of the element changes from gas to liquid to solid.

Answers

Hi!

The answer should be B) The number of energy levels increases. 

Hope this helps!

-Payshence xoxo

Answer: Option (B) is the correct answer.

Explanation:

It is known that oxygen, sulfur and selenium are all group 16 elements.

The electronic configuration of oxygen is as follows.

     [tex]1s^{2}2s^{2}2p^{4}[/tex]

The electronic configuration of sulfur is as follows.

     [tex]1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}[/tex]

The electronic configuration of selenium is as follows.

     [tex]1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4p^{4}[/tex]

Hence, we can see that on moving down the group there is increase in energy levels of the atoms from 2p to 4p.

Therefore, we can conclude that when traveling from oxygen to sulfur to selenium, through this group in the periodic table, change is that the number of energy levels increases.

At an instant when a soccer ball is in contact with the foot of the player kicking it, the horizontal or x component of the ball's acceleration is 930 m/s2 and the vertical or y component of its acceleration is 900 m/s2. the ball's mass is 0.39 kg. what is the magnitude of the net force acting on the soccer ball at this instant?

Answers

just try your best best friend everyone

"(a) how much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 6.00 cm2? (assume air has a dielectric strength of 3.00 ✕ 106 v/m and dielectric constant of 1.00.)"

Answers

The voltage value for the electric breakdown is given by
[tex]V_{BD}=E_{DS} d[/tex] (1)
where [tex]E_{DS}=3.0 \cdot 10^6 V/m[/tex] is the dielectric strenght of the air while d is the distance between the two plates of the capacitor.

For a parallel plate capacitor, the capacitance is given by
[tex]C= \frac{Q}{V}= \frac{\epsilon A}{d} [/tex] (2)
where Q is the charge on the capacitor, V the voltage applied, [tex]\epsilon=1[/tex] is the dielectric constant in air and [tex]A=6.0 cm^2 = 6.0 \cdot 10^{-4} m^2[/tex] is the area of the plates in our problem. 

If we use the breakdown voltage given by equation (1) and replace V in equation (2) with this value, we find:
[tex] \frac{Q}{E_{DS} d}= \frac{\epsilon A}{d} [/tex]
and from this, we can find the maximum charge allowed on the capacitor before the break down:
[tex]Q=\epsilon A E_{DS}= (1)(6\cdot 10^{-4}m^2)(3 \cdot 10^6 V/m)=1800 C[/tex]

A 2.00-kg metal object requires 1.00 × 104 J of heat to raise its temperature from 20.0 °C to 60.0 °C. What is the specific heat of the metal?

Answers

Answer:

  0.125 J/(g·k)

Explanation:

Specific heat has units of J/(g·K), so we find the value by dividing the energy by the product of mass and temperature change.

  (10^4 J)/(2·10^3 g·(60 -20)K) = 10/(2·40) J/(g·K) = 0.125 J/(g·k)

Jack is working with layer masks on an image, but he is worried that he may damage the image. Which of these would be an accurate fact about layer masks?

Answers

It would be the last one. 

Layer masks are a non-destructive image editing technique that allows changes to be applied without altering the original image data, providing safety and flexibility in editing.

One accurate fact about layer masks in image editing is that they are non-destructive. This means that when Jack works with layer masks, he is not directly altering or damaging the original image data. Instead, layer masks allow him to apply changes, such as hiding or revealing parts of the layer, without permanently affecting the image. These masks can be edited at any time to adjust the visibility of different portions of the layer. If a mistake is made, Jack can simply edit the mask to correct the issue, rather than having to restore the original image from a separate file. Therefore, layer masks provide flexibility and safety for image editing, ensuring the original data remains intact.

A gas made up of atoms escapes through a pinhole 3.16 times as fast as ar gas. write the chemical formula of the gas.

Answers

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - https://brainly.com/question/1581851#readmore

Now you will focus on a second hypothesis. This hypothesis can be very similar to the first, but this time you want to focus only on the second variable in question, speed. What could be a hypothesis that would illustrate the relationship between speed and kinetic energy? Use the format of "if…then…because…” when writing your hypothesis.

Answers

If the speed of an object increases, then its kinetic energy will increase proportionally because speed and kinetic energy have a linear relationship when graphed.


just got it right...

Other Questions
A fire fighter has to get to a burning building as quickly as he can. there are three paths that he can take. he can take his fire engine over a large hill (5 miles) at 10 miles per hour. he can take his fire engine through a windy road (7 miles) at 9 miles per hour. or he can drive his fire engine along a dirt road which is 8 miles at 12 miles per hour. Suppose a ball is completely submerged inside a cylinder filled with water displacing some of the water in the cylinder. Assume the ball and the cylinder both have a diameter of 10 centimeters, and the diameter of the ball is the same as the height of the cylinder. Determine the volume of water that can remain in the cylinder after the ball is inserted so that the water rises to the top edge of the cylinder without spilling What experience do you have caring for children? What ages of child have you worked with? What have you observed about the needs, behaviors, and abilities of children at different ages? How do you nurture different kinds of children at different stages of life? Compare your experiences with the rest of the class. Read the stanza. From The Tyger by William Blake Tyger Tyger, burning bright, In the forests of the night; What immortal hand or eye, Could frame thy fearful symmetry? In The Tyger, to what does the fearful symmetry of the tiger refer? When would a researcher be most likely to observe resource partitioning? between two allopatric populations that eat the same thing between two sympatric species that eat similar-sized seeds between two sympatric species, one herbivore and one carnivore between two species, one predator and one prey? Two angles are complementary. If the measure of one angle is twice the measure of the other angle, what is the measure of the larger angle? Tumo worked full-time at a manufacturing plant for the last ten years, but recently, a number of his co-workers were laid off and his schedule was cut back from 40 hours a week to 30 hours. There are rumors that the company is planning to shut down the plant and move its operations out-of-state. Rather than wait to lose his job, Tumo decided to go back to school part-time to train for a new career. Although he enjoys working at the plant, it was never his dream job. Instead, he always wanted to be a veterinarian. He views the recent changes in his life as an opportunity, not a setback, and he feels confident that he can learn the skills necessary to succeed in his chosen field. Which statement about Tumos motivation to go back to college part-time is true? A. Tumo was motivated both intrinsically and extrinsically.B. Tumo was only motivated intrinsically.C. Tumo was not motivated in his decision to go back to school part-time.D. Tumo was only motivated extrinsically.2. Which type of mindset did Tumo exhibit? A. GrowthB. NegativeC. FixedD. Positive 3. Which of the following is NOT a way that Tumo can build resilience after learning that the company he works for might shut down? A. Tumo can maintain a positive and hopeful outlook for the future.B. Tumo can take decisive actions rather than waiting to get fired.C. Tumo can isolate himself.D. Tumo can view this setback as an opportunity to pursue his dream career. The diagram below shows the branching tree diagram for cats.Which characteristic is shared by the greatest number of organisms? To prevent collisions and violations at intersections that have traffic signals, use the _____ to ensure the intersection is clear before you enter it. How can both a celsius scale thermometer and a kelvin scale thermometer indicate the same temperature change but not the same final temperature reading? The percent composition by mass of nitrogen in NH4OH(gram formula mass= 35 grams/mole) is equal to which of the following? A.4/35100. B.14/35100 C.35/14100 D.35/4100 if x The company and all of ____ assets were released to creditors. A. it's B. its' C. its Why is the deuterium-tritium reaction the most promising nuclear fusion reaction for future energy production? Which nations were major participants in the Korean War?Choose all answers that are correct.A. United StatesB. ChinaC. GermanyD. North KoreaE. South KoreaF. Japan A hockey game between two teams is 'relatively close' if the number of goals scored by the two teams never differ by more than two. In how many ways can the first 12 goals of a game be scored if the game is 'relatively close'? Draw one of the isomeric c5h12o alcohols that can be prepared by lithium aluminum hydride reduction of a ketone. What is the function(s) of atp? provides the energy for respiration provides the energy for photosynthesis stores the initial energy released by respiration provides the energy for all cytoplasmic chemical synthesis a complex molecule from which all other organic compounds are made? If employees who make more money pay a higher percentage of their income to the government, this is known as Producers want to charge prices that _____ and, they hope, earn profits