I examine the same second hand on the clock. Again, there are two points called A and B on the clock, with A farther from the center than B. Which of the following is true?
a. Point A has a higher angular acceleration about the center than Point B.
b. Point A has a lower angular acceleration about the center than Point B.
c. The angular acceleration for both points is 0.
d. None of the above.

Answers

Answer 1

I examine the same second hand on the clock. Again, there are two points called A and B on the clock, with A farther from the center than B. "The angular acceleration for both points is 0" is true.

Answer: Option C

Explanation:

The clock is in rotator motion. All the three hands of clock, move in same direction, but different speeds. And hence, we count hours, minutes and seconds.  And, when we take each hand, they move related to the centre of the clock, where all the three are attached.

So, there is a centripetal acceleration which depends upon the velocity.  But, the motion is uniform everywhere in the circle. The hands have no tangential acceleration. And hence, there is no angular acceleration, which is derived from tangential one. So, at any point, the angular acceleration is zero.


Related Questions

(a) How far is the center of mass of the Earth-Moon system from the center of the Earth? (Appendix C gives the masses of the Earth and the Moon and the distance between the two.) m
(b) Express the answer to (a) as a fraction of the Earth's radius.'

Answers

Answer:

a) [tex]r_{cm} = 4672 km[/tex]

b)r_cm = 0.733 R_{earth}

Explanation:

Location of center of mass of Earth- moon system is

[tex]r_{cm}= \frac{M_{earth}r_{earth}+M_{moon}r_{moon}}{M_{moon}+M{earth}}[/tex]

[tex]r_{cm}= \frac{6\times10^{24}(0)+7.34\times10^{22}384000\times1000}{6\times10^{24}+7.34\times10^{22}}[/tex]

=4.672×10^(6) m

a) [tex]r_{cm} = 4672 km[/tex]

b) [tex]\frac{r_{cm}}{R{earth}} = \frac{4672}{6371} = 0.733[/tex]

therefore

r_cm = 0.733 R_{earth}

Final answer:

The center of mass of the Earth-Moon system is the point around which the two bodies orbit and it is located within Earth but not at the center. The distance from the Earth's center to this point can be calculated using the masses of the Moon and Earth, and the distance between them. This distance expressed as a fraction of the Earth's radius is approximately 0.73.

Explanation:

The center of mass of the Earth-Moon system is the point about which the two bodies orbit, and it's located inside the Earth, not at the Earth's center. The distance from the Earth's center to the system's center of mass can be calculated using the formula: d = D*(m/(M+m)), where D is the distance between the Earth and the Moon, m is the Moon's mass, M is the Earth's mass.

To express the previous value as a fraction of the Earth's radius, you must divide it by the radius of the Earth. For instance, let's assume the distance turned out to be 4671 km and the Earth's radius is 6371 km. The resulting fraction would be 4671/6371 which simplifies to approximately 0.73.

Learn more about center of mass here:

https://brainly.com/question/33607198

#SPJ3

The femur is a bone in the leg whose minimum cross-sectional area is about 3.70 10-4 m2. A compressional force in excess of 6.60 104 N will fracture this bone. (a) Find the maximum stress that this bone can withstand. (b) What is the strain that exists under a maximum-stress condition

Answers

Answer:

178378378.37 Pa

0.01897

Explanation:

F = Force = [tex]6.6\times 10^4\ N[/tex]

A = Area = [tex]3.7\times 10^{-4}\ m^2[/tex]

Y = Young's modulus of bone under compression = [tex]9.4\times 10^{9}\ Pa[/tex]

[tex]\varepsilon[/tex] = Strain

Stress is given by

[tex]\sigma=\frac{F}{A}\\\Rightarrow \sigma=\frac{6.6\times 10^4}{3.7\times 10^{-4}}\\\Rightarrow \sigma=178378378.37\ Pa[/tex]

The maximum stress that this bone can withstand is 178378378.37 Pa

Compression force is given by

[tex]F=Y\varepsilon A\\\Rightarrow \varepsilon=\frac{F}{YA}\\\Rightarrow \varepsilon=\frac{6.6\times 10^4}{9.4\times 10^{9}\times 3.7\times 10^{-4}} \\\Rightarrow \varepsilon=0.01897[/tex]

The strain that exists under a maximum-stress condition is 0.01897

Final answer:

The maximum stress that the femur can withstand is 1.78 * 10^8 Pascals, and the strain under this maximum stress condition is approximately 0.012 or 1.2%.

Explanation:

The subject of the question is the stress and strain on the femur bone, which is integral to the field of Physics. To address part (a) of the question, we must find the maximum stress that the femur can withstand. Stress is defined as the average force per unit area, or the force divided by the area. In this case, we are given a compressional force of 6.60 * 10^4 Newtons and a cross-sectional area of the femur as 3.70 * 10^-4 m2. We divide the force by the area to find the stress:

Stress = Force / Area = (6.60 * 10^4 N) / (3.70 * 10^-4 m2) = 1.78 * 10^8 Pa (Pascals).

For part (b) of the question, the strain under a maximum-stress condition can be calculated by dividing the stress by Young's modulus. For bone, the modulus can vary, and bones are brittle with the elastic region small. However, if we take an average value, say 1.5 * 10^10 Pa, then, the strain will be:

Strain = Stress / Young's modulus = (1.78 * 10^8 Pa) / (1.5 * 10^10 Pa) = 0.012.

So under maximum stress, the strain is 0.012 (dimensionless) or 1.2%. Remember, this is an approximation as the actual modulus can vary based on numerous factors such as age, diet and lifestyle of the individual.

Learn more about Stress and Strain here:

https://brainly.com/question/13261407

#SPJ3

Two balls have the same mass of 5.00 kg. Suppose that these two balls are attached to a rigid massless rod of length 2L, where L = 0.550 m.
One is attached at one end of the rod and the other at the middle of the rod.
If the rod is held by the open end and rotates in a circular motion with angular speed of 45.6 revolutions per second,

(a) What is the tension for the first half of the rod, i.e., between 0 and L if the pivot point is chosen as origin?

(b) What is the tension for the second half of the rod, i.e., between L and 2L if the pivot point is chosen as origin?

Answers

Answer:

Explanation:

Given

mass of balls [tex]m= 5 kg[/tex]

[tex]N=45.6 rev/s[/tex]

angular velocity [tex]\omega =2\pi N=286.55 rad/s[/tex]

Length of Rod [tex]2L=1.1 m[/tex]

Tension in the Second half of rod

[tex]T_2=m\omega ^2(2L)=2m\omega ^2L[/tex]

[tex]T_2=5\times (286.55)^2\times 1.1[/tex]

[tex]T_2=451.609 kN[/tex]

For First Part

[tex]T_1-T_2=m\omega ^2L[/tex]

[tex]T_1=T_2+m\omega ^2L[/tex]

[tex]T_1=3 m\omega ^2L[/tex]

[tex]T_1=3\times 5\times (286.55)^2\times 0.55[/tex]

[tex]T_1=677.41 kN[/tex]

Final answer:

The question deals with the tension in a rotating rod with attached masses. Tension in the first half of the rod is dictated by the centripetal force for one mass, while the second half must account for two masses. It's a problem in the field of Physics, specifically rotational dynamics at the college level.

Explanation:

The student's question revolves around the concepts of rotational motion and tension in a system consisting of a massless rod with balls of equal mass attached at different points. Given the angular speed and the positions of the masses, we are to find the tension in two parts of the rod during rotation.

The tension for the first half of the rod can be calculated by considering the centripetal force required to keep the ball rotating in a circle of radius L, the middle of the rod. Since the ball at L is the only mass in the first segment, we only need to consider its centripetal force requirement.

For the second segment of the rod, from L to 2L, the tension must accommodate the centripetal force for both masses, one at the middle and the other at the end. The ball at the end experiences more tension because it is further from the pivot point and thus has a larger radius of rotation.

Note that actual equations and calculations are not provided here, as the question seems to request conceptual explanations rather than specific numerical solutions.

When 1.14 g of octane (molar mass = 114 g/mol) reacts with excess oxygen in a constant volume calorimeter, the temperature of the calorimeter increases by 10.0°C. The heat capacity of the calorimeter is 6.97 kJ/°C. Determine the energy flow, q (reaction).

Answers

Answer:

Q (reaction) = -69.7 kJ

Explanation:

Octane reacts with oxygen to give carbon dioxide and water.

C₈H₁₈ + 25 O₂ ---> 16 CO₂ +18 H₂O

This reaction is exothermic in nature. Therefore, the energy is released into the atmosphere. This reaction took place in a calorimeter, there the temperature (T) increases by 10 C. The heat capacity of the calorimeter is 6.97 kJ/C

The heat (q) of the reaction is calculated as follows:

Q= -cT, where c is the heat capacity of the calorimeter and T is the increase in temperature

q = -(6.97) x (10) = -69.7kJ

Since the heat capacity is given in kilo -joule per degree Celsius, therefore, the mass of octane is not required

A hollow spherical shell with mass 1.65 kg rolls without slipping down a slope that makes an angle of 38.0 ∘ with the horizontal. Part A Find the magnitude of the acceleration acm of the center of mass of the spherical shell. Take the free-fall acceleration to be g = 9.80 m/s2 .

Answers

Answer:

The acceleration is 3.62 m/s²

Explanation:

Step 1: Data given

mass of the shell = 1.65 kg

angle = 38.0 °

Step 2: Calculate the acceleration

We have 2 forces working on the line of motion:

⇒ gravity down the slope = m*g*sinα

       ⇒ provides the linear acceleration

⇒ friction up the slope = F

      ⇒ provides the linear acceleration and also the torque about the CoM.

∑F = m*a = m*g*sin(α) - F

I*dω/dt = F*R

The spherical shell with mass m has moment of inertia I=2/3*m*R² Furthermore a pure rolling relates  dω/dt and a through a = R dω/dt. So the two equations become

m*a = m*g sin(α) - F

2/3*m*a = F  

IF we combine both:

m*a = m*g*sin(α) - 2/3*m*a

1.65a = 1.65*9.81 * sin(38.0) - 2/3 *1.65a

1.65a + 1.1a = 9.9654

2.75a = 9.9654

a = 3.62 m/s²

The acceleration is 3.62 m/s²

The magnitude of the acceleration of the center of mass of the spherical shell is 3.62 m/s².

What is Newton’s second law of motion?

Newton’s second law of motion shows the relation between the force mass and acceleration of a body. It says, that the net force applied on the body is equal to the product of mass of the body and the acceleration of it.

It can be given as,

[tex]\sum F=ma[/tex]

Here, (m) is the mass of the body and (a) is the acceleration.

A hollow spherical shell with mass 1.65 kg rolls without slipping down a slope that makes an angle of 38.0 ∘ with the horizontal. The free-fall acceleration g is 9.80 m/s2 .

The total friction force is equal to the force of gravity acting downward of the slope.

[tex]\sum F=mg\sin(\theta)-F\\[/tex]

For the force acting on the rotating spherical shell is,

[tex]F=\dfrac{2}{3}ma[/tex]

Put this value in above equation,

[tex]\sum F=(1.65)(9.80)\sin(38)-\dfrac{2}{3}(1.65)a\\ma=(1.65)(9.80)\sin(38)-\dfrac{2}{3}(1.65)a\\(1.65)a=(1.65)(9.80)\sin(38)-\dfrac{2}{3}(1.65)a\\a=(9.80)\sin(38)-\dfrac{2}{3}a\\a=3.62\rm \; m/s^2[/tex]

Thus, the magnitude of the acceleration of the center of mass of the spherical shell is 3.62 m/s².

Learn more about the Newton’s second law of motion here;

https://brainly.com/question/25545050

Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and the cart is M, and that of student 2 and the cart is 1.5M. If student 1 pushes student 2 so that she recoils with velocity v,  what is the velocity of student 2.

Answers

Answer:

  v₂ = v/1.5= 0.667 v

Explanation:

For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.

Initial moment before pushing

    p₀ = 0

Final moment after they have been pushed

    [tex]p_{f}[/tex] = m₁ v₁ + m₂ v₂

   p₀ =  [tex]p_{f}[/tex]

   0 = m₁ v₁ + m₂ v₂

   m₁ v₁ = - m₂ v₂

Let's replace

   M (-v) = -1.5M v₂

   v₂ = v / 1.5

  v₂ = 0.667 v

Final answer:

Conservation of momentum dictates that the total momentum before and after the push must be the same since there are no external forces. Therefore, student 2 and the cart will move in the opposite direction to student 1's movement, with a velocity of two-thirds of student 1's velocity.

Explanation:

This question relies on the concept of Conservation of Momentum. In this scenario, the frictionless carts allow us to use the principle of momentum conservation, because if there is no external force, the total momentum of the system remains constant.

Second Cart's Velocity Calculation:

Applying the principle, if student 1 and the cart (both with mass M) are initially at rest, the initial momentum of the system is 0. When student 1 pushes and goes in the opposite direction with velocity -v, the momentum of the system is still 0 (since no external forces are present). So, if student 2 (with mass 1.5M) is pushed in the opposite direction, for the total momentum to remain zero, the velocity (V2) of student 2 and the cart must be such that:
-M * v (student 1's momentum) + 1.5M * V2 (student 2's momentum) = 0.
Solving for V2 gives us V2 = -(-M * v) / 1.5M = 2v/3.

So, the velocity of student 2 and the cart is 2v/3 in the opposite direction to student 1's movement.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ3

Which one of the following statements is false?
(a) The orbits in the Bohr model have precise sizes, whereas in the quantum mechanical picture of the hydrogen atom they do not.
(b) In the absence of external magnetic fields, both the Bohr model and quantum mechanics predict the same total energy for the electron in the hydrogen atom.
(c) The spin angular momentum of the electron plays a role in both the Bohr model and the quantum mechanical picture of the hydrogen atom.
(d) The magnitude of the orbital angular momentum cannot be zero in the Bohr model, but it can be zero in the quantum mechanical picture of the hydrogen atom.

Answers

Answer:

d) False. If the angular momentum is zero, it implies in electro without turning, which would create a collapse towards the nucleus, so in both models the moment must be different from zero

Explanation:

Affirmations

a) true. The orbits are accurate in the Bohr model and probabilistic in quantum mechanics

b) True. If both give the same results and use the same quantum number (n)

c) True. If in angular momentum it is quantized, in the Bohr model too but it does not justify it

d) False. If the angular momentum is zero, it implies in electro without turning, which would create a collapse towards the nucleus, so in both models the moment must be different from zero

A horizontal uniform bar of mass 2.9 kg and length 3.0 m is hung horizontally on two vertical strings. String 1 is attached to the end of the bar, and string 2 is attached a distance 0.74 m from the other end. A monkey of mass 1.45 kg walks from one end of the bar to the other. Find the tension T1 in string 1 at the moment that the monkey is halfway between the ends of the bar.

Answers

Answer:

given,

mass of uniform bar = 2.9 Kg

length of string = 3 m

mass of monkey = 1.45 Kg

monkey is sitting at the center

Weight of the beam will also consider to as the center

total downward force  = 2.9 g  + 1.45 g

now tension will balance the force

T₁ + T₂ = 2.9 g  + 1.45 g

T₁ + T₂ = 4.35 g

taking moment about T₂ string

now,

T₁ x (3-0.74) - 4.35 g x (1.5 - 0.74) = 0

T₁ x  2.26 = 32.3988

T₁ = 14.34 N

On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The acceleration due to gravity on the moon is 1/6 of its value on earth. Suppose he hits the ball with a speed of 14 m/s at an angle 20 ∘ above the horizontal. For how much more time was the ball in flight?

Answers

Answer:

4.86 seconds

Explanation:

Velocity of projection, u = 14 m/s

angle of projection, θ = 20°

Formula for the time of flight

[tex]T=\frac{2uSin\theta }{g}[/tex]

For earth

Te = (2 x 14 x Sin 20) / 9.8

Te = 0.98 s

For moon

g' = g/6 = 1.64 m/s^2

Tm = ( 2 x 14 x Sin 20) / 1.64

Tm = 5.84 seconds

Tm - Te = 5.84 - 0.98 = 4.86 s

So, it takes 4.86 s more time of flight on moon than the earth.  

The golf ball hit by Alan Shepard was in flight approximately 4.87 seconds longer on the moon than on Earth.

To analyze the flight duration of a projectile under different gravitational conditions.

1. Initial Parameters:

Initial velocity of the golf ball, [tex]v_0 = 14 \, \text{m/s}[/tex]

Launch angle, [tex]\theta = 20^{\circ}[/tex]

Acceleration due to gravity on Earth, [tex]g = 9.81 \, \text{m/s}^2[/tex]

Acceleration due to gravity on the moon, [tex]g_{moon} = \frac{g}{6} = 1.635 \, \text{m/s}^2[/tex]

2. Determine the Vertical Component of Initial Velocity:
The vertical component of the initial velocity can be calculated using the formula:
[tex]v_{0y} = v_0 \sin(\theta)[/tex]

Substituting the known values:
[tex]v_{0y} = 14 \, \text{m/s} \cdot \sin(20^{\circ}) \approx 4.78 \, \text{m/s}[/tex]

3. Calculate Time of Flight on Earth:
The time of flight [tex]T[/tex] for a projectile launched and landing on a flat surface can be calculated using the formula:
[tex]T = \frac{2 v_{0y}}{g}[/tex]

For Earth:
[tex]T_{Earth} = \frac{2 \cdot 4.78 \, \text{m/s}}{9.81 \, \text{m/s}^2} \approx 0.975 \, \text{s}[/tex]

4. Calculate Time of Flight on the Moon:
Using the same formula but with the moon's gravity:
[tex]T_{Moon} = \frac{2 v_{0y}}{g_{moon}}[/tex]

Substituting the values:
[tex]T_{Moon} = \frac{2 \cdot 4.78 \, \text{m/s}}{1.635 \, \text{m/s}^2} \approx 5.84 \, \text{s}[/tex]

5. Calculate the Difference in Flight Time:
Finally, to find how much more time the ball was in flight on the moon compared to Earth:
[tex]\Delta T = T_{Moon} - T_{Earth}[/tex]
[tex]\Delta T = 5.84 \, \text{s} - 0.975 \, \text{s} \approx 4.87 \, \text{s}[/tex]

Consider a cylinder initially filled with 9.33 10-4 m3 of ideal gas at atmospheric pressure. An external force is applied to slowly compress the gas at constant temperature to 1/6 of its initial volume. Calculate the work that is done. Note that atmospheric pressure is 1.013 105 Pa.

Answers

Final answer:

The work done to compress an ideal gas in a cylinder to 1/6 of its initial volume at constant temperature is -78.3 Joules.

Explanation:

This question involves the principle of work done in compressing a gas, a core concept in thermodynamics. The work done on an ideal gas at constant temperature (isothermal process) is given by the formula W = PΔV, where W is the work done, P is the atmospheric pressure, and ΔV is the change in volume.

Given that the initial volume (V1) is 9.33 * 10^-4 m³ and the final volume (V2) is 1/6 of the initial volume, so V2 = V1/6. Thus, the change in volume ΔV = V2 - V1 = V1/6 - V1 = -5V1/6.

Substituting the values into the formula and solving, we get W = PΔV = (1.013 * 10^5 Pa)(-5V1/6) = -5/6 * 1.013 * 10^5 Pa * 9.33 * 10^-4 m³ = -78.3 Joules.

Note that the work done is negative, which in this context means that work is done on the system (gas), not by it.

Learn more about Work Done on Gas here:

https://brainly.com/question/32263955

#SPJ11

One Newton is the force: 1. of gravity on a 1 g body. 2. of gravity on a 1 kg body. 3. that gives a 1 kg body an acceleration of 1 m/s2. 4. that gives a 1 kg body an acceleration of 9.8 m/s2. 5. that gives a 1 g body an acceleration of 1 cm/s.

Answers

Answer:

3. One Newton is the force that gives a 1 kg body an acceleration of 1 m/s².

Explanation:

The force is a vector magnitude that represents every cause capable of modifying the state of motion or rest of a body or of producing a deformation in it.

Its unit in the International System is the Newton (N). A Newton is the force that when applied on a mass of 1 Kg causes an acceleration of 1 m/s².

1 N = kg*(m/s²)

A toy car having mass m = 1.50 kg collides inelastically with a toy train of mass M = 3.60 kg. Before the collision, the toy train is moving in the positive x-direction with a velocity of Vi = 2.45 m/s and the toy car is also moving in the positive x-direction with a velocity of vi = 4.75 m/s. Immediately after the collision, the toy car is observed moving in the positive x-direction with a velocity of 2.15 m/s.

(a) Determine Vf, the final velocity of the toy train.

Answers

Answer:

  [tex]v_{f}[/tex] = 3,126 m / s

Explanation:

In a crash exercise the moment is conserved, for this a system formed by all the bodies before and after the crash is defined, so that the forces involved have been internalized.

the car has a mass of m = 1.50 kg a speed of v1 = 4.758 m / s and the mass of the train is M = 3.60 kg and its speed v2 = 2.45 m / s

Before the crash

    p₀ = m v₁₀ + M v₂₀

After the inelastic shock

    [tex]p_{f}[/tex]= m [tex]v_{1f}[/tex] + M [tex]v_{2f}[/tex]

    p₀ =  [tex]p_{f}[/tex]

    m v₀ + M v₂₀ = m [tex]v_{1f}[/tex]  + M [tex]v_{2f}[/tex]

We cleared the end of the train

     M [tex]v_{2f}[/tex] = m (v₁₀ - v1f) + M v₂₀

Let's calculate

     3.60 v2f = 1.50 (2.15-4.75) + 3.60 2.45

     [tex]v_{2f}[/tex]  = (-3.9 + 8.82) /3.60

      [tex]v_{2f}[/tex]  = 1.36 m / s

As we can see, this speed is lower than the speed of the car, so the two bodies are joined

set speed must be

      m v₁₀ + M v₂₀ = (m + M) [tex]v_{f}[/tex]

      [tex]v_{f}[/tex]  = (m v₁₀ + M v₂₀) / (m + M)

      [tex]v_{f}[/tex]  = (1.50 4.75 + 3.60 2.45) /(1.50 + 3.60)

      [tex]v_{f}[/tex] = 3,126 m / s

A quantity of an ideal gas is kept in a rigid container of constant volume. If the gas is originally at a temperature of 28 °C, at what temperature (in °C) will the pressure of the gas triple from its base value?

Answers

Answer:

[tex]T_2=630^{\circ}C[/tex]'

Explanation:

Original temperature of the gas, [tex]T_1=28^{\circ}C=301\ K[/tex]

From the ideal gas equation,

[tex]P_1V_1=nRT_1[/tex]

Since,

[tex]P_2=3P_1[/tex]

[tex]nRT_2=3(nRT_1)[/tex]

[tex]T_2=3T_1[/tex]

[tex]T_2=3\times 301[/tex]

[tex]T_2=903\ K[/tex]

or

[tex]T_2=630^{\circ}C[/tex]

So, the new temperature of the gas is 630 degree Celsius. Hence, this is the required solution.

An Atwood machine consists of a mass of 3.5 kg connected by a light string to a mass of 6.0 kg over a frictionless pulley with a moment of inertia of 0.0352 kg m2 and a radius of 12.5 cm. If the system is released from rest, what is the speed of the masses after they have moved through 1.25 m if the string does not slip on the pulley?
Please note: the professor has told us that the correct answer is 2.3 m/s. how does one arrive at this answer?

Answers

Answer:

[tex]v=2.28m/s[/tex]

Explanation:

For the first mass we have [tex]m_1=3.5kg[/tex], and for the second [tex]m_2=6.0kg[/tex]. The pulley has a moment of intertia [tex]I_p=0.0352kgm^2[/tex] and a radius [tex]r_p=0.125m[/tex].

We solve this with conservation of energy.  The initial and final states in this case, where no mechanical energy is lost, must comply that:

[tex]K_i+U_i=K_f+U_f[/tex]

Where K is the kinetic energy and U the gravitational potential energy.

We can write this as:

[tex]K_f+U_f-(K_i+U_i)=(K_f-K_i)+(U_f-U_i)=0J[/tex]

Initially we depart from rest so [tex]K_i=0J[/tex], while in the final state we will have both masses moving at velocity v and the tangential velocity of the pully will be also v since it's all connected by the string, so we have:

[tex]K_f=\frac{m_1v^2}{2}+\frac{m_2v^2}{2}+\frac{I_p\omega_p^2}{2}=(m_1+m_2+\frac{I_p}{r_p^2})\frac{v^2}{2}[/tex]

where we have used the rotational kinetic energy formula and that [tex]v=r\omega[/tex]

For the gravitational potential energy part we will have:

[tex]U_f-U_i=m_1gh_{1f}+m_2gh_{2f}-(m_1gh_{1i}+m_2gh_{2i})=m_1g(h_{1f}-h_{1i})+m_2g(h_{2f}-h_{2i})[/tex]

We don't know the final and initial heights of the masses, but since the heavier, [tex]m_2[/tex], will go down and the lighter, [tex]m_1[/tex], up, both by the same magnitude h=1.25m (since they are connected) we know that [tex]h_{1f}-h_{1i}=h[/tex] and [tex]h_{2f}-h_{2i}=-h[/tex], so we can write:

[tex]U_f-U_i=m_1gh-m_2gh=gh(m_1-m_2)[/tex]

Putting all together we have:

[tex](K_f-K_i)+(U_f-U_i)=(m_1+m_2+\frac{I_p}{r_p^2})\frac{v^2}{2}+gh(m_1-m_2)=0J[/tex]

Which means:

[tex]v=\sqrt{\frac{2gh(m_2-m_1)}{m_1+m_2+\frac{I_p}{r_p^2}}}=\sqrt{\frac{2(9.8m/s^2)(1.25m)(6.0kg-3.5kg)}{3.5kg+6.0kg+\frac{0.0352kgm^2}{(0.125m)^2}}}=2.28m/s[/tex]

Final answer:

To solve this problem, we can use the principle of conservation of mechanical energy. The total mechanical energy of the system (kinetic energy + potential energy) remains constant if no external forces are acting on the system.

Explanation:

Let's denote the initial position of the masses as position 1 and the final position as position 2. At position 1, the 3.5 kg mass is at a height h above the ground, and the 6.0 kg mass is at a height 1.25 m - h above the ground. At position 2, both masses are at a height 1.25 m above the ground.

The potential energy (PE) of the system at position 1 is:

PE1 = m1 * g * h + m2 * g * (1.25 m - h)

The potential energy (PE) of the system at position 2 is:

PE2 = (m1 + m2) * g * 1.25 m

Since the system is released from rest, the initial kinetic energy (KE) of the system is zero. The final kinetic energy (KE) of the system is:

KE2 = (1/2) * (m1 + m2) * v^2

where v is the speed of the masses after they have moved through 1.25 m.

According to the principle of conservation of mechanical energy, the total mechanical energy at position 1 is equal to the total mechanical energy at position 2:

PE1 + KE1 = PE2 + KE2

Substituting the expressions for PE1, PE2, and KE2, we get:

m1 * g * h + m2 * g * (1.25 m - h) = (m1 + m2) * g * 1.25 m + (1/2) * (m1 + m2) * v^2

Solving for v^2, we get:

v^2 = 2 * g * (m1 * h + m2 * (1.25 m - h) - (m1 + m2) * 1.25 m)

Substituting the given values for g, m1, m2, and h, we get:

v^2 = 2 * 9.8 m/s^2 * (3.5 kg * 1.25 m + 6.0 kg * (1.25 m - 1.25 m) - (3.5 kg + 6.0 kg) * 1.25 m)

Solving for v, we get:

v ≈ 2.3 m/s

So, the speed of the masses after they have moved through 1.25 m is approximately 2.3 m/s.

Neutron activation analysis for a sample of a rock revealed the presence of 131 53I, which has a half-life of 8.08 days . Assuming the isotope was freshly separated from its decay products, what is the mass of 131 53I in a sample emitting 1.00 mCi of radiation?

Answers

Answer:

The mass of [tex]_{53}^{131}I[/tex] is [tex]8.09\times10^{-9}\ g[/tex].

Explanation:

Given that,

Half life [tex]t_{\frac{1}{2}}=8.08\ days[/tex]

Sample emitting radiation = 1.00 mCi = [tex]3.7\times10^{7}\ dps[/tex]

We need to calculate the rate constant

Using formula of rate constant

[tex]\lambda=\dfrac{0.693}{t_{\frac{1}{2}}}[/tex]

[tex]\lambda=\dfrac{0.693}{8.08\times24\times60\times60}[/tex]

[tex]\lambda=9.92\times10^{-7}\ s^{-1}[/tex]

We need to calculate the numbers of atoms

Using formula of numbers of atoms

[tex]N_{0}=\dfrac{N}{\lambda}[/tex]

[tex]N_{0} =\dfrac{3.7\times10^{7}}{9.92\times10^{-7}}[/tex]

[tex]N_{0}=3.72\times10^{13}\ atoms[/tex]

We need to calculate the mass of [tex]_{53}^{131}I[/tex]

Using formula for mass

[tex]m=\dfrac{131\times3.72\times10^{13}}{6.023\times10^{23}}[/tex]

[tex]m=8.09\times10^{-9}\ g[/tex]

Hence, The mass of [tex]_{53}^{131}I[/tex] is [tex]8.09\times10^{-9}\ g[/tex].

Final answer:

The problem is related to the concept of radioactive decay, specifically of the isotope Iodine-131. The activity of the sample is calculated to be 37,000,000 decays/second. Through a series of calculations using formulas for decay constant, the number of atoms and finally the sample mass, we find the mass to be 9.3x10^-16 g/day.

Explanation:

The problem given relates to nuclear physics and utilizes the concept of radioactive decay. It specifically involves the isotope Iodine-131 (131 53I), which decays with a half-life of 8.08 days.

Assuming the activity of the sample is 1 mCi, which is equivalent to 37,000,000 decays/second (since 1 Ci=3.7x10^10 decays/sec, 1 mCi = 1/1000 Ci), we can use the activity formula which is given by A = λN, where A is activity, λ is the decay constant, and N is the number of atoms in the sample. We first need to calculate λ, which we can find using the formula λ = Ln(2)/T(1/2), where T(1/2) is the half-life.

λ = Ln(2)/8.08 days = 0.086/day. Therefore, N = A/ λ = 37,000,000 / 0.086 = 4.3x10^8 atoms/day.

The remaining calculation is the mass of the sample. The atomic mass of Iodine-131 is approximately 131 g/mol. Using Avogadro's number (6.02x10^23 atoms/mol), we can calculate the mass: M = N * (131 g/mol) / (6.02x10^23 atoms/mol) = 9.3x10^-16 g/day.

Learn more about Radioactive Decay here:

https://brainly.com/question/1770619

#SPJ6

wide tube that extends down from the bag of solution, which hangs from a pole so that the fluid level is 90.0 cm above the needle. The inner radius of the needle is 0.200 mm. The top of the fluid is exposed to the atmosphere, and the flow rate of the fluid (which has a density of 1025 kg/m^3 and a viscosity of 0.0010 Pass) through the needle is 0.200 L/h. What is the average gauge pressure inside the vein where the needle is? Use g = 9.8 m/s^2. _______ Pa

Answers

Answer:

The average gauge pressure inside the vein is 110270.58 Pa

Explanation:

This question can be solved using the Bernoulli's Equation. First, in order to determine the outlet pressure of the needle, we need to find the total pressure exerted by the atmosphere and the fluid.

[tex]P_f: fluid's\ pressure\\P_f= \rho g h=1025\frac{kg}{m^3} \times 9.8 \frac{m}{s^2} \times 0.9 m=9040.5 Pa \\P_T: total\ pressure\\P_T=P_{atm}+P_f\\P_T=101325 Pa + 9040.5 Pa=110275.5 Pa\\[/tex]

Then, we have to find the fluid's outlet velocity with the transversal area of the needle, as follows:

[tex]S: transversal\ area \\S= \pi r^2=\pi (0.200 \times 10^{-3})^2=5.65 \times 10^{-7} m^2\\v=\frac{F}{S}=\frac{5.55 \times 10^{-8} \frac{m^3}{s}}{5.65 \times 10^{-7} m^2}=0.98\times 10^{-1} \frac{m}{s}[/tex]

As we have all the information, we can complete the Bernoulli's expression and solve to find the outlet pressure as follows:

[tex]P_T-P_{out}=\frac{1}{2} \rho v^2\\P_{out}=P_T-\frac{1}{2} \rho v^2=110275.5 Pa-\frac{1}{2} 1025\frac{kg}{m^3} (0.98\times 10^{-1} \frac{m}{s})^2=110275.5 Pa-4.92 Pa =110270.58 Pa[/tex]

A horizontal water jet strikes a stationary vertical plate at a rate of 5 kg/s with a velocity of 35 km/hr. Assume that the water stream moves in the vertical direction after the strike. The force, in N, needed to prevent the plate from moving horizontally is _____ .

Answers

Answer:

48.6 N

Explanation:

rate of mass per second, dm/dt = 5 kg/s

Velocity, v = 35 km/hr = 9.72 m/s

Force acting on the plate

F = v x dm/dt

F = 9.72 x 5 = 48.6 N

Thus, the force acting on the plate is 48.6 N.

To prevent the plate from moving horizontally, a force of 48.6 N is required. The initial horizontal momentum of the water is 48.6 kg*m/s.

To calculate the force needed to prevent the plate from moving horizontally when a horizontal water jet strikes a vertical plate, we first need to determine the change in momentum of the water. The water strikes the plate at a rate of 5 kg/s with a velocity of 35 km/hr. Let's convert the velocity to meters per second:

35 km/hr = (35 * 1000) / 3600 = 9.72 m/s.

Next, we calculate the initial horizontal momentum of the water jet:

Initial momentum = mass flow rate * velocity = 5 kg/s * 9.72 m/s = 48.6 kg*m/s.

The water stream moves in the vertical direction after the strike, so its horizontal momentum is reduced to zero. The change in momentum is:

Change in momentum = Initial momentum - Final momentum = 48.6 kg*m/s - 0 kg*m/s = 48.6 kg*m/s.

We use the change in momentum (impulse) to find the force since force is the rate of change of momentum:

Force = Change in momentum / Time

The mass flow rate gives the change in momentum per second, which means the force can be directly calculated as:

Force = 48.6 N

Thus the force required to prevent the plate from moving horizontally, a force of 48.6 N

A 86 g particle undergoes SHM with an amplitude of 1.3 mm, a maximum acceleration of magnitude 6.8 x 103 m/s2, and an unknown phase constant φ. What are (a) the period of the motion, (b) the maximum speed of the particle, and (c) the total mechanical energy of the oscillator? What is the magnitude of the force on the particle when the particle is at (d) its maximum displacement and (e) half its maximum displacement?

Answers

Answer:

Explanation:

mass, m = 86 g

Amplitude, A = 1.3 mm

Maximum acceleration, a = 6.8 x 10^3 m/s^2

(a) Let T be the period of motion and ω be the angular frequency.

maximum acceleration, a = ω²A

6.8 x 10^3 = ω² x 1.3 x 10^-3

ω = 2287.0875 rad/s

T = 2π/ω

T = ( 2 x 3.14) / 2287.0875

T = 2.75 x 10^-3 second

T = 2.75 milli second

(b) maximum speed = ωA

v = 2287.0875 x 1.3 x 10^-3

v = 2.97 m/s

(c) Total mechanical energy

T = 1/2 mω²A²

T = 0.5 x 86 x 10^-3 x 2287.0875 x 2287.0875 x 1.3 x 1.3 x 10^-6

T = 0.38 J

(d) At maximum displacement, the acceleration is maximum

F = m x a = 86 x 10^-3 x 6.8 x 1000

F = 541.8 N

(e) acceleration a = ω² y = ω² x A / 2

a =  2287.0875 x 2287.0875 x 1.3 x 10^-3 / 2

a = 3400 m/s^2

Force, F = 86 x 10^-3 x 3400

F = 292.4 N

Because you were desperate for a gift for your mom, you have a picture of yourself imbedded in the center of a cubic block of Lucite (n = 3/2) with sides of length 8cm. As you turn the block you notice the location of the picture seems to change. You know the picture is physically in the exact center of the block. How far from one of the faces of the block does the picture appear to be, that is what is the image distance of the picture from the face you are looking through?

Select One of the Following:

(a) 1.5cm

(b) 2.7cm

(c) 6.0cm

(d) 9.0cm

Answers

Answer:

correct option is (b) 2.7cm

Explanation:

given data

n = 3/2 = 1.5

sides of length  = 8 cm

to find out

How far from one of the faces of the block that what is the image distance of the picture from the face

solution

we get here distance that is

distance d = [tex]\frac{d_o}{n}[/tex]      ......................1

put here value as do is [tex]\frac{8}{2}[/tex]  = 4 cm

so

distance d = [tex]\frac{d_o}{n}[/tex]  

distance d = [tex]\frac{4}{1.5}[/tex]  

distance d = 2.6666666 = 2.67

so correct option is (b) 2.7cm

As the image distance of the picture from the face is 2.7 cm, the correct answer is (b) 2.7cm.

The problem is related to optics, specifically the refraction of light through a medium with a given refractive index, here Lucite, which has a refractive index of n = 1.5.

The picture is physically at the center of the block. Since the block has sides of length 8 cm, the center is 4 cm from any face.

To find the apparent distance due to refraction, we use the formula for the apparent depth (d') from the real depth (d) and the refractive index (n) given as:

[tex]d' = \frac{d}{n}[/tex]

Substituting the given values, we get:

d' = [tex]\frac{4 cm}{1.5}[/tex] ≈ 2.67 cm.

Rounding to the closest option, the apparent distance is 2.7 cm from one of the faces of the block.

The speed of sound in air is around 345 m/s. A tuning fork vibrates at 610 Hz above the open end of the sound resonance tube. What is the wavelength (in cm) of the sound waves in the tube? Never include units with a numerical answer.

Answers

Answer:

[tex]\lambda=56.5cm[/tex]

Explanation:

Wavelength is calculated as:

[tex]\lambda=\frac{V}{f}[/tex]

Replacing the given values:

[tex]\lambda=\frac{345}{610}[/tex]

[tex]\lambda=0.565m[/tex]

Converting the result into cm:

[tex]\lambda=56.5cm[/tex]

A carnival game consists of a two masses on a curved frictionless track, as pictured below. The player pushes the larger object so that it strikes the stationary smaller object which then slides follows the curved track so that it rises vertically to a maximum height, h_{max}h ​max ​​ . The masses are equipped with elastic bumpers so that the impact between them is an elastic collision. If the larger object has a mass , M = 5.41 ~\text{kg}M=5.41 kg and the smaller object has a mass of m = 1.68~\text{kg}m=1.68 kg, then with what velocity, v_0v ​0 ​​ should the player release the larger object so that the smaller object just reaches the target maximum height of h_{max} = 3.0 mh ​max ​​ =3.0m above the horizontal portion of the track?

Answers

Final answer:

The required velocity of the larger object for the smaller object to reach a maximum height of 3m in an elastic collision can be calculated using the equation v0 = sqrt((2*m*g*h_max)/M). This concept relies on the conservation of energy and momentum in an elastic collision.

Explanation:

The central physics concept in this question is the conservation of energy and momentum in an elastic collision. In an elastic collision, both momentum and kinetic energy are conserved. According to the conservation of energy, the kinetic energy of the larger mass before the collision is converted into the potential energy of the smaller mass at its maximum height.

Expressing the conservation of energy mathematically, we have:

1/2*M*v0² = m*g*h_max

Solving for v0, we have:

v0 = sqrt((2*m*g*h_max)/M)

where v0 is the velocity with which the player should release the larger object, m is the mass of the smaller object (1.68 kg), g is the acceleration due to gravity (9.8 m/s²), h_max is the maximum height the smaller object will reach (3.0 m), and M is the mass of the larger object (5.41 kg).

Please do remember to plug in the correct values and units when solving the equation.

Learn more about Elastic Collision here:

https://brainly.com/question/33268757

#SPJ12

The player must release the larger object with a velocity of 1.95 m/s so that the smaller object just reaches the target maximum height of 3.0 m.

Since the collision of the two masses is elastic, the total kinetic energy of the system before the collision is equal to the total kinetic energy of the system after the collision.

We can use the principle of conservation of mechanical energy to solve this problem. The mechanical energy of a system is the sum of its potential energy and kinetic energy. At the beginning of the collision, the larger object has only potential energy due to its height, while the smaller object is at rest on the ground and has no energy. After the collision, the larger object has some kinetic energy and the smaller object has both potential energy and kinetic energy.

Let's denote the velocity of the larger object before the collision as v_0 and the velocity of the smaller object after the collision as v.

The potential energy of the larger object before the collision is:

PE_initial = Mgh

where:

M is the mass of the larger object (kg)

g is the acceleration due to gravity (m/s^2)

h is the height of the larger object above the ground (m)

The kinetic energy of the larger object before the collision is:

KE_initial = (1/2)Mv_0^2

The total mechanical energy of the system before the collision is:

E_initial = PE_initial + KE_initial = Mgh + (1/2)Mv_0^2

After the collision, the potential energy of the smaller object is:

PE_final = mgh_{max}

where:

m is the mass of the smaller object (kg)

g is the acceleration due to gravity (m/s^2)

h_{max} is the maximum height reached by the smaller object (m)

The kinetic energy of the smaller object after the collision is:

KE_final = (1/2)mv^2

The total mechanical energy of the system after the collision is:

E_final = PE_final + KE_final = mgh_{max} + (1/2)mv^2

Since the collision is elastic, we know that E_initial = E_final. Therefore, we can set the two equations equal to each other and solve for v_0.

Mgh + (1/2)Mv_0^2 = mgh_{max} + (1/2)mv^2

Solving for v_0, we get:

v_0 = sqrt((2mg(h - h_{max}))/(M + m))

Plugging in the values, we get:

v_0 = sqrt((2(5.41 kg)(9.81 m/s^2)(0.3 m))/(5.41 kg + 1.68 kg)) = 1.95 m/s

Therefore, the player must release the larger object with a velocity of 1.95 m/s so that the smaller object just reaches the target maximum height of 3.0 m.

For more such information on: velocity

https://brainly.com/question/80295

#SPJ6

A small rubber wheel drives the rotation of a larger pottery wheel by running along its edge. The small wheel radius is 1.2 cm, and it accelerates at 3 rad/s2. The pottery wheel has a radius of 36 cm. What is the angular acceleration of the pottery wheel? How long till the pottery wheel rotates at 60 rpm?

Answers

Answer:

α₂= 0.1  rad/s²

t= 62.8 s

Explanation:

Given that

For small wheel

r₁= 1.2 cm

α₁ = 3 rad/s²

For large wheel

r₂= 36 cm

Angular acceleration = α₂  rad/s²

The tangential acceleration for the both wheel will be same

a = α₁ r₁=α₂ r₂

Now by putting the values in the above equation

α₁ r₁=α₂ r₂

3 x 1.2 = 36 x α₂

α₂= 0.1  rad/s²

Given that

N = 60 rpm

Angular speed in rad/s ω

[tex]\omega = \dfrac{2\pi N}{60}[/tex]

[tex]\omega = \dfrac{2\pi \times 60}{60}[/tex]

ω = 6.28 rad/s

Time taken is t

ω = α₂ t

6.28 = 0.1 t

t= 62.8 s

Final answer:

The angular acceleration of the pottery wheel is 0.1 rad/s². It will rotate at 60 rpm after approximately 63 seconds.

Explanation:

The concept involved in the question relates to the principle of angular momentum conservation. The angular acceleration of the pottery wheel can be calculated from the given angular acceleration of the small wheel and the ratio of their radii. The equation that connects linear acceleration (a), angular acceleration (alpha), and radius (r) is a = alpha*r. Given that the small wheel has an angular acceleration, alpha1=3 rad/s² and radius r1=1.2 cm, while the pottery wheel has radius r2=36 cm, the linear acceleration of both is the same. Hence, the angular acceleration of the pottery wheel, alpha2 = a/r2 = (alpha1*r1)/r2 = (3 * 1.2 cm)/(36 cm) = 0.1 rad/s².

Now, for how long until the pottery wheel rotates at 60 rpm, first convert 60 rpm to rad/s. Note that 1 rev = 2π rad, and 1 min = 60 s. So, 60 rev/min = (60 * 2π rad)/(60 s) = 2π rad/s = final angular velocity, omega.

Then, use the formula for time in angular motion having constant angular acceleration: t = (omega - omega_initial) / alpha, and since the pottery wheel starts from rest, omega_initial = 0. Hence, t = omega/alpha2 = (2π rad/s)/(0.1 rad/s²) = 20π s, or approximately 63 seconds.

Learn more about Angular Acceleration here:

https://brainly.com/question/32293403

#SPJ11

A 70 kg person does a bungee jump from a bridge. The natural length of the bungee cord is 20m and it has a spring constant k of 80 N/m. When the bungee cord has a total length of 25m, what is the acceleration of the jumper (to 2 significant figures)? Hint: Draw a FBD showing the magnitudes and directions of all forces on the jumper at the instant described.

Answers

Final answer:

The bungee jumper experiences a downward acceleration of 4.09 m/s^2 at the point when the bungee cord has lengthened to 25m.

Explanation:

The subject of this problem pertains to physics, specifically, the principles of dynamics and Hooke's Law. At the instant when the bungee cord has stretched to a total length of 25m, it has undergone an extension of 5m since its natural length is 20m. According to Hooke’s Law, this extension causes a restoring force F = kx, where k is the spring constant and x is the change in length.

In this case, F = 80 N/m × 5 m = 400 N which is the upward force exerted by the cord. The weight of the 70 kg person is mg, or 70 kg × 9.8 m/s² = 686 N downward. The net force acting on the jumper is the difference between the weight and the restoring force. This gives a net force of 686 N – 400 N = 286 N downward.

From Newton’s second law, force equals mass times acceleration, F = ma. Therefore, the acceleration of the jumper at the instant would be a = F/m, or 286 N ÷ 70 kg = 4.09 m/s² downward to 2 significant figures.

Learn more about Bungee Jump Physics here:

https://brainly.com/question/34061662

#SPJ12

An astronaut drops a marble on the surface of Mars and observes that it takes 1.02 s for the marble to fall 2.00 m. She also knows that the radius of Mars is 3.39 × 106 m and that G = 6.67 x 10-11 N·m2/kg2. From this information, she can conclude that the mass of Mars is

Answers

Answer:

The mass of mars is [tex]6.61\times10^{23}\ kg[/tex]

Explanation:

Given that,

Time = 1.02 s

Height = 2.00 m

Radius of mars [tex]r= 3.39\times10^{6}\ m[/tex]

We need to calculate the acceleration due to gravity on mars

Using equation of motion

[tex]h = ut+\dfrac{1}{2}gt^2[/tex]

[tex]h = \dfrac{1}{2}gt^2[/tex]

[tex]g=\dfrac{2h}{t^2}[/tex]

Where, u = initial velocity

t = time

h = height

Put the value into the formula

[tex]g=\dfrac{2\times2.00}{(1.02)^2}[/tex]

[tex]g=3.84\ m/s^2[/tex]

We need to calculate the mass of mars

Using formula of gravity

[tex]g=\dfrac{Gm}{r^2}[/tex]

Put the value into the formula

[tex]3.84=\dfrac{6.67\times10^{-11}\times m}{(3.39\times10^{6})^2}[/tex]

[tex]m=\dfrac{3.84\times(3.39\times10^{6})^2}{6.67\times10^{-11}}[/tex]

[tex]m=6.61\times10^{23}\ kg[/tex]

Hence, The mass of mars is [tex]6.61\times10^{23}\ kg[/tex]

Final answer:

In order to find the mass of Mars, we can use a physics formula for gravity. The given values, such as the drop distance, time it took, the radius of Mars, and the universal gravitational constant, can be substituted into this formula. This, then, gives a theoretical value for the mass of Mars.

Explanation:

To calculate the mass of Mars, we use the formula to find gravity, which is defined as g = GM/r², where G is the universal gravitational constant. We can set this equal to something else: 2d / t², where d is the drop distance and t is the time it took for the marble to drop. We then can isolate M (the mass of Mars) on one side.

By substituting the given values into the formula, we get: M = (g * r²) / G = ((2 * 2.00 m) / (1.02 s)² * (3.39 × 10⁶ m)²) / (6.67 x 10⁻¹¹ N·m²/kg²).

This Netwonian calculation gives the mass of Mars, theoretically, based on the observed falling time of the marble.

Learn more about Mass of Mars here:

https://brainly.com/question/37011640

#SPJ3

Four point charges are placed at the corners of a square. Each charge has the identical value +Q. The length of the diagonal of the square is 2a.

What is the electric potential at the center of the square?

Answers

Answer:[tex]V_{net}=4\frac{kQ}{a}[/tex]    

Explanation:

Given

charge on each Particle is Q

Length of diagonal of the square is 2a

therefore distance between center and each charge is [tex]\frac{2a}{2}=a[/tex]

Electric Potential of charged Particle is given by

For First Charge

[tex]V_1=\frac{kQ}{a}[/tex]

[tex]V_2=\frac{kQ}{a} [/tex]

[tex]V_3=\frac{kQ}{a}[/tex]

[tex]V_4=\frac{kQ}{a}[/tex]

total Electric Potential At center is given by

[tex]V_{net}=V_1+V_2+V_3+V_4[/tex]

[tex]V_{net}=4\times \frac{kQ}{a}[/tex]

[tex]V_{net}=4\frac{kQ}{a}[/tex]            

Determine the ratio of the relativistic kinetic energy to the nonrelativistic kinetic energy (1/2mv2) when a particle has a speed of (a) 2.71 x 10-3c. and (b) 0.855c.

Answers

Final answer:

The ratio of relativistic kinetic energy to nonrelativistic kinetic energy depends on the speed of the particle. For speeds much less than the speed of light, the ratio is close to 1, but for speeds approaching the speed of light, the relativistic effect becomes significant and the ratio increases.

Explanation:

The ratio of relativistic kinetic energy to nonrelativistic kinetic energy can be calculated using the formula for relativistic kinetic energy KErel = mc2((1/(1 - v2/c2)1/2) - 1), where m is the particle mass, v is its velocity, and c is the speed of light. The nonrelativistic kinetic energy is given by KEnr = (1/2)mv2. Firstly, to determine the ratios at given speeds, we calculate the relativistic factor γ, which is (1/(1 - v2/c2)1/2), for each speed

For part (a) with v = 2.71 x 10-3c, the relativistic factor is close to 1, indicating that the speeds are nonrelativistic, and the ratio KErel/KEnr would be close to 1. For part (b), at v = 0.855c, the relativistic factor is significantly greater than 1, and the relativistic kinetic energy will be much larger than the classical value, yielding a ratio much greater than 1.

A machine part has the shape of a solid uniform sphere of mass 220 g and diameter 4.50 cm . It is spinning about a frictionless axle through its center, but at one point on its equator it is scraping against metal, resulting in a friction force of 0.0200 N at that point.

Answers

The sphere's angular acceleration is [tex]2.064 rad/s^2[/tex], and it will take approximately 10.17 seconds to decrease its rotational speed by 21.0 rad/s when experiencing a constant friction force.

Part A: Calculating Angular Acceleration

To find the angular acceleration, we must first calculate the torque. The torque ( au) caused by the friction force (F) is the product of the force and the radius (r) at which the force is applied, and torque is given by [tex]\tau = r \times F[/tex]. Using the diameter (d) to find the radius, we have r = d / 2 = 4.50 cm / 2 = 2.25 cm = 0.0225 m. The given friction force is 0.0200 N. Therefore, [tex]\tau = 0.0225 m \times 0.0200 N = 0.00045 Nm[/tex].

Next, we use the moment of inertia (I) for a sphere, [tex]I=\frac{2}{5} mr^2[/tex], to calculate the angular acceleration ([tex]\alpha[/tex]). The mass (m) is 220 g which is 0.220 kg. So, [tex]I = \frac{2}{5} \times 0.220 kg \times (0.0225 m)^2 = 0.000218025 kg m^2[/tex]. Angular acceleration, [tex]\alpha = \frac{\tau}{I} = \frac{0.00045 Nm}{0.000218025 kgm^2} \longrightarrow \alpha= 2.064 rad/s^2[/tex].

Part B: Time to Decrease Rotational Speed

To find the time (t) to decrease the rotational speed by 21.0 rad/s, we can use the equation [tex]\omega = \omega_0 + \alpha \times t[/tex], where [tex]\omega_0[/tex] is the initial angular velocity and [tex]\omega[/tex] is the final angular velocity. Since the sphere is slowing down due to friction, the angular acceleration will be negative, [tex]\alpha = -2.064 rad/s^2[/tex]. We are looking for the time it takes for the speed to decrease by 21.0 rad/s, so if the initial speed is [tex]\omega_0[/tex] and the final is [tex]\omega_0 - 21.0 rad/s[/tex], then [tex]0 = \omega_0 - 21.0 rad/s + \alpha \times t[/tex]. Solving for t gives [tex]t = \frac{21.0 rad/s}{2.064 rad/s^2} \approx t = 10.17 s[/tex].

Tracy (of mass 49 kg) and Tom (of mass 77 kg) are standing at rest in the center of the roller rink, facing each other, free to move. Tracy pushes off Tom with her hands and remains in contact with Tom’s hands, applying a constant force for 0.8 s. Tracy moves 0.4 m during this time. When she stops pushing off Tom, she moves at a constant speed. What is Tracy’s constant acceleration during her time of contact with Tom? Answer in units of m/s 2 .

Answers

Answer:

Tracy’s constant acceleration during her time of contact with Tom is 1.25 m/s².

Explanation:

Given that,

Mass of Tracy = 49 kg

Mass of Tom = 77 kg

Distance = 0.4 m

Time = 0.8 s

We need to calculate Tracy’s constant acceleration during her time of contact with Tom

Using equation of motion

[tex]s=ut+\dfrac{1}{2}at^2[/tex]

Where, s = distance

a = acceleration

t = time

Put the value into the formula

[tex]0.4=0+\dfrac{1}{2}a\times(0.8)^2[/tex]

[tex]a=\dfrac{0.4\times2}{(0.8)^2}[/tex]

[tex]a=1.25\ m/s^2[/tex]

Hence, Tracy’s constant acceleration during her time of contact with Tom is 1.25 m/s².

Tracy’s constant acceleration during her time of contact with Tom is 1.25 m/s².

Calculation of the acceleration:

Here we applied the motion equation i.e. shown below:

[tex]S = ut + \frac{1}{2}at^2[/tex]

Here s = distance

a = acceleration

t = time

So,

[tex]0.4 = \frac{1}{2} a \times (0.8)^2\\\\a = \frac{0.4\times 2}{(0.8)^2}[/tex]

=  1.25 m/s²

learn more about the force here; https://brainly.com/question/14282312

Two concrete spans of a 250-m-long bridge are placed end to end so that no room is allowed for expansion. If a temperature increase of 20.0C occurs, what is the height y to which the spans rise when they buckle?

Answers

Answer:

  y = 2.74 m

Explanation:

The linear thermal expansion processes are described by the expression

         ΔL = α L ΔT

Where α the thermal dilation constant for concrete is 12 10⁻⁶ºC⁻¹, ΔL is the length variation and ΔT the temperature variation in this case 20ªc

If the bridge is 250 m long and is covered by two sections each of them must be L = 125 m, let's calculate the variation in length

        ΔL = 12 10⁻⁶ 125 20

        ΔL = 3.0 10⁻² m

Let's use trigonometry to find the height

The hypotenuse     Lf = 125 + 0.03 = 125.03 m

Adjacent leg           L₀ = 125 m

       cos θ = L₀ / Lf

       θ = cos⁻¹ (L₀ / Lf)

       θ = cos⁻¹ (125 / 125.03)

       θ = 1,255º

We calculate the height

       tan 1,255 = y / x

       y = x tan 1,255

       y = 125 tan 1,255

       y = 2.74 m

Final answer:

When a bridge is subjected to a temperature increase, the concrete spans rise or buckle due to thermal expansion. The height to which they rise can be calculated using the formula for change in length. In this case, the height is 0.42 m.

Explanation:

When a bridge is subjected to a temperature increase, it expands due to thermal expansion. In this case, the two concrete spans of the bridge are placed end to end without allowing any room for expansion. Therefore, when the temperature increases by 20.0°C, the spans rise or buckle. The height to which they rise can be calculated using the formula:

change in length = coefficient of linear expansion x original length x change in temperature

In this case, the change in length is 0.84 m. To calculate the height y to which the spans rise, divide this change in length by the number of spans, which is 2. Therefore, the height is 0.42 m.

Learn more about Thermal expansion here:

https://brainly.com/question/30242448

#SPJ11

A proton and an alpha particle are momentarily at rest at adistance r from each other. They then begin to move apart.Find the speed of the proton by the time the distance between theproton and the alpha particle doubles. Both particles arepositively charged. The charge and the mass of the proton are,respectively, e and m. The e charge and the mass of the alphaparticle are, respectively, 2e and 4m.
Find the speed of the proton (vf)p by the time the distancebetween the particles doubles.
Express your answer in terms of some or all of the quantities,e, m, r, and ?0.
Which of the following quantities are unknown?
A initial separation of the particles
B final separation of the particles
C initial speed of the proton
D initial speed of the alpha particle
E final speed of the proton
F final speed of the alpha particle
G mass of the proton
H mass of the alpha particle
I charge of the proton
J charge of the alpha particle

Answers

Answer:

The unknown quantities are:

E and F

The final velocity of the proton is:

√(8/3) k e^2/(m*r)

Explanation:

Hello!

We can solve this problem using conservation of energy and momentum.

Since both particles are at rest at the beginning, the initial energy and momentum are:

Ei = k (q1q2)/r

pi = 0

where k is the coulomb constant (= 8.987×10⁹ N·m²/C²)

and q1 = e and q2 = 2e

When the distance between the particles doubles, the energy and momentum are:

Ef = k (q1q2)/2r + (1/2)m1v1^2 + (1/2)m2v2^2

pf = m1v1 + m2v2

with m1 = m,   m2 = 4m,    v1=vf_p,    v2 = vf_alpha

The conservation momentum states that:

pi = pf      

Therefore:

m1v1 + m2v2 = 0

That is:

v2 = (1/4) v1

The conservation of energy states that:

Ei = Ef

Therefore:

k (q1q2)/r = k (q1q2)/2r + (1/2)m1v1^2 + (1/2)m2v2^2

Replacing

      m1 =  m, m2 = 4m, q1 = e, q2 = 2e

      and   v2 = (1/4)v1

We get:

(1/2)mv1^2 = k e^2/r + (1/2)4m(v1/4)^2 =  k e^2/r + (1/8)mv1^2

(3/8) mv1^2 = k e^2/r

v1^2 = (8/3) k e^2/(m*r)

Other Questions
I need help on this problem by tonight please help I will leave a picture in here A scientist uses polymerase chain reaction (PCR) to compare the sequence of a disease gene and a healthy gene. The scientist finds that these two genes are identical except for one G in place of a T at position 256 in the gene. This type of mutation is a(n)________ A food chain or food web can provide good information including _____. how much energy is transferred from one organism to another the types of food that are best for you to eat the eating patterns of organisms the flow of energy in an ecosystem Lisa bought six dog toys. Each dog toy costs the same amount. She spent a total of $10.50. Write an expression that represents the situation. Use d to represent the cost of each dog toy. What is the expression for add g to 4, then subtract 5 from the result? There are 6 lollies in a packetA teacher buys 25 packets and divides them equally amping her students Each student gets 4 lollies and there are 22 lollies left over. How many students are there altogether? where is a human settlement best supported How much heat is lost when 10 g of Glass cools 15 Celsius Partial splenectomy for a 3-year-old child with sickle cell disease, Hb-C with a crisis. Sal is saving for a new bike that will cost him $150. He currently has $35 and can save $23 per week. How many weeks will it take him to earn enough money for the bike?Let w equal the number of weeks that Sal saves his money. Select an equation and solution that matches this situation.23w+35=150; Sal will have enough money in 5 weeks.23w+35=150; Sal will have enough money in about 8 weeks.15023w=w; Sal will have enough money in 24 weeks.35w+23=150; Sal will have enough money in about 5 weeks.35w+23=150; Sal will have enough money in about 138 weeks. How do you think vestigial structures came about? Write a program that asks the user for several days' temperatures and computes the average temperature for that period and how many days were above average. First ask the user how many days he\she wants to calculate the average for. Then create an array with that number and ask for the temperature of each day. Store the temps in the array. Then find the average and the number of days above that average. Print the results to the screen. The atmospheric pressure at sea level is 1.013 x 105 N/m2. The unit of pressure N/m2 is also called a pascal (Pa). The surface area of an average adult body is about 2 m2. How much crushing force does the atmosphere exert on people? Why don't we get crushed? An experiment consists of flipping a coin, rolling a 15 sided die, and spinning a roulette wheel. What is the probability that the coin comes up heads and the die comes up less than 4 and the roulette wheel comes up with a number greater than 17 ? Kong Inc. reported net income of $298,000 during 2018 and paid dividends of $26,000 on common stock. It also has 10,000 shares of 6%, $100 par value cumulative preferred stock outstanding. Common stockholders' equity was $1,200,000 on January 1, 2018, and $1,600,000 on December 31, 2018. The company's return on common stockholders' equity for 2018 is: A. 17.4% B. 17.0% C. 15.1% D. 21.3% A machinist turns on the power on to a grinding wheel at time t= 0 s. The wheel accelerates uniformly from rest for 10 s and reaches the operating angular speed of 58rad/s. The wheel is run at that angular velocity for 30 s, and then power is shut off. The wheel slows down uniformly at 1.4rad/s2 until the wheel stops. What is the total number of revolutions made by the wheel in this situation? Mrs. Smith needed to split 28 students into 4 equal groups for the race. Which step could help her to work 30 divided by 3?(A) (27 divided by 9) + (9 divided by 3)(B) (24 divided by 4) + (4 divided by 4)(C) (21 divided by 3) + (9 divided by 3)(D) (20 divided by 4) + (10 divided by 4) Of the three basic communication codes, which one refers to all intentional and unintentional means, other than writing and speaking, by which a person sends a message, including gestures, appearance, posture and so forth? 2)What is meant by the use of the word novel in sentence three of thefirst paragraph?To Carrie, the sound of the little bells upon the horse-cars, as theytinkled in and out of hearing, was as pleasing as it was novel. WILL GIVE 15 POINTS!PLZ HELP FAST!Which situations can be simulated using this spinner? Select three options.Predicting the gender of a randomly chosen art teacher if 1 of 3 art teachers is femalePredicting the gender of a randomly chosen history teacher if 12 of 15 history teachers are femalePredicting the gender of a randomly chosen biology teacher if 8 of 12 biology teachers are femalePredicting the gender of a randomly chosen chemistry teacher if 4 of 9 chemistry teachers are femalePredicting the gender of a randomly chosen health teacher if 2 of 4 health teachers are femaleThere are 6 sections on the spinner