If a lens has a power of -14.50, what is the focal length in mm?

Answers

Answer 1

Answer:

Focal length of the lens, f = - 68 mm

Explanation:

Given that,

Power of a lens, P = -14.50 D

We need to find the focal length of the lens. We know that the focal length and the power of lens has inverse relationship. Mathematically, it is given by :

[tex]f=\dfrac{1}{P}[/tex]

f is the focal length of the lens

[tex]f=\dfrac{1}{-14.50}[/tex]

f = -0.068 m

or

f = -68 mm

So, the focal length of the lens is (-68 mm). Hence, this is the required solution.


Related Questions

When we throw an object vertically upwards its initial velocity: a. It will be less than the final
b. It will be greater than the final
c. It will be equivalent to the final
d. It remains constant until reaching its maximum height

Answers

Answer:

Its initial velocity will be greater than final velocity so option (b) will be correct option  

Explanation:

As we throw the any object vertically the motion of the object will be opposes by the gravity.

And as the velocity of object is opposes by gravity, the final velocity goes on decreasing and finally it becomes zero.

So the initial velocity is always greater than final velocity when the object is thrown vertically upward.

So option (b) will be the correct option  

Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless surface with a tangential speed of 5 m/s. The string has been slowly winding around a vertical rod, and a few seconds later the length of the string has shortened to 0.250 m. What is the instantaneous speed of the mass at the moment the string reaches a length of 0.250 m?

Answers

Answer:

[tex] v_f = 15 \frac{m}{s}  [/tex]

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum [tex]\vec{L}[/tex] is

[tex]\vec{L}  = \vec{r} \times \vec{p}[/tex]

where [tex]\vec{r}[/tex] is the position and [tex]\vec{p}[/tex] the linear momentum.

We also know that the torque is

[tex]\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )[/tex]

[tex]\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p} [/tex]

[tex]\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F} [/tex]

but, as the linear momentum is [tex]\vec{p} = m \vec{v}[/tex] this means that is parallel to the velocity, and the first term must equal zero

[tex]\vec{v} \times \vec{p}=0[/tex]

so

[tex]\vec{\tau} =   \vec{r} \times \vec{F} [/tex]

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

[tex]\vec{\tau}_{rod} =   0 [/tex]

this means, for the angular momentum measure from the rod:

[tex]\frac{d\vec{L}_{rod}}{dt} =   0 [/tex]

that means :

[tex]\vec{L}_{rod} = constant[/tex]

So, the magnitude of initial angular momentum is :

[tex]| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)[/tex]

but the angle is 90°, so:

[tex]| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| [/tex]

[tex]| \vec{L}_{rod_i} | = r_i * m * v_i[/tex]

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

[tex]| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s} [/tex]

[tex]| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s} [/tex]

For our final angular momentum we have:

[tex]| \vec{L}_{rod_f} | = r_f * m * v_f[/tex]

and the radius is 0.250 m and the mass is 2.00 kg

[tex]| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f [/tex]

but, as the angular momentum is constant, this must be equal to the initial angular momentum

[tex] 7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f [/tex]

[tex] v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg} [/tex]

[tex] v_f = 15 \frac{m}{s}  [/tex]

Answer:

15 m/s

Explanation:

L = mvr

Li = (2.00 kg)(0.750 m)(5m/s) = 7.5 kgm^2/s

conservation of angular momentum --> Li=Lf

Lf = 7.5 kgm^2/s

7.5 kgm^2/s = (2.00 kg)(0.250 m)(vf)

vf = 15 m/s

A subway train starts from rest at a station and accelerates at a rate of 1.68 m/s2 for 14.2 s. It runs at constant speed for 68.0 s and slows down at a rate of 3.70 m/s2 until it stops at the next station. What is the total distance covered in kilometers?

Answers

Answer:

total distance = 1868.478 m

Explanation:

given data

accelerate = 1.68 m/s²

time = 14.2 s

constant time = 68 s

speed = 3.70 m/s²

to find out

total distance

solution

we know train start at rest so final velocity will be after 14 .2 s is

velocity final = acceleration × time      ..............1

final velocity = 1.68 × 14.2

final velocity = 23.856 m/s²

and for stop train we need time that is

final velocity = u + at

23.856 = 0 + 3.70(t)

t = 6.44 s

and

distance = ut + 1/2 × at²     ...........2

here u is initial velocity and t is time for 14.2 sec

distance 1 = 0 + 1/2 × 1.68 (14.2)²

distance 1 = 169.37 m

and

distance for 68 sec

distance 2= final velocity × time

distance 2= 23.856 × 68

distance 2 = 1622.208 m

and

distance for 6.44 sec

distance 3 = ut + 1/2 × at²

distance 3 = 23.856(6.44) - 0.5 (3.70) (6.44)²

distance 3 = 76.90 m

so

total distance = distance 1 + distance 2 + distance 3

total distance = 169.37 + 1622.208 + 76.90

total distance = 1868.478 m

Answer:

1868.5 m

Explanation:

For AB :

u = 0 m/s

a = + 1.68 m/s^2

t = 14.2 s

Let the distance is s1 and the velocity at B is v.

Use first equation of motion

v = u + at

v = 0 + 1.68 x 14.2 = 23.856 m/s

Use third equation of motion

[tex]v^{2}=u^{2}+2as_{1}[/tex]

[tex]23.856^{2}=0^{2}+2\times1.68\times s_{1}[/tex]

s1 = 169.38 m

For BC:

Let the distance is s2.

s2 = v x t

s2 = 23.856 x 68 = 1622.21 m

For CD:

u = 23.856 m/s

a = - 3.7 m/s^2

v = 0

Let the distance is s3.

Use third equation of motion

[tex]v^{2}=u^{2}+2as_{3}[/tex]

[tex]0^{2}=23.856^{2}-2\times 3.7 \times s_{3}[/tex]

s3 = 76.91 m

The total distance traveled is

s = s1 + s2 + s3

s = 169.38 + 1622.21 + 76.91 = 1868.5 m

Thus, the total distance traveled is 1868.5 m.  

If the potential due to a point charge is 500 V at a distance of 15.0 m, what are the sign and magnitude of the charge?

Answers

Answer:

[tex]q=+8.34*10^{-7}C}[/tex]

Explanation:

The potential V due to a charge q,  at a distance r, is:

[tex]V=k\frac{q}{r}[/tex]

k=8.99×109 N·m^2/C^2      :Coulomb constant

We replace the values in order to find q:

[tex]q=\frac{V*r}{k}=\frac{500*15}{8.99*10^{9}}=8.34*10^{-7}C[/tex]

Answer:

i apolagize im late but yeah bois 700 points

Explanation:

A pendulum on Earth has a period of 1.2 seconds. The same pendulum on Mercury (dark side) has a period of 1.95 seconds. What is the free-fall acceleration of Mercury (in m/s^2)

Answers

Answer:

[tex]g'=3.71\ m/s^2[/tex]

Explanation:

Given that,

Time period of a pendulum on the earth's surface, T₁ = 1.2 s

Time period of the same pendulum on Mercury, T₂ = 1.95 s

The time period of the pendulum is given by :

[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]

On earth :

[tex]T_1=2\pi \sqrt{\dfrac{l}{g}}[/tex]

[tex]1.2=2\pi \sqrt{\dfrac{l}{9.8}}[/tex].............(1)

Let g' is the acceleration due to gravity on Mercury. So,

[tex]1.95=2\pi \sqrt{\dfrac{l}{g'}}[/tex]............(2)

From equation (1) and (2) :

[tex]\dfrac{1.2}{1.95}=\sqrt{\dfrac{g'}{9.8}}[/tex]

[tex]g'=(\dfrac{1.2}{1.95})^2\times 9.8[/tex]

[tex]g'=3.71\ m/s^2[/tex]

So, the acceleration due to gravity on the mercury is [tex]3.71\ m/s^2[/tex]. Hence, this is the required solution.

A proton is released in a uniform electric field, and it experiences an electric force of 2.07 x 10^-14 N toward the south. Part A) What is the magnitude of the electric field? Part B) What is the direction of the electric field? O west O east O south O north

Answers

Answer:

The magnitude of the electric field is 129375 N/C toward south.

Explanation:

Given that,

Electric force [tex]F=2.07\times10^{-14}\ N[/tex]

(A). We need to calculate the magnitude of the electric field

Using formula of electric field

[tex]F = qE[/tex]

[tex]E=\dfrac{F}{q}[/tex]

Where, q = charge of proton

E = electric field

[tex]E=\dfrac{2.07\times10^{-14}}{1.6\times10^{-19}}[/tex]

[tex]E=129375\ N/C[/tex]

(B). The direction of the electric field is toward the direction of the force.

So, The direction of the electric field is toward south

Hence, The magnitude of the electric field is 129375 N/C toward south.

A fullback preparing to carry the football starts from rest and accelerates straight ahead. He is handed the ball just before he reaches the line of scrimmage. Assume that the fullback accelerates uniformly (even during the handoff), reaching the line with a velocity of 7.60 m/s. If he takes 1.07 s to reach the line, how far behind it did he start?

Answers

Answer:

x=4.06m

Explanation:

A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.

When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

Vf=Vo+a.t  (1)\\\\

{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\

X=Xo+ VoT+0.5at^{2}    (3)\\

Where

Vf = final speed

Vo = Initial speed

T = time

A = acceleration

X = displacement

In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve

for this problem

Vf=7.6m/s

t=1.07

Vo=0

we can use the ecuation number one to find the acceleration

a=(Vf-Vo)/t

a=(7.6-0)/1.07=7.1m/s^2

then we can use the ecuation number 2 to find the distance

{Vf^{2}-Vo^2}/{2.a} =X

(7.6^2-0^2)/(2x7.1)=4.06m

The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid. Find the terminal velocity (in meters per second and kilometers per hour) of an 84.0 kg skydiver falling in a pike (headfirst) position with a surface area of 0.160 m2. (Assume that the density of air is 1.21 kg/m3 and the drag coefficient of a skydiver in a pike position is 0.7.)

Answers

Answer:

110.27 m/s or 396.972 km/h

Explanation:

F = Force

m = Mass = 84 kg

g = Acceleration due to gravity = 9.81 m/s²

C = Drag coefficient = 0.7

ρ = Density of air = 1.21 kg/m³

A = Surface area = 0.16 m²

v = Terminal velocity

F = ma

[tex]F=\frac{1}{2}\rho CAv^2\\\Rightarrow ma=\frac{1}{2}\rho CAv^2\\\Rightarrow v=\sqrt{2\frac{ma}{\rho CA}}\\\Rightarrow v=\sqrt{2\frac{84\times 9.81}{1.21\times 0.7\times 0.16}}\\\Rightarrow v=110.27\ m/s[/tex]

Converting to km/h

[tex]\frac{110.27}{1000}\times 3600=396.972\ km/h[/tex]

Terminal velocity of the skydiver is 110.27 m/s or 396.972 km/h

A flat disk of radius 0.50 m is oriented so that the plane of the disk makes an angle of 30 degrees with a uniform electric field. If the field strength is 713.0 N/C find the electric Tiux through the surface A) 560 Nm2/C B) 620 N·m2/C C) 160 n N.m2/C D) 280 N.m2/C

Answers

Answer:

electric flux is 280  Nm²/C  

so correct option is D 280  Nm²/C

Explanation:

radius r = 0.50 m

angle = 30 degree

field strength = 713 N/C

to find out

the electric flux through the surface

solution

we find here electric flux by given formula that is

electric flux = field strength × area× cos∅   .......1

here area = πr² = π(0.50)²

put here all value in equation  1

electric flux = field strength × area× cos∅  

electric flux = 713 × π(0.50)² × cos60

we consider the cosine of the angle between the direction of the field and the normal to the surface of the disk

so we use cos60

electric flux = 280  Nm²/C

so correct option is D 280  Nm²/C

For an object of mass 1 Kg, estimate the number of protons and neutrons in the material, noting that a proton or neutron weighs 2000 times more than an electron. Assume that the number of neutrons is equal to the number of protons. Also assume that the absolute value of the net charge is less than 1Coulomb. Estimate the number of electrons in this object.

Answers

Answer:

The answer is very close to [tex]N_e=2.989\times10^{26}[/tex], where [tex]N_e[/tex] is the number of electrons.

Explanation:

First we take into account that the block weighs 1Kg, and that the number of protons and electrons is the same. As the electron mass is tiny even compared to that of the proton and neutrons we can neglect it in our considerations.

Let's start by equating the mass of all protons and neutrons to the mass of the  of the object:

[tex]N_p m_p+N_n m_n=1[/tex]

Where [tex]N_p[/tex] and [tex]N_n[/tex] is the number of protons and neutrons respectively. [tex]m_p[/tex] and [tex]m_n[/tex] is the mass of an proton and a neutron respectively. Because the number of protons and neutrons is equal we can say the following [tex]N_p=N_n=N[/tex], thus we have:

[tex]N_p m_p+N_n m_n=N(m_e+m_p)=1Kg \implies N=\frac{1}{m_p+m_n} [/tex]

On the other hand we have that the sum of all charges is less than the absolute value of 1C, we can express this by the following:

[tex]-1<N_p\cdot e-N_e\cdot e<1[/tex]

[tex]\implies -1<N\cdot e-N_e\cdot e<1[/tex]

Where [tex]e[/tex] is the proton charge (same as for the electron). We continue with the inequality:

[tex]-N\cdot e-1<N_p\cdot e-N_e\cdot e<-N\cdot e+1[/tex]

[tex]\implies \frac{N\cdot e+1}{e}>N_e>\frac{N\cdot e-1}{e}[/tex]

[tex]\implies \frac{(m_e+m_p)^{-1}\cdot e+1}{e}>N_e>\frac{(m_e+m_p)^{-1}\cdot e-1}{e}[/tex]

We have the estimated number of electrons bound. Because

[tex](m_e+m_p)^{-1}\cdot e>>1[/tex] We can neglect the ones on the rightmost and leftmost parts of the inequality. We then have

[tex]N_e\approx\frac{(m_p+m_n)^{-1}\cdot e}{e}[/tex]

Using the table values of the mass of the proton, mass of the neutron and the electron charge e we get

[tex]N_e\approx\frac{(1.672\times 10^{-27}+1.674\times 10^{-27})^{-1}\cdot e}{e}=(1.672\times 10^{-27}+1.674\times 10^{-27})^{-1}[/tex]

[tex]\, =2.989\times 10^{26}[/tex] electrons

An electron moving to the right at 7.5 x 10^5 m/s enters a uniform electric field parallel to its direction of motion. If the electron is to be brought to rest in the space of 7.0 cm . What is the strength of the field?

Answers

Answer:

The strength of the field is 22.84 N/C.

Explanation:

Given that,

Speed [tex]v= 7.5\times10^{5}\ m/s[/tex]

Distance = 7.0 cm

We need to calculate the acceleration

Using equation of motion

[tex]v^2-u^2=2as[/tex]

Put the value in the equation

[tex]0-(7.5\times10^{5})^2=2\times a\times7.0\times10^{-2}[/tex]

[tex]a =-\dfrac{(7.5\times10^{5})^2}{2\times7.0\times10^{-2}}[/tex]

[tex]a =-4.017\times10^{12}\ m/s^2[/tex]

We need to calculate the strength of the field

Using newton's second law and electric force

[tex]F = ma = qE[/tex]

[tex]-qE=-ma[/tex]

[tex]E=\dfrac{ma}{q}[/tex]

Put the value into the formula

[tex]E=\dfrac{9.1\times10^{-31}\times4.017\times10^{12}}{1.6\times10^{-19}}[/tex]

[tex]E=22.84\ N/C[/tex]

Hence, The strength of the field is 22.84 N/C.

Final answer:

The strength of the electric field that can stop an electron moving at 7.5 x 10^5 m/s within a distance of 7 cm can be calculated using the work-energy principle, where the work done by the electric field is equal to the change in kinetic energy of the electron.

Explanation:

The strength of the electric field required to bring an electron moving to the right at 7.5 x 105 m/s to rest in a distance of 7.0 cm can be found using the work-energy principle and knowing the force exerted by an electric field on a charge. The work done by the electric field is equal to the change in kinetic energy of the electron, which is initially ½ mv2 and becomes zero when the electron is at rest.

To calculate the strength of the field, we can use:

Work (W) = Electric field (E) x Charge (e) x Distance (d)

½ mv2 = E * e * d

where m is the mass of the electron, v is its initial velocity, e is the elementary charge (approximately 1.6 x 10−12 C), and d is the distance (7.0 cm or 0.07 m). We solve for E to find the strength of the electric field

A place-kicker must kick a football from a point 36.0 m (about 40 yards) from the goal. Half the crowd hopes the ball will clear the crossbar, which is 3.05 m high. When kicked, the ball leaves the ground with a speed of 23.6 m/s at an angle of 45.0° to the horizontal. (a) By how much does the ball clear or fall short (vertically) of clearing the crossbar? (Enter a negative answer if it falls short.)
_______m

(b) Does the ball approach the crossbar (and cross above or beneath it) while still rising or while falling?
rising or falling? _________

Answers

Answer:

Part (a) 10.15 m

Part (b) Rising

Explanation:

Given,

Initial speed of the ball = u = 23.6 m/sHeight of the crossbar = h = 3.05 mDistance between the ball and the cross bar = r = 36.0 mAngle of projection = [tex]\theta\ =\ 45.0^o[/tex]Initial velocity of the ball in the horizontal direction = [tex]u_x\ =\ ucos\theta[/tex]Initial velocity of the ball in the vertical direction = [tex]u_y\ =\ usin\theta[/tex]

part (a)

Let 't' be the time taken to reach the ball to the cross bar,

In x-direction,

[tex]\therefore r\ =\ u_xt\\\Rightarrow t\ =\ \dfrac{r}{u_x}\ =\ \dfrac{r}{ucos\theta}\\\Rightarrow t\ =\ \dfrac{36.0}{23.6cos45^o}\\\Rightarrow t\ =\ 2.15\ sec[/tex]

Let y be the height attained by the ball at time t = 2.15 sec,

[tex]y\ =\ u_yt\ \ -\ \dfrac{1}{2}gt^2\\\Rightarrow y\ =\ usin\theta t\ -\ \dfrac{1}{2}gt^2\\\Rightarrow y\ =\  23.6\times sin45^o\times 2.15\ -\ 0.5\times 9.81\ 2.15^2\\\Rightarrow y\ =\ 13.205\ m[/tex]

Now Let H be the height by which the ball is clear the crossbar.

[tex]\therefore H\ =\ y\ -\ h\ =\ 13.205\ -\ 3.05\ =\ 10.15\ m[/tex]

part (b)

At the maximum height the vertical velocity of the ball becomes zero.

i,e, [tex]v_y\ =\ 0[/tex]

Let h be the maximum height attained by the ball.

[tex]\therefore v_y^2\ =\ u_y^2\ -\ 2gh\\\Rightarrow 0\ =\ (usin\theta)^2\ -\ 2gh\\\Rightarrow h\ =\ \dfrac{(usin\theta)^2}{2g}\\\Rightarrow h\ =\ \dfrac{23.6\times sin45.0^o)^2}{2\times 9.81}\\\Rightarrow h\ =\ 14.19\ m[/tex]

Hence at the cross bar the ball attains the height 13.205 m but the maximum height is 14.19 m. Therefore the ball is rising when it reaches at the crossbar.

A solid sphere of uniform density has a mass of 8.4 × 104 kg and a radius of 4.0 m. What is the magnitude of the gravitational force due to the sphere on a particle of mass 9.8 kg located at a distance of (a) 19 m and (b) 0.52 m from the center of the sphere

Answers

Answer:

a) [tex]F_a=0.152 \mu N[/tex]

b) [tex]F_b=203.182 \mu N[/tex]

Explanation:

The center of mass of an homogeneous sphere is its center, therefore you can use Newton's universal law of gravitation to find both questions.

[tex]F_g=G\frac{m_1m_2}{d}[/tex]

[tex]G=6.674*10^{-11} NmKg^{-2}[/tex]

a) d = 19m

[tex]F_a = G\frac{8.4*10^{4}*9.8}{19^2}[/tex]

[tex]F_a=0.152 \mu N[/tex]

b) d = 0.52

[tex]F_b = G\frac{8.4*10^{4}*9.8}{0.52^2}[/tex]

[tex]F_b=203.182 \mu N[/tex]

Answer:

(a) GF = 1.522 x (10 ^ -7)  N

(b) GF = 2.032 x (10 ^ -4)  N

Explanation:

The magnitude of the gravitational force follows this equation :

GF = (G x m1 x m2) / (d ^ 2)

Where G is the gravitational constant universal.

G = 6.674 x (10 ^ -11).{[N.(m^ 2)] / (Kg ^ 2)}

m1 is the mass from the first body

m2 is the mass from the second body

And d is the distance between each center of mass

m2 is a particle so m2 it is a center of mass itself

The center of mass from the sphere is in it center because the sphere has uniform density

For (a) d = 19 m

GF = {6.674 x (10 ^ -11).{[N.(m ^ 2)] / (Kg ^ 2)} x 8.4 x (10 ^ 4) Kg x 9.8 Kg} / [(19 m)^ 2]

GF = 1.522 x (10 ^ -7)  N

For (b) d = 0.52 m

GF = 2.032 x (10 ^ -4)  N

Notice that we have got all the data in congruent units

Also notice that the force in (b) is bigger than the force in (a) because the distance is shorter

A car cruises with constant velocity on a (low traffic) freeway at 70 mph (about 31 m/s). Wind resistance opposes the car's motion with a force of 5000 N. Intuitively is the forward force on the car less than 5000N, equal to 5000 N or more than 5000 N. Explain your reasoning.

Answers

Answer:

Explanation:

The car is moving with uniform velocity . Hence there is no acceleration in the car .It indicates that net force on the car is zero . Since force in backward direction is exerted by the wind,  to make net force zero , the forward push by the car must be equal to backward force by the wind. In other words

Forward force by car = backward force by wind = 5000 N.

An airplane flies horizontally with a constant speed of 172.0 m/s at an altitude of 1390 m. A package is dropped out of the airplane. Ignore air resistance. The magnitude of the gravitational acceleration is 9.8 m/s2. Choose the RIGHT as positive x-direction. Choose UPWARD as positive y-direction Keep 2 decimal places in all answers

(a) What is the vertical component of the velocity (in m/s) just before the package hits the ground? Pay attention to the direction (the sign).
(b) What is the magnitude of the velocity (in m/s) (including both the horizontal and vertical components) of the package just before it hits the ground?

Answers

Answer:

(a) - 165.032 m/s

(b) 238.37 m/s

Explanation:

initial horizontal velocity, ux = 172 m/s

height, h = 1390 m

g = 9.8 m/s^2

Let it strikes the ground after time t.

Use second equation of motion in vertical direction

[tex]s=ut+\frac{1}{2}at^{2}[/tex]

-1390 = 0 - 0.5 x 9.8 x t^2

t = 16.84 second

(a) Let vy be the vertical component of velocity as it strikes the ground

Use first equation of motion in vertical direction

vy = uy - gt

vy = 0 - 9.8 x 16.84

vy = - 165.032 m/s

Thus, the vertical component of velocity as it strikes the ground is 165.032 m/s downward direction.

(b)

The horizontal component of velocity remains constant throughout the motion.

vx = 172 m/s

vy = - 165.032 m/s

The resultant velocity is v.

[tex]v=\sqrt{172^{2}+165.032^{2}}[/tex]

v = 238.37 m/s

Thus, teh velocity with which it hits the ground is 238.37 m/s.

Emergency Landing. A plane leaves the airport in Galisteo and flies 170 km at 68° east of north and then changes direction to fly 230 km at 48° south of east, after which it makes an immediate emergency landing in a pasture. When the airport sends out a rescue crew, in which direction and how far should this crew fly to go directly to this plane?

Answers

Final answer:

To locate the emergency landed plane, we add the vectors representing the plane's two separate legs, breaking them into components using trigonometry. Summing these vectors gives us the direct path for the rescue crew in terms of both distance and bearing from the airport to the plane.

Explanation:

To assist in this emergency landing scenario, we need to compute the resulting position vector by analyzing the two separate motions of the plane. The first motion has the plane fly 170 km at 68° east of north, and the second has it flying 230 km at 48° south of east. By representing these movements as vectors and adding them, we find the direct path the rescue crew should take.

This vector addition can be done graphically or by using trigonometry to break each leg of the plane's journey into its horizontal (east-west) and vertical (north-south) components. After determining the components, we can find the direct distance and bearing from the airport to the plane's location. The past examples and explanations equip us with strategies to calculate the required velocity of the plane relative to the ground and the direction the pilot must head by accounting for the known wind velocities, when necessary.

In summary, to find the direction and distance for the rescue crew, we add the vectors representing the plane's path, utilizing trigonometry to solve the components and then applying vector sum principles to find the result. This procedure allows us to efficiently direct the rescue efforts.

Explain why Earth is not spherical in shape, but bulges at
theEquator?

Answers

Explanation:

Every rotating body experiences centrifugal force. Due to this force the body tends to bulge out around it mid point and gets flattened at the poles. Same is applicable to Earth as well. Since the Earth is rotating at a very high speed, its equator gets bulged out due to centrifugal force. Because of this bulged equator, Earth's pole to pole diameter and equatorial diameter has difference of around 42.76 km. It is flatter on the poles. This also proves that Earth is not a perfect sphere.

Answer and Explanation:

The reason for the not being perfectly spherical ad bulging out at the equator is that The centripetal force acting toward's the earth gravitational center tries to keep the Earth in perfect spherical shape.

Also the angular momentum of the orbiting planet influences the bulge,

The greater angular momentum results in more bulge while the lower value of it results in lesser bulge and more perfect spherical shape.

Also, a greater amount of force directed towards the center and acting on the object at the equator results in the bulges at the equator whereas at poles this force is not required and hence radius is lower in that region.

The speed you compute by dividing your car's mileage by the time of travel is the ______ speed of the car, whereas the speed your speedometer reads is the car's ________speed.

Answers

Answer:

average and instant

Explanation:

The average speed is the ratio of the total path traveled and the time it took to travel that path, that is why the first space must be average speed, this because it takes into account the total amount of distance, and the total amount of time.

Instant speed, is the speed an objet (in this case a car) has in a particular moment in time, for this speed it doesn't matter the distance or the time that the car has traveled, it only matters the speed in that moment, that is what the speedometer measures, thus the second blank space must be instant speed.

An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. Is the image upright or inverted? Is it real or virtual?

Answers

Answer:

Inverted

Real

Explanation:

u = Object distance =  30 cm

v = Image distance

f = Focal length = 10 cm

Lens Equation

[tex]\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}-\frac{1}{u}=\frac{1}{v}\\\Rightarrow \frac{1}{v}=\frac{1}{10}-\frac{1}{30}\\\Rightarrow \frac{1}{v}=\frac{1}{15}\\\Rightarrow v=15\ cm[/tex]

As, the image distance is positive the image is real and forms on the other side of the lens

[tex]m=-\frac{v}{u}\\\Rightarrow m=-\frac{-15}{30}\\\Rightarrow m=-0.5[/tex]

As, the magnification is negative the image is inverted

Final answer:

By applying the lens equation, we calculate that the image is formed 15 cm behind the lens. This is a real image as it forms on the opposite side of the lens, and in the case of a converging lens, it will be inverted.

Explanation:

First, we use the lens equation, which is 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. In this case, the object distance 'do' is 30cm and the focal length 'f' is 10cm. Solving for 'di', we find that the image is located 15 cm behind the lens (i.e., on the opposite side from the object).

Since the image forms on the opposite side of the lens from where the object is, this indicates it's a real image. A positive image distance indicates a real image and a negative image distance indicates a virtual image.

For a converging lens, a real image is always inverted, and a virtual image is always upright. Therefore, in this case, the image would be inverted.

Learn more about Lens Image Formation here:

https://brainly.com/question/35599847

#SPJ3

The sun is 150,000,000 km from earth; its diameter is 1,400,000 km. A student uses a 5.2-cm-diameter lens with f = 10 cm to cast an image of the sun on a piece of paper. Where should the paper be placed relative to the lens to get a sharp image?

Answers

Final answer:

To get a sharp image of the Sun, the paper should be placed at the focal length of the lens, which is 10 centimeters away from the lens. The image is in focus at this point because the light rays from the Sun are effectively parallel when they reach the lens, which then focuses these rays at its focal point.

Explanation:

Given the sun is so far away, the light it emits is nearly parallel by the time it reaches Earth. When using a lens to cast an image of the Sun, the point where the image is in focus, that is, the focal point, is also the focal length of the lens.

In this case, the student uses a lens with f = 10 cm, meaning the focal length of the lens is 10 centimeters. To get a sharp image, the paper on which the image is being projected should be placed 10 cm away from the lens, or at the focal length of the lens. This is because the light is in sharp focus at this distance, creating a clear image on the paper.

An important concept here is that the Sun is an astronomical unit away, so the light rays from the Sun are essentially parallel when they reach the lens. The lens then focuses these parallel rays to its focal point, forming a sharp image at a distance equal to its focal length.

Learn more about Focal Length here:

https://brainly.com/question/15365254

#SPJ3

A horizontal sheet of negative charge has a uniform electric field E = 3000N/C. Calculate the electric potential at a point 0.7m above the surface.

Answers

Answer:

Electric potential, E = 2100 volts

Explanation:

Given that,

Electric field, E = 3000 N/C

We need to find the electric potential at a point 0.7 m above the surface, d = 0.7 m

The electric potential is given by :

[tex]V=E\times d[/tex]

[tex]V=3000\ N/C\times 0.7\ m[/tex]

V = 2100 volts

So, the electric potential at a point 0.7 m above the surface is 2100 volts. Hence, this is the required solution.

Show that a sinusoidal wave propagating to the left along x-axis is a solution of the differential wave equation.

Answers

Answer:

The wave equation is [tex]\frac{d^{2}u }{dt^{2} }[/tex] = [tex]c^{2}[/tex] [tex]\frac{d^{2}u }{dx^{2} }[/tex]

a sinusoidal wave can be u = Acos( ax + bt) + B*sin(ax + bt)

where A, a, B and b are real constants. (here you also can add a phase to the arguments of the sin and cosine)

then [tex]\frac{d^{2}u }{dt^{2} }[/tex] = [tex]b^{2}[/tex]*( -Acos(ax + bt) - B*sin(ax + bt))

and [tex]c^{2}[/tex] [tex]\frac{d^{2}u }{dx^{2} }[/tex]= [tex]ac^{2}[/tex]*( -Acos(ax + bt) - B*sin(ax + bt))

then if a*c = b, this is a solution of the wave equation.

To provide the pulse of energy needed for an intense bass, some car stereo systems add capacitors. One system uses a 2.4F capacitor charged to 24 V, double the normal 12 V provided by the car's battery. How much energy does the capacitor store at 12 V? How much energy does the capacitor store at 24 V?

Answers

Answer:

Explanation:

Energy stored in a capacitor

= 1/2 CV²

C is capacitance and V is potential of the capacitor .

When capacitor is charged to 24 V ,

E₁ = 1/2 x 2.4 x 24 x24 = 691.2 J

When it is charged to 12 volt

E₂ = 1/2 CV²

.5 X 2.4 X 12 X12

= 172.8 J

If an arrow's mass is doubled and the speed is halved, the momentum is changed by a factor of: a) 1 b) 2 c) 0.25 d) 0.5

Answers

Explanation:

The momentum of an object is given by :

[tex]p=m\times v[/tex]............(1)

m is the mas of the object

v is the speed of the object

According to question, arrow's mass is doubled and the speed is halved. So,

m' = 2m

v' = v/2

The new momentum becomes :

[tex]p'=2m\times \dfrac{v}{2}[/tex]

p' = mv

p' = p

So, the momentum remains the same. The momentum is changed by a factor of 1. Hence, this is the required solution.

If a mile is 5280 ft long and a yard contains 3 ft, how many yards are there in a mile?

Answers

Final answer:

To determine how many yards are in a mile, knowing that a mile equals 5280 feet and a yard contains 3 feet, divide the total feet in a mile by the feet in a yard, resulting in 1760 yards in a mile.

Explanation:

To find how many yards are there in a mile, given that a mile is 5280 feet long and a yard contains 3 feet, we can divide the total number of feet in a mile by the number of feet in a yard. Using the formula for conversion, we calculate:

Yards in a mile = Total feet in a mile ÷ Feet in a yard

By substituting the given values:

Yards in a mile = 5280 ft ÷ 3 ft

Yards in a mile = 1760

This calculation clearly shows that there are 1760 yards in a mile. This example emphasizes the importance of understanding unit conversions in mathematics, allowing us to easily switch between units of measurement.

A hollow sphere of inner radius 8.82 cm and outer radius 9.91 cm floats half-submerged in a liquid of density 948.00 kg/m^3. (a) What is the mass of the sphere? (b) Calculate the density of the material of which the sphere is made.

Answers

Answer:

a) 0.568 kg

b) 474 kg/m³

Explanation:

Given:

Inner radius = 8.82 cm = 0.0882 m

Outer radius = 9.91 cm = 0.0991 m

Density of the liquid = 948.00 Kg/m³

a) The volume of the sphere = [tex]\frac{4\pi}{3}\times(0.0991^2-0.0882^2)[/tex]

or

volume of sphere = 0.0012 m³

also, volume of half sphere = [tex]\frac{\textup{Total volume}}{\textup{2}}[/tex]

or

volume of half sphere = [tex]\frac{\textup{0.0012}}{\textup{2}}[/tex]

or

Volume of half sphere =0.0006 m³

Now, from the Archimedes principle

Mass of the sphere = Weight of the volume of object submerged

or

Mass of the sphere = 0.0006× 948.00 = 0.568 kg

b) Now, density =  [tex]\frac{\textup{Mass}}{\textup{Volume}}[/tex]

or

Density = [tex]\frac{\textup{0.568}}{\textup{0.0012}}[/tex]

or

Density = 474 kg/m³

As a science project, you drop a watermelon off the top of the Empire State Building. 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a constant speed of 30 m/s. A) How much time passes before the watermelon has the same velocity? B) How fast is the watermelon going when it passes Superman?C) How fast is the watermelon traveling when it hits the ground?

Answers

Answer:

3.06 seconds time passes before the watermelon has the same velocity

watermelon going at speed 59.9 m/s

watermelon traveling when it hits the ground at speed is 79.19 m/s

Explanation:

given data

height = 320 m

speed = 30 m/s

to find out

How much time passes before the watermelon has the same velocity and How fast is the watermelon going and How fast is the watermelon traveling

solution

we will use here equation of motion that is

v = u + at    ....................1

here v is velocity 30 m/s and u is initial speed i.e zero and a is acceleration i.e 9.8 m/s²

put the value and find time t

30 = 0 + 9.8 (t)

t = 3.06 s

so 3.06 seconds time passes before the watermelon has the same velocity

and

we know superman cover distance is = velocity × time

so distance = 30 × t

and distance formula for watermelon is

distance = ut + 0.5×a×t²    .............2

here u is initial speed i.e 0 and a is acceleration i.e 9.8 m/s² and h is 30 × t

30 × t = 0 + 0.5×9.8×t²

t = 6.12 s

so  by equation 1

v = u + at

v = 0 + 9.8 ( 6.12)

v = 59.9 m/s

so watermelon going at speed 59.9 m/s

and

watermelon traveling speed formula is by equation of motion

v² - u² = 2as      ......................3

here v is speed and u is initial speed i.e 0 and a is acceleration i.e 9.8 m/s² and s is distance i.e 320 m

v² - 0 = 2(9.8) 320

v = 79.19 m/s

so watermelon traveling when it hits the ground at speed is 79.19 m/s

A snowboarder glides down a 48-m-long, 15° hill. She then glides horizontally for 10 m before reaching a 30° upward slope. Assume the snow is frictionless. What is her velocity at the bottom of the hill?
How far can she travel up the 30° slope?

Answers

Answer:

Her velocity at the bottom of the hill is 15.61m/s and she travel up the 30° slope 24.85m

Explanation:

For simplicity purpose, we can analyze the section of the snowboarder's travel in the hill, in the horizontal surface and in the slope separately.

In the hill, we will say that the x-axis is parallel to the hill, and y-axis is perpendicular. Using geometry, we can see that the angle of the snowboarder's weight force from the y-axis is 15°. The velocity of the snowboarder will increase in the direction parallel to the hill, in a constant acceleration motion:

[tex]F_x: W_x = ma\\W*sin(15) = ma\\mg*sin(15) = ma\\a = g*sin(15) = 9.81m/s^2 * sin(15) = 2.54m/s^2[/tex]

With the acceleration, we can use the equations for constant acceleration motion:

[tex]v_f^2 - v_o^2 = 2a*d\\v_f^2 - (0m/s)^2=2*2.54m/s^2*48m\\vf = \sqrt{2*2.54m/s^2*48m}=15.61 m/s[/tex]

This would be her velocity at the bottom of the hill.

As there is no friction, she would reach the bottom of the slope with this velocity.

In the slope, the line of reasoning is similar as in the hill, with the difference that the acceleration will oppose velocity.

[tex]F_x: -W_x = ma\\-W*sin(30) = ma\\-mg*sin(30) = ma\\a = -g*sin(30) = -9.81m/s^2 * sin(30) = -4.905m/s^2[/tex]

[tex]v_f^2-v_o^2=2a*d\\d=\frac{(v_f^2-v_o^2)}{2a}=\frac{((0m/s)^2-(15.61m/s)^2)}{2(-4.905m/s^2)} = 24.85m[/tex]

The speed of the snowboarder at the bottom of the hill is 15.62 m/s.

The distance the snowboarder travel up the 30° slope is 24.9 m.

Acceleration of the snowboarder on 15⁰ hill

The acceleration of the snowboarder is calculated as follows;

[tex]W sin\theta - F_f = ma\\\\mgsin\theta - 0 = ma\\\\mg sin(\theta) = ma\\\\a = g(sin\theta)\\\\a = 9.8 \times sin(15)\\\\a = 2.54 \ m/s^2[/tex]

The speed of the snowboarder at the bottom of the hill is calculated as follows;

[tex]v^2 = u^2 + 2ah\\\\v^2 = 0 + 2ah\\\\v = \sqrt{2ah} \\\\v = \sqrt{2(2.54)(48)} \\\\v = 15.62 \ m/s[/tex]

The acceleration of the snowboarder up 30° slope is calculated;

[tex]-Wsin(\theta)- F_f = ma\\\\-Wsin(\theta) -0 = ma\\\\-mgsin(\theta)= ma\\\\-gsin(\theta) = a\\\\a = -9.8 \times sin(30)\\\\a = -4.9 \ m/s^2[/tex]

The distance the snowboarder travel up the 30° slope is calculated as follows;

[tex]v^2 = u^2 - 2ah\\\\-2ah = v^2- u^2\\\\-2ah = v^2 -0\\\\-2ah = v^2\\\\h = \frac{v^2}{-2a} \\\\h = \frac{(15.62)^2}{-2(-4.9)} \\\\h = 24.9 \ m[/tex]

Learn more about net force on inclined here: https://brainly.com/question/14408327

A 0.350kg bead slides on a curved fritionless wire,
startingfrom rest at point A. At point B the bead
collideselastically with a 0.530kg ball at rest. find distance call
risesas it moves up the wire. Point A is 2.20 m from ground andfree
fall accel is 9.80 m/s. round answer to 3 significantfigures.

Answers

Answer:

h2 = 0.092m

Explanation:

From a balance of energy from point A to point B, we get speed before the collision:

[tex]m1*g*h-\frac{m1*V_B^2}{2}=0[/tex]  Solving for Vb:

[tex]V_B=\sqrt{2gh}=6.56658m/s[/tex]

Since the collision is elastic, we now that velocity of bead 1 after the collision is given by:

[tex]V_{B'}=V_B*\frac{m1-m2}{m1+m2} = \sqrt{2gh}* \frac{m1-m2}{m1+m2}=-1.34316m/s[/tex]

Now, by doing another balance of energy from the instant after the collision, to the point where bead 1 stops, we get the distance it rises:

[tex]m1*g*h2-\frac{m1*V_{B'}^2}{2}=0[/tex] Solving for h2:

h2 = 0.092m

A 7450 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreciable air resistance. When it has reached a height of 520 m , its engines suddenly fail so that the only force acting on it is now gravity.

(a) What is the maximum height this rocket will reach above the launch pad?
(b) How much time after engine failure will elapse before the rocket comes crashing down to the launch pad?
(c) How fast will it be moving just before it crashes?

Answers

Answer:

a) 520m

b) 10.30 s

c) 100,95 m/s

Explanation:

a) According the given information, the rocket suddenly stops when it reach the height of 520m, because the engines fail, and then it begins the free fall.

This means the maximum height this rocket reached before falling  was 520 m.

b) As we are dealing with constant acceleration (due gravity) [tex]g=9.8 \frac{m}{s^{2}}[/tex] we can use the following formula:

[tex]y=y_{o}+V_{o} t-\frac{gt^{2}}{2}[/tex]   (1)

Where:

[tex]y_{o}=520 m[/tex]  is the initial height of the rocket (at the exact moment in which it stops due engines fail)

[tex]y=0[/tex]  is the final height of the rocket (when it finally hits the launch pad)

[tex]V_{o}=0[/tex] is the initial velocity of the rocket (at the exact moment in which it stops the velocity is zero and then it begins to fall)

[tex]g=9.8m/s^{2}[/tex]  is the acceleration due gravity

[tex]t[/tex] is the time it takes to the rocket to hit the launch pad

Clearing [tex]t[/tex]:

[tex]0=520 m+0-\frac{9.8m/s^{2} t^{2}}{2}[/tex]   (2)

[tex]t^{2}=\frac{-520 m}{-4.9 m/s^{2}}[/tex]   (3)

[tex]t=\sqrt{106.12 s^{2}[/tex]   (4)

[tex]t=10.30 s[/tex]   (5)  This is the time

c) Now we need to find the final velocity [tex]V_{f}[/tex] for this rocket, and the following equation will be perfect to find it:

[tex]V_{f}=V_{o}-gt[/tex]  (6)

[tex]V_{f}=0-(9.8 m/s^{2})(10.30 s)[/tex]  (7)

[tex]V_{f}=-100.95 m/s[/tex]  (8) This is the final velocity of the rocket. Note the negative sign indicates its direction is downwards (to the launch pad)

Other Questions
Subtraction fraction answer for 13 3/16 Subtract 2 1/4 Round your answers to the nearest whole number.The fasted train in the world can travel 300 feet per second. How fast is this in miles per hour? (1 mile = 5280 feet) For FHG find the measure of the smallest angle The hypotenuse of a right triangle is 13 inches. If the long leg is 7 inches longer than the short leg, find the lengths of the leg using the Pythagorean theorem Raymond buys bottles of water at 2 dollars each and a large pizza at 13 dollars. The total costar 21 dollars. How many bottles of water did Raymond buy? If the quality differences of similar products are mostly imperceptible to the average consumer's eyes, which of the following will most likely play a major role in influencing the decisions of purchasers?A. price of competing productsB. size of competing productsC. purchaser's opportunity costD. geographic origin of products Some organizations are buying sections of forestland. Once purchased, forests within the sections will not be cut down. What is the primary goal of protecting these forest sections at 8 a.m. the temperature was -14 degrees by noon the tempature was 12 degrees. Find the change did it rise or drop? Please help!!!!!!!!!!!!!!! What was President Jackson's plan for dealing with Native Americans? When water and hydroxide approach, will the two oxygen atoms attract or repel one another? They will attract by bonding like the oxygens in hydrogen peroxide, h-o-o-h. They will attract because they both carry negative charges. They will repel because they both carry negative charges. They will repel because atoms of the same element always repel? Which of the following is not an accessory structure of the respiratory system? a. Oral cavity b. Trachea c. Rib cage d. Diaphragm Mullerian inhibiting hormone A. Is synthesized and secreted by Leydig cells. B. Stimulates development of female internal genitalia. C. Prevents the development of female internal reproductive organs in an XY male. D. Is produced in response to hCG E. Is required for differentiation of the Wolffian ducts. Which of the following statements is true? SELECT ALL CORRECT OPTIONS OPTION A an oocyte only completes meioss I if fertilzation occurs OPTION B sperm only complete meioss Il if they fertlze an egg OPTION C there are two kinds of sperm, left sperm and right sperm, to ensure fertlzation OPTION D the 16 cell stage through 100 cell stage is called the zygote How many years did Rome spend at war with nomadic tribes? Can someone proof read my English paper, very hard teacher, I need a good grade on this. Parental Control on Time Spent on Electrons Many teenagers in today's day in age would love to know that they are not being monitored and limited on their phones, but is that what is really best for them? Parents should be allowed to limit their teenager's time on the phone because of the consequences of mental and physical health.Some people believe that not limiting screen time is good. Being online can benefit us in many different ways whether you are strengthening your hand-eye coordination by video games or in general playing education games. Tv shows can offer learning channels for toddlers that focus on letters and numbers and even problem-solving.However, parents not limiting their teens' phone usage could lead to physical health. Your teen's physical health can suffer consequences when not limiting time on the phone. Teens today can become sedentary, in other words, they could suffer from obesity. Healthychildren.org writes, Teens who watch more than 5 hours of TV per day are 5 times more likely to be overweight ten teens who watch 0 to 2 hours. Not only can TV cause physical health issues social media and video games as well. 20% of teens spend more than 5 hours a day in front of there screens. 43% of those teens are more likely to get obese because they are twice as likely to drink any drink that has sugar. In addition to teens becoming more likely to be obese, they can also suffer from sleep problems. Teens today get so caught up in TV, social media, and video games that they begin to lose track of time. Dr. Anjalee Galion quotes, Teenagers have a natural tendency to go to bed late and sleep late. So too much screen time before bed can make it more difficult for them to go to sleep and have enough sleep before waking up to the demands of an academic day. Teen wasting away there day on social media moves their whole sleeping schedule. On average teens usually get between 7 and 7 hours of sleep, when we are really supposed to be getting 9 to 91/2. The more and more teenagers spend time on any type of electronics too much their sleep schedule gets short and short, which makes it harder and harder to get back into the routine of at least 7 hours a day.Further more to physical health having consequences, spending to much time on the phone can cause relationships with family or friends to drift apart. As I said in the previous paragraph teenagers today often lose track of time when they are on there phone too much, and that lack of time off the phone affects others around that teenager. It is said that when a teen is so addicted to their phone or any electronic they experience withdrawal, which can be taken out on people around the teenager. When they are not allowed access to the internet they become irritable. That irritability can radiate that energy to others in some way the parent made that teenager angry when they were irritable the teenager would more likely do something rebellious which makes that relationship between the two much weaker.In addition to physical health, there is mental health that has consequences due to lack of the limit on the phone. Watching TV, going on social media, and especially video games are an escape for most people, wither it's from reality, stress, anxiety, depression, ect., but that is not ok all the time Rcg.org wrote, For a few fleeting moments, the players lose themselves in the games as they feel the bliss and release of being control. It is ok to use some stuff as an escape for life but at some point, you may go to far. By not speaking you're of whats going on and how you feel is a really bad thing to do and could even make your mental health even worst. When teenagers use video games as an escape they are not vocally telling about how they feel cause they use that game to get away from the problem.Therefor Physical and mental health are major things that get consequences from no limit to the amount of time on the phone. From physical health of higher chances of obesity and lack of sleep to the mental health of using video games as an escape, are terrible consequences that in today's day an age teenagers are more likely to get. which of the following does not describe a function of fat how do withholding taxes work What's the summary of Cormandel fishers,sorojini naidu A certain liquid as a mass of 15 grams and a volume of 15 mL. This liquid must be.....