If the area of a circle is 121 pi square units, what is its diameter

Answers

Answer 1
Ffhhbbvgghjjiufdeeedfhjytreetuhh
Answer 2

Answer:22

Step-by-step explanation:

diameter=d

Area=121π

area of circle=π x (d/2)^2

121π=π x d^2/4

121π=πd^2/4

Cross multiplying we get

121π x4=πd^2

484π=πd^2

Divide both sides by π

484π/π=πd^2/π

d^2=484

Taking the square roots of both sides we get

d=√(484)

d=22 diameter=22


Related Questions

Suppose that .06 of each of two populations possess a given characteristic. Samples of size 400 are randomly drawn from each population. The probability that the difference between the first sample proportion which possess the given characteristic and the second sample proportion which possess the given characteristic being more than .03 is _______.

Answers

Answer:

The correct answer to the following question will be "0.0367".

Step-by-step explanation:

The given values are:

[tex]p1=p2=0.06[/tex]

[tex]q1=q2=1-p1=0.94[/tex]

[tex]n1=n2=400[/tex]

As we know,

[tex]E(p1-p2)=p1-p2=0\\[/tex]

[tex]SE(p1-p2)=\sqrt{\frac{p1q1}{n1}+\frac{p2q2}{n2}}[/tex]

On putting the given values in the above expression, we get

                   [tex]= \sqrt{p1q1(\frac{1}{400}+\frac{1}{400})}[/tex]

                   [tex]=0.0168[/tex]

Now, consider

[tex]P(p1-p2>0.03)=P[\frac{(p1-p2)-E(p1-p2)}{SE(p1-p2)}>\frac{0.03-0}{0.0168}][/tex]

                            [tex]=P(Z>1.7857)[/tex]

                            [tex]=P(Z>1-79)[/tex]

                            [tex]=0.036727[/tex]

Therefore, "0.0367" is the right answer.

Final answer:

Calculating the probability of the difference between two sample proportions being more than 0.03 involves executing a hypothesis test via a z-test due to our large sample size. We formulate and employ a formula to get the z-score and then determine the associated p-value using a statistical tool.

Explanation:

This question falls within the area of statistics, particularly dealing with hypothesis testing and comparison of two independent population proportions. Given that 0.06 of each population possess a certain characteristic and samples of size 400 are drawn from each, we are required to calculate the probability that the difference between the sample proportions exceeds 0.03.

First, we establish the null hypothesis (H0) and alternative hypothesis (Ha) for the test. H0: P1 = P2 and Ha: P1 ≠ P2. Here, P1 and P2 represent the populations respectively. Given a sufficiently large sample size (n > 30), we use a z-test for comparing the proportions.

In computing the z-score, we use the following formula: z = (P1 - P2) / √ ((P*(1 - P*) / n1) + (P*(1 - P*) / n2)). Here, P* = (x1 + x2) / (n1 + n2), where x is the number of successes in each sample (0.06*400 = 24 per population logistically).

The p-value associated with the calculated z-score, which represents the probability that the difference between the first sample proportion and the second sample proportion being more than 0.03, can be found using a statistical calculator or statistical software. The precise numerical value for p will depend on the computed z-score.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ11

A normal deck of cards has 52 cards, consisting of 13 each of four suits: spades, hearts, diamonds, and clubs. Hearts and diamonds are red, while spades and clubs are black. Each suit has an ace, nine cards numbered 2 through 10, and three face cards. The face cards are a jack, a queen, and a king. Answer the following questions for a single card drawn at random from a well-shuffled deck of cards.

What is the probability of drawing a king of any suit?
What is the probability of drawing a face card that is also a spade?

Answers

Answer:

a) 1/3

Step-by-step explanation:

a) Probability of drawing a king of any suit

Number of kings = 4

P(king) = 4/52

= 1/13

b) Probability of drawing a face card that is also a spade

Number of face =3

P(king) = 3/ 52

if h(x)=1-2/3x, find h(-6).

Answers

Answer:

  5

Step-by-step explanation:

Put -6 where x is and do the arithmetic.

  [tex]h(x)=1-\dfrac{2}{3}x\\\\h(-6)=1-\dfrac{2}{3}(-6)=1-\dfrac{-12}{3}=1-(-4)=1+4\\\\\boxed{h(-6)=5}[/tex]

A bag contains eleven equally sized marbles, which are numbered. Two marbles are chosen at random and replaced after each selection.

Eleven numbered marbles are shown. Marbles 2, 5, 6, 7, 8, 10, 11 are white. Marbles 1, 3, 4, 9 are purple.

What is the probability that the first marble chosen is shaded and the second marble chosen is labeled with an odd number?

StartFraction 10 Over 121 EndFraction
StartFraction 24 Over 121 EndFraction
StartFraction 6 Over 11 EndFraction
StartFraction 10 Over 11 EndFraction

Answers

EndFraction

StartFraction 24 Over 121 EndFraction

StartFraction 6 Over 11 EndFraction

StartFraction 10 Over 11 EndFraction

Answer:

StartFraction 24 Over 121 EndFraction

Step-by-step explanation:

Calculate the divergence of the following radial field. Express the result in terms of the position vector r and its length StartAbsoluteValue Bold r EndAbsoluteValue. FequalsStartFraction left angle x comma y comma z right angle Over x squared plus y squared plus z squared EndFraction equalsStartFraction Bold r Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction Choose the correct answer below. A. The divergence of F is 0. B. The divergence of F is StartFraction negative 2 Over StartAbsoluteValue Bold r EndAbsoluteValue Superscript 4 EndFraction . C. The divergence of F is StartFraction 1 Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction . D. The divergence of F is StartFraction negative 1 Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction

Answers

Answer:

C. The divergence of F is StartFraction 1 Over StartAbsoluteValue Bold r EndAbsoluteValue squared EndFraction

∇•F = 1/|r|²

Step-by-step explanation:

The position vector r = (x, y, z)

r = xi+yj+zk

|r| = √x²+y²+z²

|r|² = x²+y²+z²

Given the radial field F = r/|r|²

Divergence of the radial field is expressed as:

∇•F = {δ/δx i+ δ/δy j + δ/δy k} • {(r/|r|²)

∇•F = {δ/δx i+ δ/δy j + δ/δy k} • {xi/|r|² + yj/|r|² + zk/|r|²}

∇•F = δ/δx(x/|r|²) + δ/δy(y/|r|²)+δ/δz(z/|r|²)

Check the attachment for the complete solution.

Solve the right triangle shown in the figure. Around lengths to two decimal places and express angles to the nearest tenth of a degree.

Answers

Answer:

a = 65.37

b = 46.11

B = 35.2

Step-by-step explanation:

sin 54.8 = a / 80

a = 80 sin 54.8 = 65.3715 = 65.4

[tex]b^{2} = c^{2} - a^{2}[/tex]

b=[tex]\sqrt{80^2 - 65.3715^2}[/tex]

b=46.1147 = 46.11

B = 180 - 90 - 54.8 = 35.2

The sides and the angles as follows:

Therefore,

∠A = 54.8°

∠B = 35.2°

∠C = 90°

a ≈ 65.37

b ≈ 46.64

c = 80

The triangle is a right angle triangle. Using trigonometric ratios, let's find a.

sin 54.8 = opposite / hypotenuse

sin 54.8 = a / 80

a = 80 sin 54.8

a = 65.3715918668

a ≈ 65.37

let's use Pythagoras theorem to find b.

c² = a² + b²

b² = c² - a²

b² =  80² - 65²

b² = 6400 - 4225

b² = 2175

b = √2175

b = 46.6368952654

b ≈ 46.64

let's find ∠B

∠A +  ∠B +  ∠C = 180°

∠B = 180 - 54.8 - 90

∠B = 35.2°

Therefore,

∠A = 54.8°

∠B = 35.2°

∠C = 90°

The sides are as follows:

a ≈ 65.37

b ≈ 46.64

c = 80

read more: https://brainly.com/question/3770177?referrer=searchResults

In cooking class, Sofia measures a stick of butter. It is 13 centimeters long, 3 centimeters
wide, and 3 centimeters tall. What is the volume of the stick of butter?

Answers

Answer:  117 centimeters

Step-by-step explanation:

Answer:

117 cm³

Step-by-step explanation:

To calculate the volume of a Rectangular Prism, we must use the formula:

l×w×h=V.

In this case, l= 13, w= 3, and h= 3.

When these values are substituted in, we get:

13×3×3= 117 cm³

Assume that when adults with smartphones are randomly​ selected, 58​% use them in meetings or classes. If 10 adult smartphone users are randomly​ selected, find the probability that at least 5 of them use their smartphones in meetings or classes.

Answers

Answer:

79.85% probability that at least 5 of them use their smartphones in meetings or classes.

Step-by-step explanation:

For each adult, there are only two possible outcomes. Either they use their smartphone during meetings or classes, or they do not. The probability of an adult using their smartphone in these situations are independent of other adults. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Assume that when adults with smartphones are randomly​ selected, 58​% use them in meetings or classes.

This means that [tex]p = 0.58[/tex]

10 adults selected.

This means that [tex]n = 10[/tex]

Find the probability that at least 5 of them use their smartphones in meetings or classes.

[tex]P(X \geq 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)[/tex]

In which

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 5) = C_{10,5}.(0.58)^{5}.(0.42)^{5} = 0.2162[/tex]

[tex]P(X = 6) = C_{10,6}.(0.58)^{6}.(0.42)^{4} = 0.2488[/tex]

[tex]P(X = 7) = C_{10,7}.(0.58)^{7}.(0.42)^{3} = 0.1963[/tex]

[tex]P(X = 8) = C_{10,8}.(0.58)^{8}.(0.42)^{2} = 0.1017[/tex]

[tex]P(X = 9) = C_{10,9}.(0.58)^{9}.(0.42)^{1} = 0.0312[/tex]

[tex]P(X = 10) = C_{10,10}.(0.58)^{10}.(0.42)^{0} = 0.0043[/tex]

[tex]P(X \geq 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10) = 0.2162 + 0.2488 + 0.1963 + 0.1017 + 0.0312 + 0.0043 = 0.7985[/tex]

79.85% probability that at least 5 of them use their smartphones in meetings or classes.

Insert three geometric means between 2 and 81/8

Answers

Answer:

The three geometric means are 3, 9/2 and 27/4

Step-by-step explanation:

The nth term of a geometric sequence is expressed as Tn = [tex]ar^{n-1}[/tex] where;

a is the first term

r is the common ratio

n is the number of terms

Since we are to insert three geometric means between 2 and 81/8, the total number of terms in the sequence will be 5 terms as shown;

2, a, b, c, 81/8

a, b, and c are the 3 geometric mean to be inserted

T1 = [tex]ar^{1-1}[/tex] = 2

T1 = a = 2....(1)

T5= [tex]ar^{5-1}[/tex]

T5 = [tex]ar^{4}[/tex] = 81/8... (2)

Dividing equation 1 by 2 we have;

[tex]\frac{ar^{4} }{a}= \frac{\frac{81}{8} }{2}[/tex]

[tex]r^{4} = \frac{81}{16}\\\\r = \sqrt[4]{\frac{81}{16} } \\r = 3/2[/tex]

Given a =2 and r = 3/2;

[tex]T2=ar\\T2 = 2*3/2\\T2 = 3\\\\T3 = ar^{2} \\T3 = 2*\frac{3}{2} ^{2} \\T3 = 2*9/4\\T3 = 9/2\\\\T4 = ar^{3}\\T4 = 2*\frac{3}{2} ^{3} \\T4 = 2*27/8\\T4 = 27/4\\[/tex]

Therefore the three geometric means are 3, 9/2 and 27/4

In a geometric sequence where three terms lie between 2 and 81/8, the three geometric terms are:

[tex]\mathbf{T_2 =3 }[/tex]

[tex]\mathbf{T_3 =\frac{9}{2} }[/tex]

[tex]\mathbf{T_4 =\frac{27}{4} }[/tex]

Recall:

nth term of a geometric sequence is given as: [tex]\mathbf{T_n = ar^{n - 1}}[/tex]a = the first term; r = the common ratio; n = the number of terms

Given a geometric sequence, 2 . . . 81/8, with three other terms in the middle, first, find the value of r.

Thus:

First Term:

a = 2

Fifth Term:

[tex]T_5 = ar^{n - 1}[/tex]

a = 2

n = 5

r = ?

T5 = 81/8

Plug in the value of a, n, and T5

[tex]\frac{81}{8} = 2r^{5 - 1}\\\\\frac{81}{8} = 2r^4\\\\[/tex]

Multiply both sides by 8

[tex]\frac{81}{8} \times 8 = 2r^4 \times 8\\\\81 = 16r^4\\\\[/tex]

Divide both sides by 16

[tex]\frac{81}{16} = \frac{16r^4}{16} \\\\\frac{81}{16} = r^4\\\\[/tex]

Take the fourth root of both sides

[tex]\sqrt[4]{\frac{81}{16}} = r\\\\\frac{3}{2} = r\\\\\mathbf{r = \frac{3}{2}}[/tex]

Find the three geometric means [tex]T_2, T_3, $ and $ T_4[/tex] between 2 and 81/8.

[tex]\mathbf{T_n = ar^{n - 1}}[/tex]

a = 2

r = 3/2

Thus:

[tex]T_2 = 2 \times (\frac{3}{2}) ^{2 - 1}\\\\T_2 = 2 \times (\frac{3}{2}) ^{1}\\\\\mathbf{T_2 = 3}[/tex]

[tex]T_3 = 2 \times \frac{3}{2} ^{3 - 1}\\\\T_3 = 2 \times (\frac{3}{2}) ^{2}\\\\T_3 = 2 \times \frac{9}{4}\\\\\mathbf{T_3 =\frac{9}{2} }[/tex]

[tex]T_4 = 2 \times \frac{3}{2} ^{4 - 1}\\\\T_4 = 2 \times (\frac{3}{2}) ^{3}\\\\T_4 = 2 \times \frac{27}{8}\\\\\mathbf{T_4 =\frac{27}{4} }[/tex]

Therefore, in a geometric sequence where three terms lie between 2 and 81/8, the three geometric terms are:

[tex]\mathbf{T_2 =3 }[/tex]

[tex]\mathbf{T_3 =\frac{9}{2} }[/tex]

[tex]\mathbf{T_4 =\frac{27}{4} }[/tex]

Learn more here:

https://brainly.com/question/12115906

2 ( n-1 ) + 4n= 2( 3n-1 )

Answers

Answer:

infinite solutions

Step-by-step explanation:

2 ( n-1 ) + 4n= 2( 3n-1 )

Distribute

2n -2 +4n = 6n -2

Combine like terms

6n -2 = 6n -2

Subtract 6n from each side

6n-2-6n = 6n-2-6n

-2 = -2

This is always true so there are infinite solutions

A recipe for a loaf of bread calls for of a cup of flour. If Milo used 12 cups of flour, how many loaves of bread did he prepare?
A.
18
B.
16
C.
15
D.
12
E.
8

Answers

Answer: The answer is D 12 i am pretty sure.

Step-by-step explanation:

Answer:

D

Step-by-step explanation:

Which triangle can be solved using the law of sines?

Answers

Answer:

for AAS triangles or SSA

Step-by-step explanation:

Answer:

ny triangle whose two sides and 1 angle is known or 2 angles are known and 1 side is known

Step-by-step explanation:

brainliest.
The set {5, 6, 8, 9, 10} is part of a solution set for which inequality?
A. c+14<24

B. c+18≥24

C. c+18>24

D. c+14≤24
please help

Answers

Answer:

D. c+14≤24

Step-by-step explanation:

A. c+14<24 is c<10 (subtract 14)

B. c+18≥24 is c≥6 (subtract 18)

C. c+18>24 is c>6 (subtract 18)

D. c+14≤24 is c≤10 (subtract 14)

The set is {5, 6, 8, 9, 10}, so it should include each one of those numbers. C and A don't include 6 and 10 respectively, so they can't be the answer. B contains all numbers 6 and above, which doesn't include 5. The remaining letter is D, so that's the final answer.

How can you use a rational exponent to
represent a power involving a radical?

Answers

Answer:

  [tex]\sqrt[n]{x^m}=x^{\frac{m}{n}}[/tex]

Step-by-step explanation:

A radical represents a fractional power. For example, ...

  [tex]\sqrt{x}=x^{\frac{1}{2}}[/tex]

This makes sense in view of the rules of exponents for multiplication.

  [tex]a^ba^c=a^{b+c}\\\\a^{\frac{1}{2}}a^{\frac{1}{2}}=a^{\frac{1}{2}+\frac{1}{2}}=a\\\\(\sqrt{a})(\sqrt{a})=a[/tex]

So, a root other than a square root can be similarly represented by a fractional exponent.

____

The power of a radical and the radical of a power are the same thing. That is, it doesn't matter whether the power is outside or inside the radical.

  [tex]\sqrt[n]{x^m}=x^{\frac{m}{n}}=(\sqrt[n]{x})^m[/tex]

I need help ASAP what do I put for what I already know

Answers

Well what do you already know?

Please help!! MATH! WILL MARK BRAINLIEST!!

Answers

Answer:

Step-by-step explanation:

10 POINTS ! PLZ HURRY AND ANSWER (:​

Answers

Answer:

The top question = 189.25 rounded = 189.3 sq in

explanation: area= radius square x pi so radious is 5..sq will 25 then 25xpi(3.14)=78.50 78.50/2= 39.25 + 150 (area of rect) =189.25 rounded to 189.3

for the bottom question = 488 square cm

Step-by-step explanation:

17x22= 374

22-10=12

12x19=228 / 2 = 114

114 + 374 = 488 sq cm

A sphere has a diameter of 30 meters. What is the volume of the sphere.

Answers

Answer:

V≈14,137.17m³ or 4500π

Step-by-step explanation:

Formula: V=(1 /6)πd³

V=(1/6)π(30³)= 14137.16694115406957308189522475776297888726229718797619438.....

Answer:

14137.17 meters cubed

Step-by-step explanation:

volume = 14137.17 meters cubed

The pita‑franchise owner has observed in the past that waiting times tend to have a long tail to the right, with most customers served relatively quickly and a few rare customers required to wait a very long time.Is a two‑sample t ‑test appropriate in this setting?The two‑sample t ‑test is appropriate because this is a comparison of the means of two continuous, random variables.The two‑sample t ‑test is not appropriate because the two samples do not have the same size.The two‑sample t ‑test is not appropriate because the sample standard deviations are not equal.The two‑sample t ‑test is not appropriate because the distributions are not normal and the sample sizes are too small.The two‑sample t ‑test is appropriate because the samples are random and contain no outliers, and the populations are normal.

Answers

Answer:

The two‑sample t ‑test is not appropriate because the distributions are not normal and the sample sizes are too small.

Step-by-step explanation:

The complete question is:

The owner of a pita franchise with two locations is interested in the average time that customers spend waiting for service at each store. She believes that the average waiting time at the original location is higher than the average waiting time at the new location.

The pita‑franchise owner has observed in the past that waiting times tend to have a long tail to the right, with most customers served relatively quickly and a few rare customers required to wait a very long time.Is a two‑sample t ‑test appropriate in this setting?The two‑sample t ‑test is appropriate because this is a comparison of the means of two continuous, random variables.The two‑sample t ‑test is not appropriate because the two samples do not have the same size.The two‑sample t ‑test is not appropriate because the sample standard deviations are not equal.The two‑sample t ‑test is not appropriate because the distributions are not normal and the sample sizes are too small.The two‑sample t ‑test is appropriate because the samples are random and contain no outliers, and the populations are normal.

For two sample t-test the distributions must be normal. Here the data, as mentioned in the questions is skewed to the right with long waiting times in the past.

Final answer:

The two-sample t-test is not appropriate for the pita-franchise owner's observations because the waiting times are not normally distributed and the sample sizes are small. A test that does not assume normality, like the Mann-Whitney U test, would be more suitable in this situation.

Explanation:

The two-sample t-test is a statistical method used to determine if the means of two groups are significantly different. One key assumption for a two-sample t-test, however, is that the data should come from populations that are approximately normally distributed, especially if the sample sizes are not large. If the assumption of normality is violated and the sample size is small, as indicated by a distribution with a long tail to the right, the two-sample t-test may not be appropriate. To make an informed decision, it would also be necessary to consider the equality of variances, sample sizes, and independence of the samples.

In the context of a pita-franchise with long-tailed waiting times, the distribution is not normal, indicating that the normality assumption is not met. Consequently, using the two-sample t-test might lead to inaccurate results, especially if the sample sizes are too small to compensate for the lack of normality. In such cases, a different test like the Mann-Whitney U test, which does not assume normality, might be a better choice.

There is a spinner with 14 equal areas, numbered 1 through 14. If the spinner is spun one time, what is the probability that the result is a multiple of 3 or a multiple of 2?

Answers

Answer:

There is a 11/14 chance that the result is a multiple of 3 or a multiple of 2.

Step-by-step explanation:

Since the spinner is from 1 to 14, find all of the multiples of 3 and multiples of 2.

There are 4/14 multiples of 3 and 7/14 multiples of 2.

Add both of these numbers together 4/14 + 7/14 = 11/14

If this answer is correct, please make me Brainliest!

The probability of landing on a multiple of 2 or 3 when spinning a spinner numbered 1 through 14 is 4/7.

The student asked about the probability of getting a multiple of 3 or a multiple of 2 when spinning a spinner numbered 1 through 14. To determine this, we first list the multiples of 3 and 2 within the range of numbers on the spinner.

Multiples of 3: 3, 6, 9, 12
Multiples of 2: 2, 4, 6, 8, 10, 12, 14
Note that 6 and 12 are multiples of both 2 and 3, so we should not count them twice.

The total number of distinct multiples of 2 or 3 is 3 (multiples of 3) + 7 (multiples of 2) - 2 (common multiples) = 8 unique numbers. Since there are 14 possible outcomes on the spinner, the probability of landing on a multiple of 3 or 2 is 8 (favorable outcomes) divided by 14 (total possible outcomes).

The probability calculation is: 8/14, which simplifies to 4/7.

Find the Surface Area.
18m2
20m2
16m2
15m2

Answers

Answer:

20 meters square

Step-by-step explanation:

Surface Area of this square based pyramid =  A  = base area + 4* (face area)

A = (2 *2)  +  4* ( (1/2)*2 * 4) )

A = 4 + 4*(4)

A = 4 + 16 = 20

A = 20 square meters

Consider the quadratic equation x2 = 4x - 5. How many solutions does the equation have?

Answers

Answer:

no real solutions2 complex solutions

Step-by-step explanation:

The equation can be rearranged to vertex form:

  x^2 -4x = -5 . . . . . . . . . subtract 4x

  x^2 -4x +4 = -5 +4 . . . . add 4

  (x -2)^2 = -1 . . . . . . . . . show the left side as a square

  x -2 = ±√-1 = ±i . . . . . . take the square root; the right side is imaginary

  x = 2 ± i . . . . . . . . . . . . . add 2. These are the complex solutions.

_____

Comment on the question

Every 2nd degree polynomial equation has two solutions. They may be real, complex, or (real and) identical. That is, there may be 0, 1, or 2 real solutions. This equation has 0 real solutions, because they are both complex.

Mary lives on a corner lot. The neighborhood children have been cutting diagonally across her lawn instead of walking around the yard. If the diagonal distance across the lawn is 50 ft and the longer part of the sidewalk is twice the shorter length, how many feet are the children saving by cutting the lawn? round to the nearest foot if necessary.

Answers

Answer:

17 feet

Step-by-step explanation:

Length of the diagonal=50 feet

Let the shorter part of the sidewalk =x

Since the longer part of the sidewalk is twice the shorter length,

Length of the longer part of the sidewalk =2x

First, we determine the value of x.

Using Pythagoras Theorem and noting that the diagonal is the hypotenuse.

[tex]50^2=(2x)^2+x^2\\5x^2=2500\\$Divide both sides by 5\\x^2=500\\x=\sqrt{500}=10\sqrt{5} \:ft[/tex]

The length of the shorter side =[tex]10\sqrt{5} \:ft[/tex]

The length of the longer side =[tex]20\sqrt{5} \:ft[/tex]

Total Distance =[tex]10\sqrt{5}+ 20\sqrt{5}=67 \:feet[/tex]

Difference in Distance

67-50=17 feet

The children are saving 17 feet by cutting the lawn diagonally.

Click the prime number cards to build composite numbers to 50. Click the blank card to add a new prime number

Answers

Answer:

See Explanation

Step-by-step explanation:

A prime number is a number that is only divisible by by 1 and itself.Composite numbers on the other hand is any number which is not prime.

To determine the number of prime cards needed to build a composite number, we simply express the number as a product of its prime factors.

These are:

4=2X2

6=2X3

8=2X2X2

9=3X3

10=2X5

12=2X2X3

14=2X7

15=3X5

16=2X2X2X2

18=2X3X3

20=2X2X5

21=3X7

22=2X11

24=2X2X2X3

26=2X13

27=3X3X3

28=2X2X7

30=2X3X5

32=2X2X2X2X2

33=3X11

34=2X17

35=5X7

36=2X2X3X3

38=2X19

39=3X13

40=2X2X2X5

42=2X3X7

44=2X2X11

45=3X3X5

46=2X2X13

48=2X2X2X2X3

49=7X7

50=2X5X5

Therefore for each of the numbers, those are the prime number cards to be used.

Increasing numbers of businesses are offering child-care benefits for their workers. However, one union claims that more than 85% of firms in the manufacturing sector still do not offer any child-care benefits to their workers. random sample of 330 manufacturing firms is selected and asked if they offer child-care benefits. Suppose the P-value for this test was reported to be p = 0.1071. State the conclusion of interest to the union. Use alpha=0.05 .

Answers

Final answer:

With a p-value of 0.1071 exceeding the significance level of 0.05, we do not reject the null hypothesis and conclude there is insufficient evidence to support the union's claim about child-care benefits in manufacturing firms.

Explanation:

The reported p-value of 0.1071 is greater than the significance level alpha (0.05). Based on this result, the appropriate statistical decision would be to do not reject the null hypothesis.

Therefore, at the 5 percent significance level, there is insufficient evidence to support the claim made by the union that more than 85% of firms in the manufacturing sector do not offer child-care benefits to their workers.

The higher p-value suggests that the data collected from the random sample of 330 manufacturing firms does not provide strong enough evidence to refute the possibility that the percentage of firms not offering child-care benefits is at or below 85%.

What is the volume of the triangular prism? A) 15 cm3 B) 18 cm3 C) 21 cm3 D) 24 cm3

Answers

Answer:

See Explanation Below

Step-by-step explanation:

The image of the trianglular prism is missing.

However, I'll answer your question using the attachment below.

The volume of a triangular prism is calculated as follows.

V = ½lbh

Where l = length of the prism

b = base of the prism

h = height of the prism

V = volume of the prism.

From the attachment,

Length, l = 6 cm

Base, b = 3 cm

And Height, h = 4 cm

By substituting each of these values in the formula given above

V = ½lbh becomes

V = ½ * 6 * 3 * 4

V = 3 * 3 * 4

V = 36 cm³

If you follow these steps you'll get the volume of the trianglular prism as it is in your question.

Answer:

its 15

Step-by-step explanation:

ik its 15 because when i put in 24 it was wrong and gave me the awnser which was 15

Valerie is taking a road trip over spring break. At 4:30 p.m. she looks down at her speedometer and notices that she is going 45 mph. Ten minutes later she looks down at the speedometer again and notices that she is going 55 mph. When was she moving exactly 50 mph?Select one:a. 4:30 p.m.b. 4:35 p.m.c. 4:40 p.m.d. Cannot be determined

Answers

Answer:

b. 4:35 p.m

Step-by-step explanation:

Her speed in t minutes after 4:30 p.m. is modeled by the following equation:

[tex]v(t) = v(0) + at[/tex]

In which v(0) is her speed at 4:30 pm and a is the acceleration.

At 4:30 p.m. she looks down at her speedometer and notices that she is going 45 mph.

This means that [tex]v(0) = 45[/tex]

Ten minutes later she looks down at the speedometer again and notices that she is going 55 mph.

This means that [tex]v(10) = 55[/tex]

So

[tex]v(t) = v(0) + at[/tex]

[tex]55 = 45 + 10a[/tex]

[tex]10a = 10[/tex]

[tex]a = 1[/tex]

So

[tex]v(t) = 45 + t[/tex]

When was she moving exactly 50 mph?

This is t minutes after 4:30 p.m.

t is found when v(t) = 50. So

[tex]v(t) = 45 + t[/tex]

[tex]50 = 45 + t[/tex]

[tex]t = 5[/tex]

5 minutes after 4:30 p.m. is 4:35 p.m.

So the correct answer is:

b. 4:35 p.m

Find the missing side of the triangle. Leave your answer in simplest radical
form.​

Answers

Answer:

that answer is D

Step-by-step explanation:

I used pythagreum theurum a^2+b^2=c^2

then i divided square root 260 by 4 the largest perfect square factor which gives us 2 square root 65 because 4 is a perfect square that equal 2

Does anybody know how to do #11, I figured out #10

Answers

Answer:

no

Step-by-step explanation:

10.) she needs 5.64, you basically do 2.35 divided by 5 and then you get 0.47 and multiply that by 12

11.) instead of doing 0.47 multiplied by 12 you would do 0.47 multiplied by 10

PLEASE- The label of a certain cheese states that it weighs 8 ounces. The actual weight of the product sold is allowed to be 0.2 ounces above or below that. Write a compound inequality that represents this situation.

Answers

Answer:

7.8《 X《 8.2

Step-by-step explanation:

Let X be the weight of the product

8 - 0.2《 X《 8 + 0.2

7.8《 X《 8.2

Answer:

7.8《 X《 8.2

Step-by-step explanation:

Let X be the weight of the product

8 - 0.2《 X《 8 + 0.2

7.8《 X《 8.2p

Other Questions
What is gaseous at room temperature? An ionic compound is typically formed between? Using the bar chart, what percent of the population studied has either 2 or 3 cars?A)22.7%B)34.0%C)43.3%D)71.0% Let's now use our new calculator functions to do some calculations! A. Add the square of 3 to the square root of 9 Save the result to a variable called calc_a B. Subtract the division of 12 by 3 from the the multiplication of 2 and 4 Save the result to a variable called calc_b C. Multiply the square root of 16 by the sum of 7 and 9 Save the result to a variable called calc_c D. Divide the square of 7 by the square root of 49 Save the result to a variable called calc_d SUUWhat explains the key difference between a bomb calorimeter and a coffee cup calorimeter?A bomb calorimeter is 10 times larger but works the same wayA bomb calorimeter measures heat for liquid products onlyA bomb calorimeter has a separate chamber to hold substances and can even measure heat gain or loss for reactions thatdo not occur in water.A bomb calorimeter can measure heat gain or loss in gaseous reactions but is not useful for reactions that occur at highpressures and temperatures.Save and ExitREMark this and retum Compare and contrast the Latino populations on the East Coast with those on the West Coast, including their nations of origin and what circumstances brought them to the United States. Derive the equation relating the total charge QQ that flows through a search coil (Conceptual Example 29.3) to the magnetic-field magnitude BB. The search coil has NN turns, each with area AA, and the flux through the coil is decreased from its initial maximum value to zero in a time tt. The resistance of the coil is RR, and the total charge is Q=ItQ=It, where II is the average current induced by the change in flux. The emission of gases from factories and cars contributes to __________ pollution. What was the overland campaign about? y = 9x - 12. What is the slope of the equation? What chronology is described in the excerpt?the developing legal battle between lawyers and farmersO farmers' increasing interest in riding bicyclesO the progress toward improved roadwaysO farmers' frustration with expenses A table is 3 feet wide. The length of the table can be adjusted as needed. You need at least 24 square feet of space on the table. Write and solve an inequality to represent the minimum length the table should have. The net of a triangular prism is shown. Which measurement is closest to the total surface area of the triangular prism in square centimeters?A6 cm2B8 cm2C14 cm2D20 cm2 Why is Dr. Tumpey's radical approach to "virus engineering" controversial? What are the potential benefits of this approach? What was the Law of Triads? A. Elements were arranged into three rows. B. Elements were arranged in groups of three. C. Elements were arranged into three periods. D. Elements were arranged into three periods and three groups. A student drove 9,500 miles in his car last year. Fixed costs totaled $1,215.Variable costs totaled $1,985. What is the total annual cost? What was thecost per mile? (Enter answer: $-----; $-----) 34x21 pls help me 3. Why did Monkeyman choose not to fight backin the park? (Paragraphs 86-94)O A He thought the Tigros might attackPeaches again if he won the hight.OB He did not want his grandfather andgodmother to see him being violent,O C He wanted everyone to see that the Tigroswere wrong for acting so violentlyD He agreed with the Tigros that he shouldhave minded his business instead ofgetting in their way, Tony flips a coin and gets heads. He tells his friend that he can get heads two more times in a row .what is the probability that tony will flip a coin and get heads three times in a row A favorite physics demonstration at the University of Texas at Austin is a giant skateboard about 6 feet long, with about the same mass as a physics professor. Suppose the skateboard rolls with negligible friction on the level classroom floor. The professor is standing at rest on the skateboard, of length L, and the end of the board opposite to the professor is a distance d from the wall. d L If the professor and board have the same mass, and if the professor slowly walks towards the wall, how far is he from the wall when he stops at the opposite end of the skateboard from where he started? (Note his initial distance from the wall is d + L.)