If the sum of three vectors in R is zero, must they lie in the same plane? Explain.

Answers

Answer 1

Answer with Step-by-step explanation:

We are given that sum of three vectors in [tex]R^3[/tex] is zero.

We have to tell and explain that if sum of three vectors in [tex]R^3[/tex] is zero then they must lie in the same plane or not.

We know that if three or more vectors lie in the same then they are coplanar.

If three vectors are co-planar then their scalar product is zero.

According to given condition

Let (x,0,0), (-x,0,0) and (0,0,0)

[tex]\vec{u}=x\hat{i}[/tex]

[tex]\vec{v}=-x\hat{i}[/tex]

[tex]\vec{w}=0[/tex]

Sum of three vectors=[tex](x-x+0)\hat{i}+(0+0+)\hat{j}+(0+0+0)\hat{k}=0[/tex]

[tex]u\cdot (v\times w)=\begin{vmatrix}x_1&y_1&z_1\\x_2&y_2&z_2\\x_3&y_3&z_3\end{vmatrix}[/tex]

[tex]u\cdot (v\times w)=\begin{vmatrix}x&0&0\\-x&0&0\\0&0&0\end{vmatrix}[/tex]

When all elements of one row or column are zero of square matrix A then det(A)=0

[tex]u\cdot (v\times w)=0[/tex]

Therefore, vectors u,v and w are co-planar.

Hence, if the sum of three vectors in [tex]R^3[/tex] is zero then they must lie in the same plane.

Answer 2

If the sum of three vectors in three-dimensional space is zero, they typically lie in the same plane, forming a triangle with their magnitudes and directions. They must also be linearly dependent since their linear combination can produce the zero vector.

If the sum of three vectors is zero in R^3 (three-dimensional space), it is a common situation for these vectors to lie in the same plane. This condition implies that they can be represented as three sides of a triangle taken in sequence in terms of magnitude and direction. If we consider two vectors in sequence, such as AB and BC, the third vector must be the closing side CA, taken in the opposite direction, in order to satisfy the triangle law of vector addition. In this case, the sum of vectors AB + BC + CA equals zero.

Furthermore, vectors are homogeneous when added, which means that they must have the same nature and dimension. However, three vectors can still form a linearly dependent set in three-dimensional space even if they lie in the same plane. For instance, if we take vectors a, b, and c, and if a linear combination of these vectors yields the zero vector (i.e., if we can find scalar coefficients x, y, and z such that xa + yb + zc = 0), then these vectors are not linearly independent and must lie in the same plane.


Related Questions

Draw the top view of this
figure.

Answers

Draw a rectangle. Remember to make sure there are two pairs of same length sides

Let f and g be decreasingfunctions for all real numbers. Prove
that f o g isincreasing.

Answers

Answer with Step-by-step explanation:

We are given that two functions f and g are decreasing function for all real numbers .

We have to prove that fog is increasing.

Increasing Function: If [tex]x_1 \leq x_2[/tex]

Then, [tex]f(x_1)\leq f(x_2)[/tex]

Decreasing function: if [tex]x_1\leq x_2[/tex]

Then, [tex]f(x_1)\geq f(x_2)[/tex]

Suppose [tex]f(x)=-x[/tex]

[tex]g(x)=-2x[/tex]

fog(x)=f(g(x))=f(-2x)=-(-2x)=2x

Therefore, f and g are decreasing function for all real numbers  then fog is  increasing.

Hence, proved

the age of Jane is 80% of the age of Alice. If we add both ages the result is 45. Find the age of Jane and Alice

Answers

Answer:

Age of Alice=25 years

Age of Jane=20 years

Step-by-step explanation:

We are given that the age of Jane is 80 % of the age Alice.

We have to find the age of Jane and Alice.

Let x be the age of Alice

According to question

Age of Jane=80% of Alice=80% of x=[tex]\frac{80}{100}\times x=\frac{4x}{5}[/tex]

[tex]x+\frac{4x}{5}=45[/tex]

[tex]\frac{5x+4x}{5}=45[/tex]

[tex]\frac{9x}{5}=45[/tex]

[tex]x=\frac{45\times 5}{9}=25[/tex]

Age of Alice=25 years

Age of Jane=[tex]\frac{4}{5}\times 25=20 years[/tex]

Age of Jane=20 years

First-order linear differential equations

1. dy/dt + ycost = 0 (Find the general solution)

2. dy/dt -2ty = t (Find the solution of the following IVP)

Answers

Answer:

(a) [tex]\frac{dy}{(2y+1)}=tdt[/tex] (b) [tex]y=\frac{e^{t^2}+e^{2c}-1}{2}[/tex]

Step-by-step explanation:

(1) We have given [tex]\frac{dy}{dt}+ycost=0[/tex]

[tex]\frac{dy}{dt}=-ycost[/tex]

[tex]\frac{dy}{y}=-costdt[/tex]

Integrating both side

[tex]lny=-sint+c[/tex]

[tex]y=e^{-sint}+e^{-c}[/tex]

(2) [tex]\frac{dy}{dt}-2ty=t[/tex]

[tex]\frac{dy}{dt}=2ty+t[/tex]

[tex]\frac{dy}{dt}=t(2y+1)[/tex]

[tex]\frac{dy}{(2y+1)}=tdt[/tex]

On integrating both side  

[tex]\frac{ln(2y+1)}{2}=\frac{t^2}{2}+c[/tex]

[tex]ln(2y+1)={t^2}+2c[/tex]

[tex]2y+1=e^{t^2}+e^{2c}[/tex]

[tex]y=\frac{e^{t^2}+e^{2c}-1}{2}[/tex]

Let p, q, and r represent the following statements"

p : Sam has pizza last night.

q : Chris finished her homework

. r : Pat watched the news this morning.

Give a formula (using appropriate symbols) for each of these statements:

a) Sam had pizza last night if and only if Chris finished her homework.

b) Pat watched the news this morning iff Sam did not have pizza last night.

c) Pat watched the news this morning if and only if Chris finished her homework and Sam did not have pizza last night.

d) In order for Pat to watch the news this morning, it is necessary and sufficient that Sam had pizza last night and Chris finished her homework. Express in words the statements represented by the following fomulas.

e) q ⇔ r

f) p ⇔ (q ∧ r)

g) (¬p) ⇔ (q ∨ r)

h) r ⇔ (p ∨ q)

Answers

In logic, own symbols are used in order to be able to represent the relations between propositions in a general and independent way to the proposition, in order to be able to find the relationship process that operates in the communicated message, the propositional logic.

For this purpose there are, among others, the following logical operators: conjunction (and) ∧, disjunction (or) ∨, denial (not) ¬,  conditional (if - then) ⇒ and double conditional (if and only if, iff) ⇔.

So for this case we have:

Answer

a) Sam had pizza last night if and only if Chris finished her homework.

p⇔q

b) Pat watched the news this morning iff Sam did not have pizza last night.

r⇔¬p

c) Pat watched the news this morning if and only if Chris finished her homework and Sam did not have pizza last night.

r⇔(q∧¬p)

d) In order for Pat to watch the news this morning, it is necessary and sufficient that Sam had pizza last night and Chris finished her homework.

r⇔(p∧q)

e) q ⇔ r

Chris finished his homework if and only if Pat watched the news this morning

f) p ⇔ (q ∧ r)

Sam had pizza last night if and only if Chris finished his homework and Pat watched the news this morning

g) (¬p) ⇔ (q ∨ r)

Sam didn't have pizza last night if and only if Chris finished his homework or Pat watched the news this morning

h) r ⇔ (p ∨ q)

Pat watched the news this morning if Sam had pizza last night or Chris finished his homework

An elementary school class polled 198 people at a shopping center to determine how many read the Daily News and how many read the Sun Gazette. They found the following information: 171 read the Daily News, 40 read both, and 18 read neither. How many read the Sun Gazette?

Answers

Answer: 49 people

Step-by-step explanation:

First you need to separate the people that read both from the people that read the daily news. Do this by subtracting 171 - 40 = 131.

Now you can subtract the total amount of people that only read the Daily Mews from the total amount of people polled (198-131=67)

From here you need to subtract the amount of people that read neither from the remaining total. (67-18=49)

this is where you get the 49 people out of 198 that read the Sun Gazette

Final answer:

The number of people who read the Sun Gazette is calculated by subtracting the number of people who only read the Daily News and those who read neither from the total polled. The result is 49 Sun Gazette readers.

Explanation:

This problem involves the mathematics concept of set theory, specifically union and intersection of sets. Here, the total number of people polled are considered as the 'Universal Set'. The 'Daily News readers' and the 'Sun Gazette readers' are the two subsets of this Universal set.

The data given can be interpreted as follows:

Total number of people surveyed (universal set) = 198 Number of people who read the Daily News = 171 Number of people who read both newspapers = 40 Number of people who read neither = 18

Since 40 people read both, they are being counted twice in the 171 (Daily News readers) figure. Hence, we subtract 40 from 171.

The number of people who only read the Daily News = 171 - 40 = 131

We subtract this number and those who read neither from the total polled to find the number of Sun Gazette readers.

The number of Sun Gazette readers = 198 - 131 (only Daily News readers) - 18 (neither) = 49 Sun Gazette readers

Learn more about Set Theory here:

https://brainly.com/question/35494444

#SPJ2

Simplify this expression. -12 - 3 • (-8 +(-4)^2 - 6) + 2

Answers

Answer

-16

Step By Step explanation

Answer:

[tex] - 12 - 3 \times ( - 8 + ( { - 4)}^{2} - 6) + 2[/tex]

[tex] - 12 - 3 \times ( - 8 + 16 - 6) + 2[/tex]

[tex] - 12 - 3 \times (8 - 6) + 2[/tex]

[tex] - 12 - 3 \times 2 + 2[/tex]

[tex] - 12 - 6 + 2[/tex]

[tex] - 12 - 4[/tex]

[tex] - 16[/tex]

Gandalf the Grey started in the Forest of Mirkwood at a point P with coordinates (3, 0) and arrived in the Iron Hills at the point Q with coordinates (5, 5). If he began walking in the direction of the vector v - 3i + 2j and changes direction only once, when he turns at a right angle, what are the coordinates of the point where he makes the turn?

Answers

Answer:

Turning point has coordinates [tex]\left(\dfrac{27}{13},\dfrac{8}{13}\right)[/tex]

Step-by-step explanation:

Gandalf the Grey started in the Forest of Mirkwood at a point P(3, 0) and began walking in the direction of the vector [tex]\vec{v}=-3i+2j.[/tex] The coordinates of the vector v are (-3,2). Then he changed the direction at a right angle, so he was walking in the direction of the vector [tex]\vec{u}=2i+3j[/tex] (vectors u and v are perpendicular).

Let B(x,y) be the turning point. Find vectors PB and BQ:

[tex]\overrightarrow{PB}=(x-3,y-0)\\ \\\overrightarrow {BQ}=(5-x,5-y)[/tex]

Note that vectors v and PB and vectors u and BQ are collinear, so

[tex]\dfrac{x-3}{-3}=\dfrac{y}{2}\\ \\\dfrac{5-x}{2}=\dfrac{5-y}{3}[/tex]

Hence

[tex]2(x-3)=-3y\Rightarrow 2x-6=-3y\\ \\3(5-x)=2(5-y)\Rightarrow 15-3x=10-2y[/tex]

Now solve the system of two equations:

[tex]\left\{\begin{array}{l}2x+3y=6\\ -3x+2y=-5\end{array}\right.[/tex]

Multiply the first equation by 3, the second equation by 2 and add them:

[tex]3(2x+3y)+2(-3x+2y)=3\cdot 6+2\cdot (-5)\\ \\6x+9y-6x+4y=18-10\\ \\13y=8\\ \\y=\dfrac{8}{13}[/tex]

Substitute it into the first equation:

[tex]2x+3\cdot \dfrac{8}{13}=6\\ \\2x=6-\dfrac{24}{13}=\dfrac{54}{13}\\ \\x=\dfrac{27}{13}[/tex]

Turning point has coordinates [tex]\left(\dfrac{27}{13},\dfrac{8}{13}\right)[/tex]

Final answer:

The coordinates of the point where Gandalf makes the turn are (5, 5).

Explanation:

To find the point where Gandalf makes a right angle turn, we need to find the intersection of the line formed by the vector v and the line connecting points P and Q. The equation of the line formed by the vector v is given by y = 2x - 3. The equation of the line connecting points P and Q is given by y = x. To find the intersection point, we can solve these two equations simultaneously. Substituting y = 2x - 3 into y = x, we get x = 5. Substituting x = 5 into y = x, we get y = 5. Therefore, the coordinates of the point where Gandalf makes the turn are (5, 5).

let f(x) be a func. satisfying f(-x)=f(x) for all real x.if f"(x) exist, find its value.

Answers

Answer:

[tex]f''(x)=f''(-x)[/tex]

Step-by-step explanation:

A function satisfying the equation [tex]f(x)=f(-x)[/tex] is said to be an even function. This denomination comes from the fact that the same relation is satisfied for functions of the form [tex]x^{n}[/tex] with [tex]n[/tex] even. Observe that if [tex]f[/tex] is twice differentiable we can derivate using the chaing rule as follows:

[tex]f(x)=f(-x)[/tex] implies [tex]f'(x)=f'(-x)\cdot (-1)=-f'(-x)[/tex]

Applying the chain rule again we have:

[tex]f'(x)=-f'(-x)[/tex] implies [tex]f''(x)=-f''(-x)\cdot (-1)=f''(-x)[/tex]

So we have that function [tex]f''(x)[/tex] is also an even function.

Find all solutions of the equation algebraically. Use a graphing utility to verify the solutions graphically. (Enter your answers as a comma-separated list.) 16x^4 - 24x^3 +9x^2 =0

Answers

Answer:

The solutions of the equation are 0 and 0.75.

Step-by-step explanation:

Given : Equation [tex]16x^4 - 24x^3 +9x^2 =0[/tex]

To find : All solutions of the equation algebraically. Use a graphing utility to verify the solutions graphically ?

Solution :

Equation [tex]16x^4 - 24x^3 +9x^2 =0[/tex]

[tex]x^2(16x^2-24x+9)=0[/tex]

Either [tex]x^2=0[/tex] or [tex]16x^2-24x+9=0[/tex]

When [tex]x^2=0[/tex]

[tex]x=0[/tex]

When [tex]16x^2-24x+9=0[/tex]

Solve by quadratic formula, [tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(-24)\pm\sqrt{(-24)^2-4(16)(9)}}{2(16)}[/tex]

[tex]x=\frac{24\pm\sqrt{0}}{32}[/tex]

[tex]x=\frac{24}{32}[/tex]

[tex]x=\frac{3}{4}[/tex]

[tex]x=0.75[/tex]

The solutions of the equation are 0 and 0.75.

For verification,

In the graph where the curve cut x-axis is the solution of the equation.

Refer the attached figure below.

A survey of 510 adults aged 18-24 year olds was conducted in which they were asked what they did last Friday night. It found: 161 watched TV 196 hung out with friends 161 ate pizza 28 watched TV and ate pizza, but did not hang out with friends 29 watched TV and hung out with friends, but did not eat pizza 47 hung out with friends and ate pizza, but did not watch TV 43 watched TV, hung out with friends, and ate pizza How may 18-24 year olds did not do any of these three activities last Friday night?

Answers

Answer:

182 of these adults did not do any of these three activities last Friday night.

Step-by-step explanation:

To solve this problem, we must build the Venn's Diagram of this set.

I am going to say that:

-The set A represents the adults that watched TV

-The set B represents the adults that hung out with friends.

-The set C represents the adults that ate pizza

-The set D represents the adults that did not do any of these three activities.

We have that:

[tex]A = a + (A \cap B) + (A \cap C) + (A \cap B \cap C)[/tex]

In which a is the number of adults that only watched TV, [tex]A \cap B[/tex] is the number of adults that both watched TV and hung out with friends, [tex]A \cap C[/tex] is the number of adults that both watched TV and ate pizza, is the number of adults that both hung out with friends and ate pizza, and [tex]A \cap B \cap C[/tex] is the number of adults that did all these three activies.

By the same logic, we have:

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

This diagram has the following subsets:

[tex]a,b,c,D,(A \cap B), (A \cap C), (B \cap C), (A \cap B \cap C)[/tex]

There were 510 adults suveyed. This means that:

[tex]a + b + c + D + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) = 510[/tex]

We start finding the values from the intersection of three sets.

Solution:

43 watched TV, hung out with friends, and ate pizza:

[tex]A \cap B \cap C = 43[/tex]

47 hung out with friends and ate pizza, but did not watch TV:

[tex]B \cap C = 47[/tex]

29 watched TV and hung out with friends, but did not eat pizza:

[tex]A \cap B = 29[/tex]

28 watched TV and ate pizza, but did not hang out with friends:

[tex]A \cap C = 28[/tex]

161 ate pizza

[tex]C = 161[/tex]

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

[tex]161 = c + 28 + 47 + 43[/tex]

[tex]c = 43[/tex]

196 hung out with friends

[tex]B = 196[/tex]

[tex]196 = b + 47 + 29 + 43[/tex]

[tex]b = 77[/tex]

161 watched TV

[tex]A = 161[/tex]

[tex]A = a + (A \cap B) + (A \cap C) + (A \cap B \cap C)[/tex]

[tex]161 = a + 29 + 28 + 43[/tex]

[tex]a = 61[/tex]

How may 18-24 year olds did not do any of these three activities last Friday night?

We can find the value of D from the following equation:

[tex]a + b + c + D + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) = 510[/tex]

[tex]61 + 77 + 43 + D + 29 + 28 + 47 + 43 = 510[/tex]

[tex]D = 510 - 328[/tex]

[tex]D = 182[/tex]

182 of these adults did not do any of these three activities last Friday night.

Final answer:

To find the number of 18-24 year olds who did not do any of the three activities last Friday night, we can use the principle of inclusion-exclusion. By subtracting the number of people who did at least one of the activities from the total number of participants, we find that 455 individuals did not participate in watching TV, hanging out with friends, or eating pizza.

Explanation:

To find the number of 18-24 year olds who did not do any of the three activities (watch TV, hang out with friends, eat pizza), we need to subtract the number of people who did at least one of these activities from the total number of participants. We can use the principle of inclusion-exclusion to solve this problem.

Let's define:

A = number of people who watched TVB = number of people who hung out with friendsC = number of people who ate pizza

From the given information, we know:

A = 161B = 196C = 161A ∩ C' (watched TV and ate pizza, but did not hang out with friends) = 28A ∩ B' (watched TV and hung out with friends, but did not eat pizza) = 29B ∩ C' (hung out with friends and ate pizza, but did not watch TV) = 47A ∩ B ∩ C (watched TV, hung out with friends, and ate pizza) = 43

To find the number of people who did not do any of these activities, we can use the formula:

n(A' ∩ B' ∩ C') = n(U) - n(A) - n(B) - n(C) + n(A ∩ B) + n(A ∩ C) + n(B ∩ C) - n(A ∩ B ∩ C)

Substituting the known values, we have:

n(A' ∩ B' ∩ C') = 510 - 161 - 196 - 161 + 28 + 29 + 47 - 43

n(A' ∩ B' ∩ C') = 455

Therefore, there were 455 18-24 year olds who did not do any of the three activities last Friday night.

(a) Find an example of sets A and B such that An B = {1,2} and AUB = {1,2,3,4,5).
(b) Find an example of sets A and B such that A Ç B and A e B.

Answers

Answer:

(a) Set A = {1,2,3}

    Set B = {1,2,4,5}

(b) Set A Ç B = {1,2}

     Set A e B = {1,2}

Step-by-step explanation:

As per the question,

Given data :

A ∪ B = read as A union B = {1,2,3,4,5}

A ∩ B = read as A intersection B =  {1,2}

(a) An example of sets A and B such that A ∩ B = {1,2} and A U B = {1,2,3,4,5).

So, first draw the Venn-diagram, From below Venn diagram, One of the possibility for set A and set B is:

Set A = {1,2,3}

Set B = {1,2,4,5}

(b) An example of sets A and B such that A Ç B and A e B,

Set A Ç B read as common elements of set A in Set B.

Therefore,

Set A Ç B = {1,2}

Set A e B implies that which element/elements of A is/are present in set B.

Therefore,

Set A e B = {1,2}

Counting 5-card hands from a deck of standard playing cards. A 5-card hand is drawn from a deck of standard playing cards. How many 5-card hands have at least one club? (b) Hown -card hands have at least two cards with the same rank?

Answers

Answer:

5-card hands with at least one club: [tex] {52 \choose 5}-{39 ]choose 5}[/tex]

5-card hands with at least two cards of the same rank: [tex]{52 \choose 5}-{13 \choose 5}4^5[/tex]

Step-by-step explanation:

To determine how many 5-card hands have at least one club, we can count how many do NOT have at least one club, and then subtract that from the total amount of 5-card hands that there are.

A 5-card hand that doesn't have at least one club, is one whose 5 cards are from spades,hearts or diamonds. Since a standard deck of cards has 13 clubs, 39 of the cards are spades, hearts of diamonds. Getting a 5-card hand out of those cards, is choosing 5 cards out of those 39 cards. So there are [tex] {39 \choose 5}[/tex] 5-card hands without any clubs.

The total amount of 5-card hands is [tex]{52 \choose 5}[/tex], since a 5-card hand is simply a group of 5 cards out of the full deck, which has 52 cards.

Therefore the number of 5-card hands that have at least one club is [tex] {52 \choose 5}-{39 \choose 5}[/tex].

To determine how many 5-card hands have at least two cards with the same rank we can follow the same approach. We determine how many 5-card hands have NO cards with the same rank, and the subtract that out of the total amount of 5-card hands.

A 5-card hand that doesn't have cards of the same rank, is a group of 5 cards all from different ranks. Such hand can be made then by choosing first which 5 different ranks are going to be present in the hand, out of the 13 available ranks. So there are [tex] {13 \choose 5}[/tex] possible combinations of ranks. Then, choosing which card from each of the chosen ranks is the one that is going to be in the hand, is choosing which of 4 cards from EACH rank is going to be in the hand. So for each rank there are 4 availble choices, and so there are [tex]4^5[/tex] possible ways to choose the specific cards from each rank that will be in the hand. So the amount of 5-card hands with all ranks different is [tex] {13 \choose 5}\cdot{4^5}[/tex]

Therefore the amount of 5-card hands with at least two cards with the same rank is  [tex]{52 \choose 5}-{13 \choose 5}\cdot4^5[/tex]

Answer:

b

Step-by-step explanation:

Hillary, Meredith, and Aly are sitting in their favorite coffee shop when their waiter asks: "Does everyone want coffee?" Hillary replies "I don't know." Meredith then replies "I don't know" as well. Finally, Aly says "Not everyone wants coffee." The waiter comes back and gives a coffee to each person that wants one.
Answer the following question:
(a) Did Hillary get a coffee?
(b) Did meredith get a coffee?

Answers

Answer:

a) Yes.

b) Yes.

Step-by-step explanation:

Meredith and Hillary both want coffe, but they don't know if the other two people do, therefore they can't know if everyone want coffee. If they didn't want coffee, their answer would have been just "no".

Aly knows that she doesn't want coffee, therefore she knows that not everyone wants coffee.

Hillary and Meredith said 'I don't know' which implies they don't know if everyone wants coffee because they themselves do not want it. Aly confirmed that not everyone wants coffee. Therefore, neither Hillary nor Meredith got a coffee.

We have a logical puzzle where Hillary, Meredith, and Aly are deciding whether they want coffee. The key to solving this puzzle is understanding the implications of their statements to the waiter's question: "Does everyone want coffee?"

Hillary says, "I don't know." This means Hillary cannot be sure that everyone wants coffee, so there are two possibilities: either she does not want coffee or she doesn't know the preferences of the others. Meredith also responds with "I don't know," implying the same possibilities for her.

Finally, Aly states, "Not everyone wants coffee." This is the definitive answer that tells us at least one person does not want coffee. Since Aly knows for sure that not everyone wants coffee, it implies that either she does not want coffee herself or knows of someone else who doesn’t. Given that Hillary and Meredith both said they did not know, they could not have communicated their preference to Aly.

Therefore:

Hillary did not get a coffee, because if she did want coffee, she would have known that at least she herself wants coffee and would not have said, "I don't know."Meredith did not get a coffee either for the same reason as Hillary.

Machine A can produce 435 widget in 3 hours. At this rate how many widget can machine A produce in 7 hours?

Answers

Answer:

1015 widgets

Step-by-step explanation:

First investigate how many widgets can machine A produce in 1 hour:

If it produces 435 in 3 hours, then it will produce one third of that in one hour:

In ONE (1) hour [tex]\frac{435}{3} = 145[/tex] widgets

Therefore in seven (7) hours it will produce seven times the amount it does in one hour, that is:

[tex]145 * 7 = 1015[/tex] widgets

Answer:

answer is 1015.

Step-by-step explanation:

Show your work:

Express 160 pounds (lbs) in kilograms (kg). Round to the nearest hundredths.

Answers

Step-by-step explanation:

.454 kilograms= 1 pound.

Multiply .454 by 160

4.54

160

--------

000

2724 0<--Place marker

45400<--Double Place Marker

- - - - - - - -

72640 <-- Add

To find decimal point, count decimal place (Number of digits after the decimal on both numbers you multiply together) In this case, it's 2 ( 5 and 4 in 4.54) So, you count two spaces from right to left in your answer and tah dah!

72.640 (Zero isn't needed- just a placemarker)

Hope I was helpful :)

The probability is 1% that an electrical connector that is kept dry fails during the warranty period. If the connector is ever wet, the probability of a failure during the warranty period is 5%. If 90% of the connectors are kept dry and 10% are wet, what proportion of connectors fail during the warranty period?

Answers

Answer:

A 1.4% of the total connectors are expected to fail during the warranty period.

Step-by-step explanation:

Let's assume a population of 1000 connectors (to make the math easiest) and let's analize the dry connectors.  

Of the 1000 connectors, 900 are kept dry. and of that number, 9 are the ones that fails during the warranty period.  (90% of 1000 is 900. 1% of 900 is 9)

Of the 1000 connectors, 100 are wet. And of that number, 5 are connectors that will fail during the warranty period. (10% of 1000 is 100, and 5% of 100 is 5)

So overall we have 14 connectors that will fail from 1000 connectors.

That is a 1.4% of the total samples.

Suppose A is a 3 x 3 matrix such that det (A) = 9. Prove det (3 (A-!') is equal to 3

Answers

Answer:  The proof is done below.

Step-by-step explanation:  Given that A is a 3 x 3 matrix such that det (A) = 9.

We are to prove the following :

[tex]det(3A^{-1})=3.[/tex]

For a non-singular matrix B of order n, we have two two properties of its determinant :

[tex](i)~det(B^{-1})=\dfrac{1}{det(B)},\\\\\\(ii)~det(kB)=k^ndet(B),~\textup{k is a scalar.}[/tex]

Therefore, we get

[tex]det(A^{-1})=\dfrac{1}{det(A)}=\dfrac{1}{9},[/tex]

and so,

[tex]det(3A^{-1})~~~~~~~[\textup{since A is of order 3}]\\\\=3^3det(A^{-1})\\\\=27\times\dfrac{1}{9}\\\\=3.[/tex]

Hence proved.

Mark the statement either true (in all cases) or false (for at least one example). If false, construct a specific example to show that the statement is not always true. Such an example is called a counterexample to the statement. If the statement is true, give a justification. If v1,…,v4 are in R4 and {v1,v2,v3} is linearly dependent then {v1,v2,v3,v4} is also linearly dependent.

Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice.

(A) True. Because v3 = 2v1 + v2, v4 must be the zero vector. Thus, the set of vectors is linearly dependent.
(B) True. The vector v3 is a linear combination of v1 and v2, so at least one of the vectors in the set is a linear combination of the others and set is linearly dependent.
(C) True. If c1 =2, c2 = 1, c3 = 1, and c4 = 0, then c1v1 + ........... + c4v4 =0. The set of vectors is linearly dependent.
(D) False. If v1 = __, v2 =___, v3 =___, and v4 = [1 2 1 2], then v3 = 2v1 + v2 and {v1, v2, v3, v4} is linearly independent.

Answers

Answer with Step-by-step explanation:

We are given that [tex]v_1,v_2,..,v_4[/tex] are in [tex]R^4[/tex] and [tex]v_1,v_2,v_3[/tex] is linearly dependent then {v_1,v_2,v_3,v_4}[/tex] is also linearly dependent.

We have to find that given statement is true or false.

Dependent vectors:Dependent vectors are those vectors in which atleast one vector is  a linear combination of other given vectors.

Or If we have vectors [tex]x_1,x_2,....x_n[/tex]

Then their linear combination

[tex]a_1x_1+a_2x_2+.....+a_nx_n=0[/tex]

There exist at least one scalar which is not zero.

If [tex]v_1,v_2,v_3[/tex] are dependent vectors then

[tex]a_1v_1+a_2v_2+a_3v_3=0[/tex] for scalars [tex]a_1,a_2,a_3[/tex]

Then , by definition of dependent  vectors

There exist a vector which is not equal to zero

If vector [tex]v_3[/tex] is a linear combination of [tex]v_1\;and \;v_2[/tex], So at least one of vectors in the set is a linear combination of others and the set is linearly dependent.

Hence, by definition of dependent vectors

{[tex]v_1,v_2,v_3,v_4[/tex]} is linearly dependent.

Option B is true.

If A and B are events with P(A) = 0.5, P(A OR B) = 0.65, P(A AND B) = 0.15, find P(B).

Answers

Answer:

P(B) = 0.30

Step-by-step explanation:

This is a probability problem that can be modeled by a diagram of Venn.

We have the following probabilities:

[tex]P(A) = P_{A} + P(A \cap B) = 0.50[/tex]

In which [tex]P_{A}[/tex] is the probability that only A happens.

[tex]P(B) = P_{B} + P(A \cap B) = P_{B} + 0.15[/tex]

To find P(B), first we have to find [tex]P_{B}[/tex], that is the probability that only B happens.

Finding [tex]P_{B}[/tex]:

The problem states that P(A OR B) = 0.65. This is the probability that at least one of this events happening. Mathematically, it means that:

[tex]1) P_{A} + P(A \cap B) + P_{B} = 0.65[/tex]

The problem states that P(A) = 0.5 and [tex]P(A \cap B) = 0.15[/tex]. So we can find [tex]P_{A}[/tex].

[tex]P(A) = P_{A} + P(A \cap B)[/tex]

[tex]0.5 = P_{A} + 0.15[/tex]

[tex]P_{A} = 0.35[/tex]

Replacing it in equation 1)

[tex]P_{A} + P(A \cap B) + P_{B} = 0.65[/tex]

[tex]0.35 + 0.15 + P_{B} = 0.65[/tex]

[tex]P_{B} = 0.65 - 0.35 - 0.15[/tex]

[tex]P_{B} = 0.15[/tex]

Since

[tex]P(B) = P_{B} + P(A \cap B)[/tex]

[tex]P(B) = 0.15 + 0.15[/tex]

[tex]P(B) = 0.30[/tex]

Determine all values of h and k for which the system S 1 -3x - 3y = h -4x + ky = 10 has no solution. k= ht

Answers

Answer:

The system will have no solution when [tex]k = -4[/tex] and [tex]h \neq 7.5[/tex].

Step-by-step explanation:

We can find these values by the Gauss-Jordan Elimination method.

The Gauss-Jordan elimination method is done by transforming the system's augmented matrix into reduced row-echelon form by means of row operations.

We have the following system:

[tex]-3x - 3y = h[/tex]

[tex]-4x + ky = 10[/tex]

This system has the following augmented matrix:

[tex]\left[\begin{array}{ccc}-3&-3&h\\-4&k&10\end{array}\right][/tex]

The first thing i am going to do is, to help the row reducing:

[tex]L_{1} = -\frac{L_{1}}{3}[/tex]

Now we have

[tex]\left[\begin{array}{ccc}1&1&-\frac{h}{3}\\-4&k&10\end{array}\right][/tex]

Now I want to reduce the first row, so I do:

[tex]L_{2} = L_{2} + 4L_{1}[/tex]

So:

[tex]\left[\begin{array}{ccc}1&1&-\frac{h}{3}\\0&k+4&10 - \frac{4h}{3}\end{array}\right][/tex]

From the second line, we have

[tex](k+4)y = 10- \frac{4h}{3}[/tex]

The system will have no solution when there is a value dividing 0, so, there are two conditions:

[tex]k+4 = 0[/tex] and [tex]10 - \frac{4h}{3} \neq 0[/tex]

[tex]k+4 = 0[/tex]

[tex]k = -4[/tex]

...

[tex]10 - \frac{4h}{3} \neq 0[/tex]

[tex]\frac{4h}{3} \neq 10[/tex]

[tex]4h \neq 30[/tex]

[tex]h \neq \frac{30}{4}[/tex]

[tex]h \neq 7.5[/tex]

The system will have no solution when [tex]k = -4[/tex] and [tex]h \neq 7.5[/tex].

In how many ways can the digits 0,1,2,3,4,5,6,7,8,9 be arranged so that no prime number is in its original position?

I get the answer 1348225 by subtracting the number of derangements with fixed points 4,3,2 and 1 from 10! (the number of ways to arrange the numbers with none fixed).

Answers

Answer:  2399760

Step-by-step explanation:

The concept we use here is Partial derangement.

It says that for m things , the number of ways to arrange them such that k things are not in their fixed position is given by :-

[tex]m!-^kC_1(m-1)!+^kC_2(m-2)!-^kC_3(m-3)!+........[/tex]

Given digits : 0,1,2,3,4,5,6,7,8,9

Prime numbers = 2,3,5,7

Now  by Partial derangement the number of ways to arrange 10 numbers such that none of 4 prime numbers is in its original position will be :_

[tex]10!-^4C_1(9)!+^4C_2(8)!-^4C_3(7)!+^4C_4(6)!\\\\=3628800-(4)(362880)+\dfrac{4!}{2!2!}(40320)-(4)(5040)+(1)(720)\\\\=3628800-1451520+241920-20160+720\\\\=2399760[/tex]

Hence, the number of  ways can the digits 0,1,2,3,4,5,6,7,8,9 be arranged so that no prime number is in its original position = 2399760

Use the graph below to determine the number of solutions the system has.

Answers

Answer:

one

Step-by-step explanation:

I think, there were 4 lines and the two lines are reaching each other

Five-year-old students at an elementary school were given a 30-yard head start in a race. The graph shows how far the average student ran in 30 seconds.
Age of Runner

Which statement best describes the domain of the function represented in the graph?

55X 560, orx is from 5 to 60

55x5 30. or x is from 5 to 30

30 SXS 60, or x is from 30 to 60

0 SXS 30 or x is from 0 to 30

Answers

30 SXS 60 since they went from 30 yards to 60 yards

The domain of the function represented in the graph is 30 SXS 60 or 30 to 60. Hence option C is correct.

Given that,

Five-year-old students at an elementary school were involved.

They were given a 30-yard head start in a race.

The graph represents the distance run by the average student in 30 seconds.

The graph is related to the age of the runner.

Since we can see that,

The graph starts from 30 yards and ends at 60 yards

Therefore,

The domain of the function represented in the graph is 30 SXS 60 or 30 to 60, which is option C.

To learn more about graph of function visit:

https://brainly.com/question/12934295

#SPJ3

Evaluate the problem below. Please show all your work for full credit. Highlight or -4 1/2+5 2/3

Answers

Answer:

[tex]\frac{7}{6}[/tex]

Step-by-step explanation:

[tex]-4\frac{1}{2} + 5\frac{2}{3} =[/tex]

For the first term you have to multiply 2x(-4) and add 1, for the second term you have to multiply 3x5 and add 2.

[tex]\frac{2(-4)+1}{2} + \frac{3(5)+2}{3} =[/tex]

[tex]-\frac{9}{2} +\frac{17}{3} =[/tex]

Now you need to find the lowest common multiple between the denominators, just cross multiply as it is shown:

[tex]-\frac{9}{2} (\frac{3}{3} )+\frac{17}{3} (\frac{2}{2} )=[/tex]

[tex]-\frac{27}{6} +\frac{34}{6} = \frac{7}{6}[/tex]

finally you get the result by doing a substraction = 7/6, or 1[tex]\frac{1}{6}[/tex]

Consider the function fx) = -3.15x + 723.45. Graph it on the interval (0,25), and then answer Questions 8 - 11 below. Question 8 (1 point) What is the domain of the function (the entire function, not just the part you graphed)? O [-3.15, 7.42) [-10, 10] [7.42, c) O 10,co)

Answers

Answer:

Domain : D{-∞,∞} the reals.

Step-by-step explanation:

The function is plotted in the image.

[tex]  f(x) = -3.15 * x + 723.45 [tex]

the linear functions usually have a domain from - infinite to infinite, the domain when is a piece wise function or discontinuous, the domain is defined in the pieces where is defined.

In this case there is no restriction so the function is continuous.

need help with algebra 1 make an equation with variables on both sides number 21

Answers

Answer:

engineering vs business: 3 yearsengineering vs biology: 8 years

Step-by-step explanation:

Write expressions for the number of students in each major. Then write the equation needed to relate them the way the problem statement says they are related.

For year y, the number of students in each major is ...

engineering: 120 +22ybusiness: 105 -4ybiology: 98 +6y

1) Engineering is twice Business:

  120 +22y = 2(105 -4y) . . . . . Engineering is double Business in year y

  120 +22y = 210 -8y . . . . . . . eliminate parentheses

  120 +30y = 210  . . . . . . . . . . add 8y

  4 + y = 7 . . . . . . . . . . . . . . . . divide by 30

  y = 3  . . . . . . . . subtract 4

In 3 years there will be 2 times as many students majoring in Engineering than in Business.

__

2) Engineering is twice Biology:

  120 +22y = 2(98 +6y) . . . . Engineering is double Biology in year y

  120 +22y = 196 +12y . . . . . eliminate parentheses

  120 +10y = 196 . . . . . . . . . . subtract 12y

  10y = 76 . . . . . . . . . . . . . . . .subtract 120

  y = 7.6 . . . . . . divide by 10

In 8 years there will be 2 times as many students majoring in Engineering than in Biology.

The final exam of a particular class makes up 40% of the final grade, and Moe is failing the class with an average (arithmetic mean) of 45% just before taking the final exam. What grade does Moe need on his final exam in order to receive the passing grade average of 60% for the class?

Answers

Answer:

%82.5

Step-by-step explanation:

The final exam of a particular class makes up 40% of the final gradeMoe is failing the class with an average (arithmetic mean) of 45% just before taking the final exam.

From point 1 we know that Moe´s grade just before taking the final exam represents 60% of the final grade. Then, using the information in the point 2 we can compute Moe´s final grade as follows:

[tex]FG=0.40*FE+0.60*0.45[/tex],

where FG is Moe´s Final Grade and FE is Moe´s final exam grade. Then,

[tex]\frac{ FG-0.60*0.45}{0.40}=FE[/tex].

So, in order to receive the passing grade average of 60% for the class Moe needs to obtain in his exam:

[tex]FE=\frac{ 0.60-0.60*0.45}{0.40}=0.825[/tex]

That is, he need al least %82.5 to obtain a passing grade.

What are the odds of choosing a red marble from a bag that contains two blue marbles, one green marble and four red marbles?

4:3

4:7

3:4

7:4

Answers

Answer:

4:3

Step-by-step explanation:

You count up all the red marbles which equals 4 and put them on one side, then you add up all the rest of the marbles same color or not which equals 3 and put it on the other side of the 4

In what type quadrilateral are the diagonals NOT
alwayscongruent to each other?

Answers

Answer:

Parallelogram.Rhombus.Trapezoid.Kite.

Step-by-step explanation:

There are six basic types of quadrilaterals:

Rectangle. Square. Parallelogram. Rhombus. Trapezoid and isosceles trapezoid. Kite.

Then we have:

Quadrilaterals with NOT ALWAYS congruent diagonals:

Parallelogram.Rhombus.Trapezoid.Kite.

Quadrilaterals with ALWAYS congruent diagonals:

Rectangle.Square.Isosceles trapezoid.
Other Questions
Match the description to the term. 1.a joining word Uncle Tom's Cabin 2.using your own words to express another's ideas, must be documented slang 3.turning point of a play or novel secondary source 4.a twelve-volume unabridged reference work transition 5.Harriet Beecher Stowe's best seller of the nineteenth century controlling idea of a paragraph 6.to use another's ideas or words without giving credit John Smith 7.nonstandard English Readers' Guide 8.a play by Thornton Wilder OED 9.thesis controlling idea of a paper 10.the smallest unit of meaning within a word morpheme 11.topic sentence plagiarize 12.a famous morality play of the Middle Ages paraphrase 13.criticism about a literary work Everyman 14.a reference work that catalogs popular magazine articles Our Town 15.A True Relation, first book written in America climax Flounder Corporation began operations on January 1, 2020 when $230,000 was invested by shareholders of the company. On March 1, 2020, Flounder purchased for cash $101,000 of debt securities that it classified as available-for-sale. During the year, the company received cash interest of $8,900 on these securities. In addition, the company has an unrealized holding loss on these securities of $13,100 net of tax. Determine the following amounts for 2020: (a) net income, (b) comprehensive income, (c) other comprehensive income, and (d) accumulated other comprehensive income (end of 2020). (Enter negative amounts using either a negative sign preceding the number e.g. -15 or parentheses e.g. (15).) . Does each of these describe a physical change or a chemical change? Explain a. The moth balls gradually vaporize in a closet. Hydrofluoric acid attacks class, and is used to etch calibrations marks on glass laboratory utensils A French chef making a sauce with brandy is able to burn of the alcohol from the brandy leaving just the brandy flavoring d. Chemistry majors sometimes et holes in the cotton jeans they wear to lab, because of acid spills A piece of egg boiled in water for 20 minutes Where did the Columbian exchange occur Pastureland Dairy makes cheese, which it sells at local supermarkets. The fixed monthly cost of production is $4,000, and the variable cost per pound of cheese is $0.21. The cheese sells for $0.75 per pound; however, the dairy is considering raising the price to $0.95 per pound. The dairy currently produces and sells 9,000 pounds of cheese per month, but if it raises its price per pound, sales will decrease to 5,700 pounds per month. Should the dairy raise the price? Order the following elements based upon their electronegativity, highest to lowest: carbon, flourine, hydrogen, nitrogen, oxygen, and sodium. A news service conducted a survey of 1019 adults ages 18 years or older in a certain country, August 31 September 2, 2015. The respondents were asked, "Of every tax dollar that goes to the federal government, how many cents of each dollar would you say are wasted?" Of the 1019 individuals surveyed, 36% indicated that 51 cents or more is wasted. The news service reported that 36% of all adults in the country 18 years or older believe the federal government wastes at least 51 cents of each dollar spent, with a margin of error of 6% and a 99% level of confidence. Complete parts (a) through (e) below (a) What is the research objective? A. To determine the number of adults in the country paying their taxes to the federal governmentB. To determine the number of adults in the country who believe the federal government wastes 51 cents or more of every dollar C. To determine the number of adults in the country (b) What is the population? O A. The country's federal government O B. The 1019 adults in the country that were surveyed OC. Adults in the country aged 18 years or older O D. Adults in the world aged 18 years or olderc) What is the sample? A. Adults in the country aged 18 years or older. B. The country's federal government.C. Adults in the world aged 18 years or older.D. The 1019 adults in the country that were surveyed. A student mixes two clear liquids together. After a few minutes, a white powdery solid can be seen settling on the bottom of the test tube. Which of the following is a conclusion that the student can draw based on these observations?A:The two liquids are toxic and should be handled with extreme caution.B:The two liquids were pure substances before they were mixed.C:The two liquids have been stored too long and are no longer good.D:The two liquids have gone through a chemical change in which a new substance called a precipitate was produced. Daltons completing an investigation in the science lab. He observes that a sample of liquid turns to gas at 135C. Whats this temperature called? A. boiling point B. freezing point C. melting point D. room temperature E. standard temperature Nick bought a music player. The price was $172, and the sales tax rate was 7 percent. How much sales tax did Nick pay when he bought themusic player?A.$7.20B. $12.04C.$12.45 ConsequencesJust Ahead2. The artist used the image to convey a message. What message does thisimage present?11 poirThere are consequences for your actions.Do not worry about consequences for your actions. Just have fun.There are never any consequences for actions. The next town off of the highway is called Consequences. When the preoperative client tells the nurse that he cannot sleep because he keeps thinking about the surgery, an appropriate reflection of the statement by the nurse is:A. "Sounds as if your surgery is a pretty scary procedure." B. "You have a great surgeon. You have nothing to worry about."C. "The thought of having surgery is keeping you awake."D. "You shouldn't be nervous. We perform this procedure every day." A woman at an airport is towing her 20.0-kg suitcase at constant speed by pulling on a strap at an angle above the horizontal. She pulls on the strap with a 35.0-N force, and the friction force on the suitcase is 20.0 N. What is the magnitude of the normal force that the ground exerts on the suitcase? Give the names for each of the elements between atomic numbers 1 and 86 that has a symbol starting with "C".Identify the family each element belongs to. If the element does not belong to a family, identify it as a metal or non-metal.2. In your own words, define the following terms. a. Element b. Atom c. Molecule d. Compound 3. How many oxygen atoms are in one molecule (or formula unit) of each of the following compounds? NO3 Al(OH)3 Ca(NO3)2 Ba(OCN)2 A police car at rest, passed by a speeder traveling at a constant 120 km/h, takes off in hot pursuit. The police officer catches up to the speeder in 750 m, while maintaining a constant acceleration. Calculate (a) how long it took the police car to overtake the speeder, (b) the required police acceleration, and (c) the velocity of the police car at the moment it reaches the speeder. Esmeralda is 20 years of age and a full-time student living with her parents. She had wages of $500 ($50 of income tax withholding) for 2018. Can Esmeralda file a tax return to claim her $50 of income tax withholding even though she is a dependent of her parents? Yoon, who sells designer jeans, has a mobile app to help women determine what leg style looks best on their body type. What could she do to bring in more prospective customers? a. Add a mobile-app extension to her ad b. Use sitelink extensions. c. Add a call-only extension to her ad d. Include a link to her mobile website in her ad. There are 10 workers in Thailand and each can produce either 4 computers or 60 tons of rice. There are 20 workers in the United States and each can produce either 10 computers or 80 tons of rice. Draw the production possibilities curve for each country. Define the following and give an example for each: ( a) cytokine b)interleukin c) chemokine d) chemoattractant Which of the molecules shown in question 5 has an asymmetric carbon? Which carbon is asymmetric?