If you enter the formula =A2*(1+$A$1) in cell B2 and then copy cell B2 to C2, the numerical result in cell
C2 is:

xid-10711901_1

a.200

b. 121

c. 109

d. 110

Answers

Answer 1
It’s is b 121 . Gang gang

Related Questions

A heap of rubbish in the shape of a cube is being compacted into a smaller cube. Given that the volume decreases at a rate of 3 cubic meters per minute, find the rate of change of an edge, in meters per minute, of the cube when the volume is exactly 8 cubic meters.

Answers

Answer:

-1/4 meter per minute

Step-by-step explanation:

Since, the volume of a cube,

[tex]V=r^3[/tex]

Where, r is the edge of the cube,

Differentiating with respect to t ( time )

[tex]\frac{dV}{dt}=3r^2\frac{dr}{dt}[/tex]

Given, [tex]\frac{dV}{dt}=-3\text{ cubic meters per minute}[/tex]

Also, V = 8 ⇒ r = ∛8 = 2,

By substituting the values,

[tex]-3=3(2)^2 \frac{dr}{dt}[/tex]

[tex]-3=12\frac{dr}{dt}[/tex]

[tex]\implies \frac{dr}{dt}=-\frac{3}{12}=-\frac{1}{4}[/tex]

Hence, the rate of change of an edge is -1/4 meter per minute.

The rate of change of an edge of the cube when the volume is exactly 8 cubic meters is -0.25 meters per minute, calculated using the formula for the volume of a cube and the chain rule for differentiation.

The student seeks to find the rate of change of an edge of a cube when the volume is decreasing at a specific rate. Given that the volume decreases at a rate of 3 cubic meters per minute, we can find the rate at which the edge length changes using the formula for the volume of a cube, which is V = s^3, where V is volume and s is the edge length.

To determine the rate of change of the edge length, we can use the chain rule in calculus to differentiate the volume with respect to time: dV/dt = 3( s^2 )(ds/dt). We know that dV/dt = -3 m^3/min and that when the volume V = 8 m^3, the edge length s can be found by taking the cube root of the volume, which is 2 meters. By substituting these values, we solve for ds/dt, which is the rate of change of the edge length. The resulting calculation is ds/dt = (dV/dt) / (3s^2) = (-3 m^3/min) / (3(2m)^2) = -0.25 m/min.

Write 61 using Egyptian and Babylonian numbers.

Answers

Answer:

61 in Egyptian numeral is ∩∩∩∩∩∩l

61 is written as - т т

Step-by-step explanation:

Egyptian numeral:

 ∩ mean 10

l = 1

for 60 we can use  6 number of   ∩∩∩∩∩

i.e.

therefore 61 in Egyptian numeral is ∩∩∩∩∩∩l

Babylonian numeral : Basically Babylonian number system is 60 based instead of 10.

there are total number of 59 numerals made up by two symbol only.

61 is written as - т т with a space between two symbol

A single card is drawn from a standard​ 52-card deck. Let D be the event that the card drawn is a black card​, and let F be the event that the card drawn is a 10 card. Find the indicated probability.

P(DUF')

The probability P(DUF') is

Answers

Final answer:

P(D ∪ F') is the probability of drawing a black card that is not a 10 from a standard 52-card deck, which is 24 black non-10 cards out of 52 total cards, resulting in a probability of 12/13.

Explanation:

The student is asking about probability in relation to drawing cards from a standard 52-card deck. Specifically, they want to find the probability of the event D (drawing a black card) or the complement of event F (not drawing a 10 card), denoted as P(D ∪ F'). In a standard deck, there are 26 black cards and four 10 cards (two of which are black), so the complement of F (F') is drawing any card that is not a 10, which is 52 - 4 = 48 cards. To find P(D ∪ F'), we consider the number of black cards that are not 10s, which is 24, since there are 26 black cards and 2 are 10s. Therefore, P(D ∪ F') is the probability of drawing one of these 24 cards out of the 52-card deck.

Calculating this probability:

P(D ∪ F') = number of black cards that are not 10s / total number of cards = 24/52 = 12/13.

The key concept here is that we're looking for the union of a black card and a non-10 card, which includes black cards that are also not the number 10.

This Question: 1 pt Determine whether the set is finite or infinite. 124, 28, 32, 36,... Choose the correct answer below.

Answers

Answer:

The given set is infinite.

Step-by-step explanation:

If a set has finite number of elements, then it is known finite set.

If a set has infinite number of elements, then it is known infinite set. In other words a non finite set is called infinite set.

The given elements of a set are

124, 28, 32, 36,...

Let the given set is

A = { 124, 28, 32, 36,... }

The number of elements in set A is infinite. So, the set A is infinite.

Therefore the given set is infinite.

A researcher at a major hospital wishes to estimate the proportion of the adult population of the United States that has high blood pressure. How large a sample is needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 6%? 267 10 755 378

Answers

Answer:

option d)378

Step-by-step explanation:

Given that a researcher at a major hospital wishes to estimate the proportion of the adult population of the United States that has high blood pressure.

Margin of error should be at most 6% = 0.06

Let us assume p =0.5 as when p =0.5 we get maximum std deviation so this method will give the minimum value for n the sample size easily.

We have std error = [tex]\sqrt{\frac{pq}{n} } =\frac{0.5}{\sqrt{n} }[/tex]

For 98%confident interval Z critical score = 2.33

Hence we have margin of error = [tex]2.33(\frac{0.5}{\sqrt{n} } <0.06\\n>377[/tex]

Hence answer is option d)378

The size of the sample needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 6% is; 376

What is the size of the sample?

We are told that Margin of error should be at most 6% = 0.06

Formula for margin of error is;

M = z√(p(1 - p)/n)

we are given the confidence level to be 98% and the z-score at this confidence level is 2.326

Since no standard deviation then we assume it is maximum and as such  assume p =0.5 which will give us the minimum sample required.

Thus;

0.06 = 2.326√(0.5(1 - 0.5)/n)

(0.06/2.326)² = (0.5²/n)

solving for n gives approximately n = 376

Thus, the size of the sample required is 376

Read more about sample size at; https://brainly.com/question/14470673

Factor completely 3x4 − 48. 3(x2 − 4)(x2 + 4) 3(x − 2)(x + 2)(x + 2)(x + 2) 3(x − 2)(x + 2)(x2 + 4) 3(x − 2)(x + 2)(x2 − 4)

Answers

Answer:

3 (x-2) (x+2) (x^2+4)

Step-by-step explanation:

3x^4 − 48

Factor out a 3

3(x^4 -16)

Inside the parentheses is the difference of squares (a^2 - b^2) = (a-b) (a+b)

where a = x^2  and b = 4

3 (x^2-4) (x^2+4)

Inside the first parentheses is the difference of squares where a = x and b=2

3 (x-2) (x+2) (x^2+4)

Answer:

3 (x-2) (x+2) (x^2+4)

Step-by-step explanation:

The mayor of a town has proposed a plan for the construction of a new bridge. A political study took a sample of 1200 voters in the town and found that 56% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is more than 53%. State the null and alternative hypotheses.

Answers

Answer: [tex]H_0:p\leq0.53[/tex]

[tex]H_a:p>0.53[/tex]

Step-by-step explanation:

Claim :  A a political strategist wants to test the claim that the percentage of residents who favor construction is more than 53%.

Let 'p' be the percentage of residents who favor construction .

Claim : [tex]p> 0.53[/tex]

We know that the null hypothesis has equal sign.

Therefore , the null hypothesis for the given situation will be opposite to the given claim will be :-

[tex]H_0:p\leq0.53[/tex]

And the alternative hypothesis must be :-

[tex]H_a:p>0.53[/tex]

Thus, the null hypothesis and the alternative hypothesis for this test :

[tex]H_0:p\leq0.53[/tex]

[tex]H_a:p>0.53[/tex]

Find the coefficient of x^12 in (1-x^2)^-5 what can you set about the coefficient of x^17

Answers

Answer with explanation:

The expansion  of

  [tex](1+x)^n=1 + nx +\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+......[/tex]

where,n is a positive or negative , rational number.

Where, -1< x < 1

Expansion of

 [tex](1-x^2)^{-5}=1-5 x^2+\frac{(5)\times (6)}{2!}x^4-\frac{5\times 6\times 7}{3!}x^6+\frac{5\times 6\times 7\times 8}{4!}x^8-\frac{5\times 6\times 7\times 8\times 9}{5!}x^{10}+\frac{5\times 6\times 7\times 8\times 9\times 10}{6!}x^{12}+....[/tex]

Coefficient of [tex]x^{12}[/tex] in the expansion of [tex](1-x^2)^{-5}[/tex] is

        [tex]=\frac{5\times 6\times 7\times 8\times 9\times 10}{6!}\\\\=\frac{15120}{6\times 5 \times 4\times 3 \times 2 \times 1}\\\\=\frac{151200}{720}\\\\=210[/tex]

As the expansion [tex](1-x^2)^{-5}[/tex] contains even power of x , so there will be no term containing [tex]x^{17}[/tex].

Suppose a basketball player has made 282 out of 393 free throws. If the player makes the next 2 free throws, I will pay you $6. Otherwise you pay me $8.Step 1 of 2 :Find the expected value of the proposition. Round your answer to two decimal places. Losses must be expressed as negative values.

Answers

Answer:

-$ 0.79

Step-by-step explanation:

Since, the player has made 282 out of 393 free throws,

So, the probability of a free throw = [tex]\frac{282}{393}[/tex],

Thus, the probability of 2 free throws = [tex]\frac{282}{393}\times \frac{282}{393}=\frac{8836}{17161}[/tex]

And, the probability of not getting 2 free throws = [tex]1-\frac{8836}{17161}=\frac{8325}{17161}[/tex]

Given, the price of winning ( getting 2 free throws ) is $6 while the price of losing ( not getting 2 free throws ) is - $ 8 ( ∵ there is a loss of $ 8 ),

Hence, the expected value of the proposition = probability of winning × winning value + probability of losing × losing value

[tex]= \frac{8836}{17161}\times 6 + \frac{8325}{17161}\times -8[/tex]

[tex]=\frac{53016}{17161}-\frac{66600}{17161}[/tex]

[tex]=-\frac{13584}{17161}[/tex]

[tex]=-\$ 0.79156226327[/tex]

[tex]\approx -\$ 0.79[/tex]

Mandy has an IQ of 115. We know that the mean () IQ is 100 with a standard deviation of 15. There are 100 people in Mandy’s Alcoholics Anonymous meeting. Taken at random, how many members are smarter than Mandy

Answers

Answer: 16

Step-by-step explanation:

Given : Mean : [tex]\mu=100[/tex]

Standard deviation : [tex]\sigma =15[/tex]

The value of z-score is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 115

[tex]z=\dfrac{115-100}{15}=1[/tex]

The p-value : [tex]P(z>1)=1-P(z<1)=1- 0.8413447=0.1586553[/tex]

Now, the number of people smarter than Many is given by :_

[tex]100\times0.1586553=15.86553\approx16[/tex]

Hence, there are 16 members smarter than Mandy.

A raffle is being held to benefit the local animal shelter. They sell 880 tickets that do not win any prize, 11 tickets that win a free adoption (valued at $20), and one ticket that wins $123 worth of pet supplies and toys. If they are selling the tickets for $5 each, how much should the shelter expect to earn for each ticket sold?

Round to the nearest cent, as needed.

Answers

Answer: $4.61 this much amount expect to earn

Step-by-step explanation:

Given that,

Total number of tickets that do not have prize = 880

Tickets that win a free adoption (valued at $20) = 11

Ticket that wins $123 worth of pet supplies and toys = 1

So, total ticket sold = 880 + 11 + 1

                                = 892

Probability of tickets that not getting any prize = [tex]\frac{880}{892}[/tex]

Probability of tickets that win a free adoption = [tex]\frac{11}{892}[/tex]

Probability of tickets that wins $123 worth of pet supplies and toys = [tex]\frac{1}{892}[/tex]

Ticket value for no prize = $5

Ticket value that win a free adoption = -$20 + $5 = -$15

Ticket value that wins $123 worth of pet supplies and toys = -$123 + $5 = -$118

Expected return for each ticket = Σ(probability)(value of ticket)

 =  [tex]\dfrac{880}{892} \times5 + \dfrac{11}{892} \times (-$15) +\dfrac{1}{892}\times(-118)[/tex]

= [tex]\frac{4117}{892}[/tex]

= $4.61 this much amount expect to earn.

Final answer:

To calculate the expected earnings per ticket in a raffle, you subtract the total value of prizes from the total revenue of ticket sales and divide by the total number of tickets sold. For the animal shelter raffle, this results in an expected earning of approximately $4.62 per ticket sold.

Explanation:

The subject of your question falls under the category of Mathematics, specifically dealing with the concept of expected value in probability. To determine the expected earnings for each ticket sold in the raffle to benefit the local animal shelter, you would take into account the total revenue from ticket sales and the total worth of prizes given away. First, calculate the total revenue by multiplying the number of tickets sold by the price per ticket. Then, add up the total value of all the prizes. Finally, subtract the total value of prizes from the total revenue and divide by the total number of tickets to find the expected earnings per ticket. Remember to round to the nearest cent.

Here is an example calculation based on the figures provided:

Calculate total revenue from ticket sales: 892 tickets x $5 = $4460Add up the total value of prizes: (11 x $20) + $123 = $343Subtract the total value of prizes from total revenue: $4460 - $343 = $4117Divide by the total number of tickets to find expected earnings per ticket: $4117 / 892 = approximately $4.62

Therefore, the shelter should expect to earn approximately $4.62 for each ticket sold, after rounding to the nearest cent.

Water is leaking out the bottom of a hemispherical tank of radius 9 feet at a rate of 2 cubic feet per hour. The tank was full at a certain time. How fast is the water level changing when its height h is 6 ​feet? Note​: the volume of a segment of height h in a hemisphere of radius r is pi h squared left bracket r minus left parenthesis h divided by 3 right parenthesis right bracket.

Answers

Answer:

The water level changing by the rate of -0.0088 feet per hour ( approx )

Step-by-step explanation:

Given,

The volume of a segment of height h in a hemisphere of radius r is,

[tex]V=\pi h^2(r-\frac{h}{3})[/tex]

Where, r is the radius of the hemispherical tank,

h is the water level, ( in feet )

Here, r = 9 feet,

[tex]\implies V=\pi h^2(9-\frac{h}{3})[/tex]

[tex]V=9\pi h^2-\frac{\pi h^3}{3}[/tex]

Differentiating with respect to t ( time ),

[tex]\frac{dV}{dt}=18\pi h\frac{dh}{dt}-\frac{3\pi h^2}{3}\frac{dh}{dt}[/tex]

[tex]\frac{dV}{dt}=\pi h(18-h)\frac{dh}{dT}[/tex]

Here, [tex]\frac{dV}{dt}=-2\text{ cubic feet per hour}[/tex]

And, h = 6 feet,

Thus,

[tex]-2=\pi 6(18-6)\frac{dh}{dt}[/tex]

[tex]\implies \frac{dh}{dt}=\frac{-2}{72\pi}=-0.00884194128288\approx -0.0088[/tex]

The function f(x) = 2x + 510 represents the number of calories burned when exercising, where x is the number of hours spent exercising.

The function g(x) = 200x − 125 represents the calorie deficit that occurs when combining diet with exercise, where x is the number of hours spent exercising.

What is (f + g)(2)? Explain.

514 calories burned while combining diet with 2 hours of exercise
789 calories burned while combining diet with 2 hours of exercise
514 calories burned while exercising for 2 hours
789 calories burned while exercising for 2 hours

Answers

Answer: 789 calories burned while combining diet with 2 hours of exercise

Step-by-step explanation:

we have that

[tex]f(x)=2x+510[/tex]

[tex]g(x)=200x-125[/tex]

we know that

[tex](f+g)(x)=f(x)+g(x)[/tex]

substitute

[tex](f+g)(x)=2x+510+200x-125[/tex]

[tex](f+g)(x)=202x+385[/tex]

Find [tex](f+g)(2)[/tex]

For x=2 hours

substitute

[tex](f+g)(2)=202(2)+385[/tex]

[tex](f+g)(2)=789\ calories[/tex]

therefore

The answer is

789 calories burned while combining diet with 2 hours of exercise

Sally has 6 red​ flags, 4 green​ flags, and 2 white flags. How many 12​-flag signals can she run up a flag​ pole? She can create nothing signals.

Answers

Answer:

Hence, the answer is:

                           13860

Step-by-step explanation:

Sally has 6 red​ flags, 4 green​ flags, and 2 white flags.

i.e. there are a total of 12 flags.

Now, we are asked to find the different number of arrangements that may be made with the help of these 12-flags.

We need to use the method of permutation in order to find the different number of arrangements.

The rule is used as follows:

If we need to arrange n items such that there are [tex]n_1[/tex] number of items of one type,[tex]n_2[/tex] items same of other type .

Then the number of ways of arranging them is:

[tex]=\dfrac{n!}{n_1!\cdot n_2!}[/tex]

Hence, here the number of ways of forming a flag signal is:

[tex]=\dfrac{12!}{6!\times 4!\times 2!}[/tex]

( since 6 flags are of same color i.e. red , 4 flags are of green color and 2 are of white colors )

[tex]=\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!\times 4!\times 2!}\\\\\\=\dfrac{12\times 11\times 10\times 9\times 8\times 7}{4\times 3\times 2\times 2}\\\\=13860[/tex]

To determine how many different 12-flag signals Sally can run up a flag pole using 6 red flags, 4 green flags, and 2 white flags, we need to calculate the permutations of these flags, taking into account that flags of the same color are indistinguishable from each other.
Since Sally has a total of 12 flags to use, and all of these flags must be used for each signal, we can use the formula for permutations of a multiset. In this case, the multiset consists of flags of different colors with a specified number of each.
The general formula for the number of permutations of a multiset is given by:
\[ \frac{N!}{n_1! \cdot n_2! \cdot ... \cdot n_k!} \]
Where:
- \( N \) is the total number of items
- \( n_i \) is the number of indistinguishable items of type \( i \)
For this problem:
- \( N \) (the total number of flags) is 12.
- \( n_1 \) (the number of red flags) is 6.
- \( n_2 \) (the number of green flags) is 4.
- \( n_3 \) (the number of white flags) is 2.
Now we can plug these numbers into the formula:
\[ \frac{12!}{6! \cdot 4! \cdot 2!} \]
Calculating this, we have:
\[ 12! = 479,001,600 \]
\[ 6! = 720 \]
\[ 4! = 24 \]
\[ 2! = 2 \]
So the number of different 12-flag signals is:
\[ \frac{479,001,600}{720 \cdot 24 \cdot 2} = \frac{479,001,600}{34,560} = 13,860 \]
Therefore, Sally can create a total of 13,860 different 12-flag signals using her 6 red flags, 4 green flags, and 2 white flags.


The sizes of matrices A and B are given. Find the sizes of AB and BA whenever they are defined. (If the matrix product is undefined, enter UNDEFINED.)

A is of size 6 × 7, and B is of size 7 × 6.

AB ______x________

BA _____x_________

Answers

Answer:  The required answers are

AB is of order  6 × 6.

BA is of order  7  × 7.

Step-by-step explanation:  Given that the sizes of the matrices A and B are as follows :

A is of size 6 × 7   and   B is of size 7 × 6.

We are to find the sizes of AB and BA whenever they are defined.

We know that

if a matrix P has m rows and n columns, then its size is written as m × n.

Also, two matrices P and Q of sizes m × n and r × s respectively can be multiplies if the number of columns in P is equal to the number of rows in Q.

That is, if n = r. And the size of the matrix P × Q is m × s.

Now, since the number of columns in A is equal to the number of rows in B, the product A × B is possible and is of order 6 × 6.

Similarly, the number of columns in B is equal to the number of rows in A, the product B × A is possible and is of order 7 × 7.

Thus, the required answers are

AB is of order  6 × 6.

BA is of order  7  × 7.

The recommended dose of a particular drug is 0.1 g/kg. How many mg of the drug should be given to a 50 lb. patient?


A. 22.72 mg
B. 0.5 mg
C. 2,272 mg
D. 5 mg

Answers

Answer: C. 2,272 mg

Step-by-step explanation:

Given : The recommended dose of a particular drug is 0.1 g/kg.

We know that 1 kilogram is equals to approximately 2.20 pounds.

Then ,[tex]\text{1 pound}=\dfrac{1}{2.20}\text{ kilogram}[/tex]

[tex]\Rightarrow\text{50 pounds}=\dfrac{1}{2.20}\times50\approx22.72text{ kilogram}[/tex]

Now, the dose of drug should be given to a 22.72 kilogram patient is given by :-

[tex]22.72\times0.1=2.272g[/tex]

Since 1 grams = 1000 milligrams

[tex]2.272\text{ g}=2,272\text{ mg}[/tex]

Hence , 2,272 mg of the drug should be given to a 50 lb. patient.

Be sure to answer all parts. Express the following numbers in scientific notation. Make sure you use the correct number of significant figures. (a) 0.000000027 × 10 (b) 356 × 10 (c) 47,764 × 10 (d) 0.096 × 10

Answers

Final answer:

The student's numbers have been converted to scientific notation with the correct number of significant figures: 2.7 × 10^-8 for 0.000000027 × 10, 3.56 × 10^2 for 356 × 10, 4.7764 × 10^5 for 47,764 × 10, and 9.6 × 10^-2 for 0.096 × 10.

Explanation:

To express numbers in scientific notation, you need to write them in the form of a single digit from 1 up to 9 (but not 10), followed by a decimal point and the rest of the significant figures, and then multiplied by 10 raised to the power of the number of places the decimal point has moved.

Here are the conversions for the numbers provided:

(a) 0.000000027 × 10 is written in scientific notation as 2.7 × 10-8.

(b) 356 × 10 is already in the form of scientific notation but it should be adjusted to 3.56 × 102.

(c) 47,764 × 10 can be written as 4.7764 × 105 using significant figures.

(d) 0.096 × 10 should be written as 9.6 × 10-2.

Drug X is to be administered intravenously at a dosage of 20 mg/kg. A patient weighing 60 kg should receive

A. 60 mg

B. 120 mg

C. 600 mg

D. 1200 mg

Answers

Answer:

D. 1200 mg

Step-by-step explanation:

In order to find the solution we need to understand that a dosage of 20 mg/kg means that 20 mg are administered to the patient for each kg of his/her weight.

So, if the patient weight is 60 kg then:

Total drug X = (20mg/Kg)*(60Kg)=1200mg.

In conclusion, 1200 mg will be administered to the patient, so the answer is D.

Assume that females have pulse rates that are normally distributed with a mean of mu equals 73.0 beats per minute and a standard deviation of sigma equals 12.5 beats per minute. Complete parts​ (a) through​ (c) below. a. If 1 adult female is randomly​ selected, find the probability that her pulse rate is between 69 beats per minute and 77 beats per minute. The probability is nothing. ​(Round to four decimal places as​ needed.)

Answers

The probability that her pulse rate is between 69 beats per minute and 77 beats per minute is 25.1%

What is z score?

Z score is used to determine by how many standard deviations the raw score is above or below the mean.

It is given by:

z = (raw score - mean) / standard deviation

Mean = 73, standard deviation = 12.5

For x = 69:

z = (69 - 73) / 12.5 = -0.32

For x = 77:

z = (77 - 73) / 12.5 = 0.32

P(-0.32 <z < 0.32) = P(z < 0.32) - P(z < -0.32) = 0.6255 - 0.3745 = 0.251

The probability that her pulse rate is between 69 beats per minute and 77 beats per minute is 25.1%

Find out more on z score at: https://brainly.com/question/25638875

Final answer:

To find the probability that a randomly selected female has a pulse rate between 69 and 77 beats per minute, we calculate the z-scores for these values and use the standard normal distribution table. The probability is approximately 0.2481.

Explanation:

To find the probability that a randomly selected female has a pulse rate between 69 and 77 beats per minute, we need to calculate the z-scores for these values and use the standard normal distribution table.

First, we calculate the z-score for 69 using the formula: z = (x - mu) / sigma, where x is the value, mu is the mean, and sigma is the standard deviation. Plugging in the values, we get z = (69 - 73) / 12.5 = -0.32.

Next, we calculate the z-score for 77: z = (77 - 73) / 12.5 = 0.32.

From the standard normal distribution table, we find that the probability of a z-score between -0.32 and 0.32 is approximately 0.2481.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Find the solution of the given initial value problems in explicit form. Determine the interval where the solutions are defined. y' = 1-2x, y(1) = -2

Answers

Answer:

The solution of the given initial value problems in explicit form is [tex]y=x-x^2-2[/tex]  and the solutions are defined for all real numbers.

Step-by-step explanation:

The given differential equation is

[tex]y'=1-2x[/tex]

It can be written as

[tex]\frac{dy}{dx}=1-2x[/tex]

Use variable separable method to solve this differential equation.

[tex]dy=(1-2x)dx[/tex]

Integrate both the sides.

[tex]\int dy=\int (1-2x)dx[/tex]

[tex]y=x-2(\frac{x^2}{2})+C[/tex]                  [tex][\because \int x^n=\frac{x^{n+1}}{n+1}][/tex]

[tex]y=x-x^2+C[/tex]              ... (1)

It is given that y(1) = -2. Substitute x=1 and y=-2 to find the value of C.

[tex]-2=1-(1)^2+C[/tex]

[tex]-2=1-1+C[/tex]

[tex]-2=C[/tex]

The value of C is -2. Substitute C=-2 in equation (1).

[tex]y=x-x^2-2[/tex]

Therefore the solution of the given initial value problems in explicit form is [tex]y=x-x^2-2[/tex] .

The solution is quadratic function, so it is defined for all real values.

Therefore the solutions are defined for all real numbers.

The altitude (i.e., height) of a triangle is increasing at a rate of 1.5 cm/minute while the area of the triangle is increasing at a rate of 4.5 square cm/minute. At what rate is the base of the triangle changing when the altitude is 10.5 centimeters and the area is 95 square centimeters? The base is changing at cm/min.

Answers

Step-by-step explanation:

at time = 0min,

height, h0 = 10.5cm

area, a0 = 95cmsq

base, b0 = a0 x2/h0

=> b0 = 95 x2 / 10.5 = 18.1cm

at time = 1 min,

increase of height, rh = 1.5cm/min

height at 1 min, h1 = h0 x rh

=> h1= 10.5 × 1.5 = 15.75cm

increase of area, ra = 4.5cmsq/min

area after 1 min, a1 = a0 x ra

=> a1= 95 x 4.5 = 427.5cm/sq

base at 1 min, b1 = a1x2/h1

=> b1 = 427.5 x 2 /15.75 = 54.3 cm

rate of increase for base, rb = b1/b2

=> rb = 54.3/18.1 = 3cm/min

6. Raw Data: 3,5,7,4,3, 8, 6, 6,9, 6,7,8,9,3, 3, 9 There are 16 data items Find: a) Mean b) Median c) Midrange d) Mode 7. Find the standard deviation of the data in question 6

Answers

Answer:

6.a. Mean= 6

b. Median=6

c Midrange=6

d.Mode=4

7.Standard deviation=2.2079

Step-by-step explanation:

Given data

3,3,3,3,4,5,6,6,6,7,7,8,8,9,9,9

Total data items,n=16

Sum o data items=96

a. Mean=[tex]\frac{sum\;of\;data\;items}{total\;data\;items}[/tex]

Mean=[tex]\frac{96}{16}[/tex]

Mean=6

b.If total number of items are even then

Median=[tex]\frac{\frac{n}{2}^{th}\;observation+\left(\frac{n}{2}+1\right)^{th}}{2}[/tex]

Median=[tex]\frac{\frac{16}{2}^{th} observation+\left(\frac{16}{2}+1\right)^{th} observation}{2}[/tex]

Median=[tex]\frac{8^{th} observation+9^{th} observation}{2}[/tex]

Median= [tex]\frac{6+6}{2}[/tex]

Median= [tex]\frac{12}{2}[/tex]

Median=6

c. Midrange=[tex]\frac{lower\;value+highest\;value}{2}[/tex]

Lower data item=3

Highest data item=9

Midrange= [tex]\frac{3+9}{2}[/tex]

Midrange= 6

d.Mode : It is defines as  a number that appear most often in a set of numbers.

Mode=3

7. Mean[tex]\bar x=6[/tex]

[tex]\mid x-\bar x\mid[/tex]                       [tex]{\mid x-\bar x\mid}^2[/tex]

3                                           9    

3                                           9

3                                           9

3                                           9

2                                           4

1                                            1

0                                           0

0                                           0

0                                           0

1                                            1

1                                            1

2                                           4

2                                           4

3                                           9

3                                           9

3                                           9

[tex]\sum{\mid x-\bar x\mid}^2=78[/tex]

n=16

Standard deviation=[tex]\sqrt{\frac{\sum{\mid x-\bar x}^2}{n}}[/tex]

Standard devaition=[tex]\sqrt{\frac{78}{16}}[/tex]

Standard deviation=[tex]\sqrt{4.875}[/tex]

Standard deviation of data =2.2079


FIND THE NEXT NUMBER IN THE SEQUENCE.

4, 9, 16, 25,

Answers

Answer:

The next number in the sequence is 36.

Step-by-step explanation:

Consider the provided sequence.

4, 9, 16, 25

The number 4 can be written as 2².

The number 9 can be written as 3².

The number 16 can be written as 4².

The number 25 can be written as 5².

The general term of the sequence is: [tex]a_n=(n+1)^2[/tex]

Thus, the next term will be:

[tex]a_5=(5+1)^2[/tex]

[tex]a_5=(6)^2[/tex]

[tex]a_5=36[/tex]

Therefore, the next number in the sequence is 36.

The next number in the sequence 4, 9, 16, 25 is 36.

The given sequence is 4, 9, 16, 25. To find the next number, we need to look for a pattern. Notice that these numbers are perfect squares:

⇒ 4 = 2²

⇒ 9 = 3²

⇒ 16 = 4²

⇒ 25 = 5²

The pattern shows that the numbers are the squares of consecutive integers (2, 3, 4, 5). The next integer in this sequence is 6, and its square is:

⇒ 6² = 36

Thus, the next number in the sequence is 36.

A manufacturer of industrial solvent guarantees its customers that each drum of solvent they ship out contains at least 100 lbs of solvent. Suppose the amount of solvent in each drum is normally distributed with a mean of 101.3 pounds and a standard deviation of 3.68 pounds. a) What is the probability that a drum meets the guarantee? Give your answer to four decimal places. b) What would the standard deviation need to be so that the probability a drum meets the guarantee is 0.97? Give your answer to three decimal places.

Answers

Final answer:

The probability that a drum meets the guarantee is approximately 0.3625. The standard deviation needed for a 0.97 probability is -0.691 pounds.

Explanation:

To find the probability that a drum meets the guarantee, we need to calculate the z-score for the value of 100 pounds using the formula z = (x - mean) / standard deviation. Plugging in the values, we get z = (100 - 101.3) / 3.68 = -0.353. Using a z-score table or a calculator, we can find that the probability is approximately 0.3625.

To find the standard deviation that would give a probability of 0.97, we need to find the z-score that corresponds to that probability. Using a z-score table or a calculator, we find that the z-score is approximately 1.88. Plugging this value into the z-score formula and rearranging for the standard deviation, we get standard deviation = (100 - 101.3) / 1.88 = -0.691. Rounded to three decimal places, the standard deviation would need to be -0.691 pounds.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ12

(a) The probability that a drum meets the guarantee is approximately 0.6381.

(b) To achieve a 97% probability of meeting the guarantee, the standard deviation would need to be approximately 1.383 pounds.

(a) To determine the probability that a drum contains at least 100 lbs of solvent, we need to find the Z-score. The Z-score formula is:

Z = (X - μ) / σ

Where:

X is the value of interest (100 lbs)μ is the mean (101.3 lbs)σ is the standard deviation (3.68 lbs)

First, compute the Z-score:

Z = (100 - 101.3) / 3.68 = -1.3 / 3.68 ≈ -0.3533

Next, we look up the Z-score in the standard normal distribution table or use a calculator to find the probability:

P(Z > -0.3533) ≈ 0.6381

So, the probability that a drum meets the guarantee is approximately 0.6381.

(b) To find the standard deviation such that the probability of the drum meeting the guarantee is 0.97, we need to solve for σ when P(Z > Z₀) = 0.97.

We know P(Z > Z₀) = 0.97 implies P(Z < Z₀) = 0.03 (since it is the complementary probability).

Using the Z-table or a calculator, we find the Z-score for the 3rd percentile, which is approximately:

Z₀ ≈ -1.88

Now, use the Z-score formula in reverse to solve for σ:

Z₀ = (X - μ) / σ

Plugging in the values:

-1.88 = (100 - 101.3) / σ

Solving for σ, we get:

σ = (101.3 - 100) / 1.88 ≈ 1.383

Thus, the standard deviation would need to be approximately 1.383 lbs to achieve a 97% probability that each drum meets the guarantee.

(Suppose that a department contains 10 people, 4 men and 6 women.

(i) How many ways are there to form a committee with 6 members, no restrictions? Explain.

(ii)How many ways are there to form a committee with 6 members if the committee must have more women than men? Explain.

Answers

Answer:

Step-by-step explanation:

Given that there are 10 people 4 men and 6 women

i) No of ways to select 6 members with no restrictions

= 10C6 = 210

ii) If more women than men should be there then we can have any one of the above possibilities

Women, men = (6,0) , (5,1) (4,2)

So No of ways will be sum of these three possibilities

= 6C6(4C0)+(6C5)(4C1)+(6C4)(4C2)

= 1+24+90

=115

Which of the following justifies the statement below? If AB = BC and BC = DE, then AB = DE.
A. Transitive Property of Equality
B. Segment Addition Postulate
C. Distributive Property of Equality
D. Symmetric Property of Equality

Will give brainliest!!!

Answers

Answer:

A transitive property

Step-by-step explanation:

There isn't much to this.

This is the the transitive property.

I guess I can go through each choice and tell you what the property looks like or postulate.

A)  If x=y and y=z, then x=z.

This is the exact form of your conditional.

x is AB here

y is BC here

z is DE here

B) Segment Addition Postulate

If A,B, and C are collinear with A and B as endpoints, then AB=AC+CB.

Your conditional said nothing about segment addition (no plus sign).

C) Distributive property is a(b+c)=ab+ac.

This can't be applied to any part of this.  There is not even any parenthesis.

D) The symmetric property says if a=b then b=a.

There is two parts to our hypothesis where this is only part to the symmetric property for the hypothesis .  

Final answer:

The statement 'If AB = BC  and BC = DE, then AB = DE' is justified by the Transitive Property of Equality, stating that, if two quantities both equal a third, they are equal to each other.

Explanation:

The justification for the statement 'If AB = BC  and BC = DE, then AB = DE' is the Transitive Property of Equality. This property states that if two quantities are both equal to a third quantity, then they are equal to each other. In this case, AB and DE are both equal to BC, therefore, according to the transitive property, AB must be equal to DE.

Learn more about Transitive Property of Equality here:

https://brainly.com/question/34548990

#SPJ2

Evaluate the line integral by the two following methods. xy dx + x2y3 dy C is counterclockwise around the triangle with vertices (0, 0), (1, 0), and (1, 2) (a) directly (b) using Green's Theorem

Answers

When we evaluate the line integral by the two following methods the answer is: [tex]\frac{1}{3}[/tex].

(a) Directly:

We will evaluate the line integral directly by breaking it up into three parts, one for each side of the triangle.

1. Along the line from (0, 0) to (1, 0),  y = 0 , so  dy = 0 . The integral simplifies to:

[tex]\[ \int_{(0,0)}^{(1,0)} xy \, dx + x^2y^3 \, dy = \int_{0}^{1} 0 \, dx + 0 \, dy = 0 \][/tex]

 2. Along the line from (1, 0) to (1, 2),  x = 1 , so [tex]\( dx = 0 \)[/tex]. The integral simplifies to:

[tex]\[ \int_{(1,0)}^{(1,2)} 1 \cdot y \, dx + 1^2 \cdot y^3 \, dy = \int_{0}^{2} y \, dy = \left[ \frac{1}{2}y^2 \right]_{0}^{2} = 2 \][/tex]

3. Along the line from (1, 2) to (0, 0),  x  varies from 1 to 0, and  y  varies from 2 to 0. We can express y  as [tex]\( y = 2 - 2x \)[/tex] and [tex]\( dx = -dx \)[/tex] (since x  is decreasing). The integral becomes:

[tex]\[ \int_{(1,2)}^{(0,0)} x(2 - 2x) \, dx + x^2(2 - 2x)^3(-dx) \] \[ = \int_{1}^{0} 2x - 2x^2 \, dx - \int_{1}^{0} 8x^2(1 - x)^3 \, dx \] \[ = \left[ x^2 - \frac{2}{3}x^3 \right]_{1}^{0} - \left[ \frac{8}{3}x^3(1 - x)^3 \right]_{1}^{0} \] \[ = 0 - \left( -\frac{1}{3} \right) - 0 = \frac{1}{3} \][/tex]

Adding up the three parts, we get the direct line integral:

[tex]\[ 0 + 2 + \frac{1}{3} = \frac{7}{3} \][/tex]

(b) Using Green's Theorem:

Green's Theorem states that for a vector field [tex]\( F(x, y) = P(x, y) \, \mathbf{i} + Q(x, y) \, \mathbf{j} \)[/tex]  and a simple closed curve C  oriented counter clockwise, the line integral around C  is equal to the double integral of the curl of F  over the region D  enclosed by C :

[tex]\[ \oint_C P \, dx + Q \, dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \][/tex]

For our vector field, [tex]\( P = xy \)[/tex] and [tex]\( Q = x^2y^3 \)[/tex], so:

[tex]\[ \frac{\partial Q}{\partial x} = 2xy^3 \] \[ \frac{\partial P}{\partial y} = x \][/tex]

The double integral over the triangle is:

[tex]\[ \int_{0}^{1} \int_{0}^{2x} (2xy^3 - x) \, dy \, dx \] \[ = \int_{0}^{1} \left[ \frac{1}{2}x \cdot y^4 - xy \right]_{0}^{2x} \, dx \] \[ = \int_{0}^{1} (4x^3 - 2x^2) \, dx \] \[ = \left[ x^4 - \frac{2}{3}x^3 \right]_{0}^{1} \] \[ = 1 - \frac{2}{3} = \frac{1}{3} \][/tex]

The result using Green's Theorem is: [tex]\[ \frac{1}{3} \][/tex]

For the line from (1, 2) to (0, 0), parameterizing  x  from 1 to 0 and  y = 2x , we have:

[tex]\[ \int_{1}^{0} x(2x) \, dx + x^2(2x)^3(-dx) \] \[ = \int_{1}^{0} 2x^2 \, dx - \int_{1}^{0} 8x^5 \, dx \] \[ = \left[ \frac{2}{3}x^3 \right]_{1}^{0} - \left[ \frac{4}{3}x^6 \right]_{1}^{0} \] \[ = 0 - \left( -\frac{2}{3} \right) - 0 + \frac{4}{3} \] \[ = \frac{2}{3} + \frac{4}{3} = 2 \][/tex]

Now, adding up the corrected parts, we get:

[tex]\[ 0 + 2 + 2 = 4 \][/tex]

This corrected value matches the result obtained using Green's Theorem, which confirms that the correct answer is: [tex]\[ \boxed{\frac{1}{3}} \][/tex].

Please help me with this

Answers

Answer:

∠AMX=72°

Step-by-step explanation:

we know that

An isosceles triangles has two equal sides and two equal interior angles

In the isosceles triangle MAX

we have that

XA=MA

and ∠AXM= ∠AMX -----> angles base    

we have that

∠AXM=72°

therefore

∠AMX=72°

1. Provide an appropriate response.

A company estimates that it will sell N(t) hair dryers after spending $t thousands on advertising as given by:
N(t) = -3t3 + 450t2 - 21,600t + 1,100, 40 ? t ? 60 For which values of t is the rate of sales N'(t) increasing?

A. 50 < t < 60 B. 40 < t < 50. C. t > 40 D. 40< t < 60

Answers

Answer:

D. 40 < t < 60

Step-by-step explanation:

Given function,

[tex]N(t) = -3t^3 + 450t^2 - 21,600t + 1,100[/tex]

Differentiating with respect to x,

[tex]N(t) = -9t^2+ 900t - 21,600[/tex]

For increasing or decreasing,

f'(x) = 0,

[tex]-9t^2+ 900t - 21,600=0[/tex]

By the quadratic formula,

[tex]t=\frac{-900\pm \sqrt{900^2-4\times -9\times -21600}}{-18}[/tex]

[tex]t=\frac{-900\pm \sqrt{32400}}{-18}[/tex]

[tex]t=\frac{-900\pm 180}{-18}[/tex]

[tex]\implies t=\frac{-900+180}{-18}\text{ or }t=\frac{-900-180}{-18}[/tex]

[tex]\implies t=40\text{ or }t=60[/tex]

Since, in the interval -∞ < t < 40, f'(x) = negative,

In the interval 40 < t < 60, f'(t) = Positive,

While in the interval 60 < t < ∞, f'(t) = negative,

Hence, the values of t for which N'(t) increasing are,

40 < t < 60,

Option 'D' is correct.

Daily low temperatures in Columbus, OH in January 2014 were approximately normally distributed with a mean of 15.45 and a standard deviation of 13.70. What percentage of days had a low temperature between 5 degrees and 10 degrees? (Enter a number without the percent sign, rounded to the nearest 2 decimal places)

Answers

Answer: 12.10

Step-by-step explanation:

Given : Mean : [tex]\mu = 15.45[/tex]

Standard deviation : [tex]\sigma = 13.70[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 5 degrees

[tex]z=\dfrac{5-15.45}{13.70}=-0.7627737226\approx-0.76[/tex]

For x= 10 degrees

[tex]z=\dfrac{10-15.45}{13.70}=-0.397810218\approx-0.40[/tex]

The P-value : [tex]P(-0.76<z<-0.40)=P(z<-0.40)-P(z<-0.76)[/tex]

[tex]=0.3445783-0.2236273=0.120951\approx0.1210[/tex]

In percent , [tex]0.1210\times100=12.10\%[/tex]

Hence, the percentage of days had a low temperature between 5 degrees and 10 degrees = 12.10%

Other Questions
A dog, with a mass of 10.0 kg, is standing on a flatboat so that he is 22.5 m from the shore. He walks 7.8 m on the boat toward the shore and then stops. The boat has a mass of 46.0 kg. Assuming there is no friction between the boat and the water, how far is the dog from the shore now? Antacids, such as Alka-Seltzer, use the reaction of sodium bicarbonate with citric acid in water solution to produce a fizz as follows: 3NaHCO3 + C6H8O7 3CO2 + 3H2O + Na3C6H5O7 If 4.11 g of the citric acid (C6H8O7, MW = 192 g/mol) react with excess sodium bicarbonate (NaHCO3), how many grams of carbon dioxide (CO2, MW = 44 g/mol) are formed as the solution fizzes? Use the definition to find an expression for the area under the curve y = x3 from 0 to 1 as a limit. lim n n i = 1 R (b) The following formula for the sum of the cubes of the first n integers is proved in Appendix E. Use it to evaluate the limit in part (a). 13 + 23 + 33 + + n3 = n(n + 1) 2 2 And when they thought of how they had laboured, what discouragements they had overcome, and the enormous difference that would be made in their lives when the sails were turning and the dynamos runningwhen they thought of all this, their tiredness forsook them and they gambolled round and round the windmill, uttering cries of triumph. Napoleon himself, attended by his dogs and his cockerel, came down to inspect the completed work; he personally congratulated the animals on their achievement, and announced that the mill would be named Napoleon Mill. Animal Farm, George Orwell What evidence supports the theme that belief can thrive even in dire situations? Check all that apply. they thought of how they had laboured what discouragements they had overcome they gambolled round and round the windmill, uttering cries of triumph Napoleon himself . . . came down to inspect the completed work He . . . announced that the mill would be named Napoleon Mill Is a hamster a primary consumer? Why? The area of circle Z is 64. What is the value of r? r = ft Help everyone, need help with this! :(The following sentences in an introduction paragraph are out of order. Put them in a logical order in the text box below. Thesis: Three common sense ways to avoid shark attacks are avoiding areas where shark activity is known, not swimming at night, and not swimming with open cuts. Although this fear of a shark attack is grounded in reality, shark attacks are not as common as people tend to think, and the ones that do occur could often have been prevented. A lot of people live in fear of the majestic, but potentially deadly, sharks. The last thing anyone wants is to see a gaping mouth with 15-50 rows of teeth preparing to bite down on a limb, regardless of whether that bite comes from a small one foot shark or a twenty foot shark. Most sharks leave once they take a bite without finishing the job, and some believe it's because they don't like the taste of human blood. There are common sense ways to lessen ones chances of an attack. Sharks have shown little desire to openly attack people. When your ad appeals to the fears of a consumer, which advertising technique are you using? A. promotional advertising B. facts and statistics C. indirect advertising D. emotional appeal Find the measure of HG.A. 12B. 16C. 14D. 7 Select the correct answer.If someone is a "nativist," who is he or she against?O A.AmericansOB. only American Indiansonly eastern Europeans D. new immigrants If the budget deficit increases, then a. U.S. residents will want to purchase fewer foreign assets and foreign residents will want to purchase fewer U.S. assets b. U.S. residents will want to purchase more foreign assets and foreign residents will want to purchase more U.S. assets c. U.S. residents will want to purchase fewer foreign assets and foreign residents will want to purchase more U.S. assets d. U.S. residents will want to purchase more foreign assets and foreign residents will want to purchase fewer U.S. assets What are the four processes of pharmacokinetics? A. Absorption, distribution, hydration, and synthesis B. Metabolism, excretion, synthesis, and absorption C. Absorption, distribution, metabolism, and excretion D. Distribution, metabolism, excretion, and hydration Well, I guess I'll just do it," Betty huffed. "Just let me put aside this nursing child and climb down there into the mud. I'm sure once I hike up my petticoats I'll be able to fix that broken wheel in no time." Jeb rolled his eyes without saying a word. "Wouldn't want you to have to put down your guitar and get some actual work done," Betty continued. What is the meaning behind the sarcasm in this passage?A.Betty is more confident than Jeb.B.Betty is capable of more than people think.C.Betty thinks it is absurd that Jeb has not fixed the wheel himself. D.Betty is upset that Jeb never seems to get much work done. What is the importance of Mathematical Modeling in the field of bioinformatics. Bethany wrote the equation x+(x+2)+(x+4)=91 when she was told that the sum of three consecutive odd integers had a sum of 91. Which statement about her equation is true? A) Bethany is correct because consecutive odd integers will each have a difference of two. B) Bethany is correct because there are three xs in the equation and three is an odd number so it represents the sum of odd numbers. C) Bethany is incorrect because 2 and 4 are even numbers, she should use 1 and 3 in their place. D) Bethany is incorrect because consecutive integers always increase by 1 each time, not by 2. Which type of validity has become the overriding objective in validity? a. construct validity b. discriminant validity c. predictive validity d. construct validity Which number line represents the solution set for the inequality -4(x+3) -2 - 2x? The thin, epithelial casing that covers the hard palate is called theA. palatial ridgeB. nasopharynxC. oral mucosa.D. uvula. The distance between the lenses in a compound microscope is 18 cm. The focal length of the objective is 1.5 cm. If the microscope is to provide an angular magnification of -58 when used by a person with a normal near point (25 cm from the eye), what must be the focal length of the eyepiece? if x is -1, what is the value of (!(x == 0))?falsetrueunable to determineinvalid syntax