Is my answer I chose correct? I don't know how to determine if it doubled, tripled, or quadrupled...

Between 1965 and 1967, US troop strength

A) more than doubled.
B) more than tripled.
C) more than quadrupled.

Is My Answer I Chose Correct? I Don't Know How To Determine If It Doubled, Tripled, Or Quadrupled...Between

Answers

Answer 1

Answer:

More than doubled

Step-by-step explanation:

The troop "strength" is basically just troop number. It went from about 200,000 to about 500,000.

Answer 2

US troop strength is more than doubled. The correct option is A.

What is an expression?

In mathematics, expression is defined as the relationship of numbers, variables, and functions using mathematical signs such as addition, subtraction, multiplication, and division.

Expression in maths is defined as the relation of numbers variables and functions by using mathematical signs like addition, subtraction, multiplication and division.

From the given data we can see that the troop "strength" is basically just troop number. It went from about 200,000 to about 500,000.

To know more about an expression follow

https://brainly.com/question/29658374

#SPJ5


Related Questions

What is the value of y? 18+2y+4+10+2x+10

Answers

Answer:

1) 18+2y+4+10+2x+10

2) 42+2y+2x

3) 42+2x=-2y

4) -1(42-2x=2y)

5) (42-2x=2y)/2

y=21-x

Step-by-step explanation:

1) Original equation

2) Combine like terms

3) Since the problem is asking to find the value of Y, Isolate it

4) Multiply by a negative to make Y positive

5) Since what we have left isn't in simplest form, divide by 2

What is left is y=21-x or y=-x+21

HELP PLEASE 30 POINTS

Answers

Answer:

-2

Step-by-step explanation:

The equation is in the form

y = mx + b where m is the slope and b is the y intercept

The y intercept is where x = 0

In the table the value where x=0 is y=-2

So the equation becomes

y =-4x +-2

Answer:-2

Step-by-step explanation:

How to calculate the surface area of a cylinder

Answers

A = 2 (pie) r h + 2 (pie) r^2
r= radius
h= height

What is the value of a1 for a geometric sequence with a4=40 and a6=160?

Answers

Answer:

5

Step-by-step explanation:

The nth term of a geometric series is:

a_n = a₁ (r)^(n-1)

where a₁ is the first term and r is the common ratio.

Here, we have:

40 = a₁ (r)^(4-1)

160 = a₁ (r)^(6-1)

40 = a₁ (r)^3

160 = a₁ (r)^5

If we divide the two equations:

4 = r^2

r = 2

Now substitute into either equation to find a₁:

40 = a₁ (2)^3

40 = 8 a₁

a₁ = 5

Based on a​ survey, assume that 28​% of consumers are comfortable having drones deliver their purchases. Suppose that we want to find the probability that when five consumers are randomly​ selected, exactly three of them are comfortable with delivery by drones. Identify the values of​ n, x,​ p, and q.

Answers

Answer with explanation:

We know that the formula for binomial probability :-

[tex]P(x)=^nC_xp^x\ q^{n-x}[/tex], where P(x) is the probability of getting success in x trials , n is the total number of trials and p is the probability of getting success in each trial.

Given : The probability that consumers are comfortable having drones deliver their purchases = 0.28

The total number of consumers selected = 5

To find the probability that when five consumers are randomly​ selected, exactly three of them are comfortable with delivery by drones , we substitute

n=5, x=3 , p=0.28 and q=1-0.28=0.72 in the above formula.

[tex]P(3)=^5C_3(0.28)^3\ (0.72)^{2}\\\\10(0.28)^3(0.72)^{2}\approx0.1138[/tex]

Thus, the probability that when five consumers are randomly​ selected, exactly three of them are comfortable with delivery by drones = 0.1138

Final answer:

The student's question concerns finding the probability of getting exactly three successes in five binomial trials. The values are: n = 5, X = 3, p = 0.28, and q = 0.72. The random variables X represents the number of consumers comfortable with drone delivery, and p' the proportion of such consumers.

Explanation:

The student is asking about a probability problem involving a binomial distribution, which is a common topic in high school mathematics. In the scenario provided, we have the following information: the number of trials (n), which is 5 (being the number of consumers randomly selected); the number of successes (X), which is 3 (being the number of consumers comfortable with drone delivery); the probability of success (p), which is 0.28 (given that 28% of consumers are comfortable with drone delivery); and the probability of failure (q), which is 1 - p = 0.72.

To find the probability that exactly three out of five consumers are comfortable with drone delivery, we would use the binomial distribution formula:

P(X = x) = C(n, x) * px * qn-x

Where C(n, x) is the number of combinations of n items taken x at a time. This would give us the probability that when five consumers are randomly selected, exactly three are comfortable with drone delivery. As this problem involves a binomial distribution, defining the random variable X as 'the number of consumers comfortable with drone delivery' and p' as 'the sample proportion of consumers comfortable with drone delivery' makes it clearer.

I need answer for this

Answers

Parallel lines have the same slope. Answer -4
Hello!

The answer is:

If the green line has a slope of -4, the slope of the red line will also be -4.

So, the correct option is, C. -4

Why?

We need to remember that if two or more lines are parallel, they will share the same slope, no matter where are located their x-intercepts and y-intercepts, the only condition needed for them to be parallel, is to have the same slope.

So, if two lines are parallel, and one of them (the green line) has a slope of -4, the slope of the other line (the red one)will also be -4.

Have a nice day!

Given image A’B’C’D’E’.

If the pre-image contained Point A (-1, 5), which of the transformations resulted in image A’B’C’D’E’?

A(x, y) → (x - 3, y + 1)
A(x, y) → (x - 3, y - 1)
A(x, y) → (x + 3, y - 1)
A(x, y) → (x + 3, y + 1)

Answers

The second option (x-3, y-1) is your answer. You can just compare the original coordinates of a which is (-1,5) with the new A (-4,4). To get from -1 to -4 you have to subtract 3 from it and to get from 5 to 4 you have to subtract one from it.
Answer:

The transformations resulted in image A’B’C’D’E' is:

           A(x,y) → (x-3,y-1)

Step-by-step explanation:

The coordinates of the Point A is given by: A(-1,5)

and the coordinates of the Point A' is given by: A'(-4,4)

Let the translation be given by the rule:

              (x,y) → (x+h,y+k)

Here

(-1,5)  → (-4,4)

i.e.

-1+h= -4   and   5+k=4

i.e.

h= -4+1   and   k=4-5

i.e.

h= -3   and   k= -1

           The transformation is:

                A(x,y) → (x-3,y-1)

A triathlon includes a .5 km swim, 40 km bike, and a 10 km run. Mr. B completed the swim in 25 minutes and 10 seconds, and the bike ride in 1 hour, 30 minutes, and 50 seconds. If he wants to equal the triathlon record of 2 hours and 46 minutes, how fast must Mr. B run in meters per second?

Answers

Final Answer:

To equal the triathlon record of 2 hours and 46 minutes, Mr. B must run at a speed of approximately 3.33 meters per second.

Explanation:

To find out how fast Mr. B must run in meters per second to equal the triathlon record, we first need to calculate the total time he spent on the swim and bike ride. Then, we can subtract that total time from the record time to find the remaining time available for the run. Finally, we can use this remaining time to calculate Mr. B's required running speed.

1.Total time spent on swim and bike ride:

  - Swim time: 25 minutes and 10 seconds

  - Bike ride time: 1 hour, 30 minutes, and 50 seconds

  Convert both times to seconds:

  - Swim time = 25 minutes * 60 seconds/minute + 10 seconds = 1510 seconds

  - Bike ride time = 1 hour * 60 minutes/hour * 60 seconds/minute + 30 minutes * 60 seconds/minute + 50 seconds = 5450 seconds

  Total time = Swim time + Bike ride time = 1510 seconds + 5450 seconds = 6960 seconds

2.Remaining time available for the run:

  Triathlon record time = 2 hours * 60 minutes/hour + 46 minutes = 2 hours * 60 minutes/hour + 46 * 60 seconds/minute = 7200 seconds + 2760 seconds = 9960 seconds

  Remaining time for the run = Triathlon record time - Total time spent on swim and bike ride = 9960 seconds - 6960 seconds = 3000 seconds

3.Calculating Mr. B's required running speed:

  Distance of the run = 10 km = 10000 meters

  Running speed = Distance / Time = 10000 meters / 3000 seconds ≈ 3.33 meters/second

So, Mr. B must run at a speed of approximately 3.33 meters per second to equal the triathlon record.

WANT FREE 20 POINTS + BRAINLIEST? ANSWER THIS GEOMETRY QUESTION CORRECTLY AND I GOT YOU :)

Use the given diagram to answer the question.

1. Which line is the intersection of two planes shown?
A. v
B. x
C. y
D. z

2. Which line intersects one of the planes shown?
A. w
B. x
C. y
D. z

3. Which line has points on three of the planes shown?
A. v
B. x
C. y
D. z

Answers

Answer:

1.x

2.z

3.v

Step-by-step explanation:

just took the test sorry if i'm wrong

Answer:

1.  The correct option is B.

2. The correct option is D.

3. The correct option is C.

Step-by-step explanation:

1.

Let left plane is plane (1), right plane is plane (2) and horizontal plane is plane (3).

From the given figure it is clear that plane (1) and (3) intersect each other and plane (2) and (3) intersect each other.

Point B lies on the intersection of plane (1) and (3), and line x passes through the point B.

Point A lies on the intersection of plane (2) and (3), and line w passes through the point A.

So, line x and w represent the intersection of two planes. Only line x is available in the options.

Therefore the correct option is B.

2.

Line z is the which intersect plane (1) at point C. So, z is the line that intersects one of the planes.

Therefore the correct option is D.

3.

Line y passes through A and B. Points A and B are point which are lie on the intersection of planes.

The line y has points on three of the planes.

Therefore the correct option is C.

CAN SOMEONE HELP ME FIND THE AREA OF THIS TRIANGLE

Answers

Answer:

Area of triangle = 73.1 m²

Step-by-step explanation:

Points to remember

Area of triangle = bh/2

Where b - base and h - height

To find the height of triangle

Let 'h' be the height of triangle

Sin 35 = h/17

h = 17 * Sin 35

 = 17 * 0.5736

 = 9.75 m

To find the area of triangle

Here b = 15 m and h = 9.75

Area = bh/2

 = (15 * 9.75)/2

 = 73.125 ≈73.1 m²

Answer:

[tex]A = 73.1\ m^2[/tex]

Step-by-step explanation:

We calculate the height of the triangle using the function [tex]sin(\theta)[/tex]

By definition:

[tex]sin(\theta) =\frac{h}{hypotenuse}[/tex]

Where h is the height of the triangle

In this case we have that:

[tex]\theta=35\°[/tex]

[tex]hypotenuse=17[/tex]

Then:

[tex]sin(35) =\frac{h}{17}[/tex]

[tex]h=sin(35)*17\\\\\\h =9.75[/tex]

Then the area of a triangle is calculated as:

[tex]A = 0.5 * b * h[/tex]

Where b is the length of the base of the triangle and h is its height

In this case

[tex]b=15[/tex]

So

[tex]A = 0.5 *15*9.75[/tex]

[tex]A = 73.1\ m^2[/tex]

Solve the equation of exponential decay.
A company's value decreased by 11.2% from 2009 to 2010. Assume this continues. If the company had a value of
$9,220,000 in 2009, write an equation for the value of the company years after 2009

Answers

Answer:

$9,220,000(0.888)^t

Step-by-step explanation:

Model this using the following formula:

Value = (Present Value)*(1 - rate of decay)^(number of years)

Here, Value after t years = $9,220,000(1 -0.112)^t

          Value after t years =  $9,220,000(0.888)^t

Suppose that a company's annual sales were $1,200,000 in 1999. The annual growth rate of sales from 1999 to 2000 was 16 percent, from 2000 to 2001 it was ?5 percent, and from 2001 to 2002 it was 22 percent. The geometric mean growth rate of sales over this three-year period is calculated as 10.37 percent. Use the geometric mean growth rate and determine the forecasted sales for 2004.

Answers

Answer:

$ 1,965,334

Step-by-step explanation:

Annual sales of company in 1999 = $ 1,200,000

Geometric mean growth rate = 10.37 % = 0.1037

In order to forecast we have to use the concept of Geometric sequence. The annual sales of company in 1999 constitute the first term of the sequence, so:

[tex]a_{1}=1,200,000[/tex]

The growth rate is 10.37% more, this means compared to previous year the growth factor will be

r =1 + 0.1037 = 1.1037

We have to forecast the sales in 2004 which will be the 6th term of the sequence with 1999 being the first term. The general formula for n-th term of the sequence is given as:

[tex]a_{n}=a_{1}(r)^{n-1}[/tex]

So, for 6th term or the year 2004, the forecast will be:

[tex]a_{6}=1,200,000(1.1037)^{6-1}\\\\ a_{6}=1,965,334[/tex]

Thus, the forecasted sales for 2004 are $ 1,965,334

Simplify the expression. Use the varbiables, numbers, and symbols that are shown. Drag them to the appropriate box in the polynomial. Use standard polynomial format. X(2x+3)+(x-3)(x-4)

Answers

Answer:

  3x² -4x +12

Step-by-step explanation:

This involves straightforward application of the distributive property

x(2x+3)+(x-3)(x-4)

= 2x² +3x +x(x -4) -3(x -4)

= 2x² +3x +x² -4x -3x +12

= 3x² -4x +12

Answer:

f(x) = 3x^2 - 4x + 12

Step-by-step explanation:

First, let's label the expression and do a little housekeeping:

X(2x+3)+(x-3)(x-4) should be f(x) = x(2x+3)+(x-3)(x-4).

If we perform the indicated multiplication, we get:

f(x) = 2x^2 + 3x + (x^2 - 7x + 12), or

f(x) = 2x^2 + 3x + x^2 - 7x + 12.  Combine like terms to obtain:

f(x) = 3x^2 - 4x + 12

Can someone help me on this please:(?? I’m super bad at math!

Answers

Answer:

Graph the two points (0,1) and (2,-1) then connect them with a straight edge.

Step-by-step explanation:

The transformed graph is still a line since the parent is a line.

[tex]g(x)=\frac{-1}{2}f(x+2)[/tex]

Identify two points that cross nicely on your curve for f:

(2,-2) and (4,2)

So I'm going to replace x in x+2 so that x+2 is 2 and then do it also for when x+2 is 4.

x+2=2 when x=0 since 0+2=2.

x+2=4 when x=2 since 2+2=4.

So plugging in x=0:

[tex]g(x)=\frac{-1}{2}f(x+2)[/tex]

[tex]g(0)=\frac{-1}{2}f(0+2)[/tex]

[tex]g(0)=\frac{-1}{2}f(2)[/tex]

[tex]g(0)=\frac{-1}{2}(-2)[/tex] since we had the point (2,-2) on line f.

[tex]g(0)=1[/tex] so g contains the point (0,1).

So plugging in the other value we had for x, x=2:

[tex]g(x)=\frac{-1}{2}f(x+2)[/tex]

[tex]g(2)=\frac{-1}{2}f(2+2)[/tex]

[tex]g(2)=\frac{-1}{2}f(4)[/tex]

[tex]g(2)=\frac{-1}{2}(2)[/tex] since we had the point (4,2) on the line f.

[tex]g(2)=-1[/tex] so g contains the point (2,-1).

Graph the two points (0,1) and (2,-1) then connect them with a straight edge.

What is the value of cos 0 given that (-2 , 9 ) is a point on the terminal side of 0 ?

Answers

Answer:

The third choice down

Step-by-step explanation:

Plotting the point (-2, 9) has us in QII.  We connect the point to the origin and then drop the altitude to the negative x-axis, creating a right triangle.  The side adjacent to the reference angle theta is |-2| and the alltitude (height) is 9.  The sin of the angle is found in the side opposite the angle (got it as 9) over the hypotenuse (don't have it).  We solve for the hypotenuse using Pythagorean's Theorem:

[tex]c^2=2^2+9^2[/tex] so

[tex]c^2=85[/tex] and

[tex]c=\sqrt{85}[/tex]

Now we can find the sin of theta:

[tex]sin\theta=\frac{9}{\sqrt{85} }[/tex]

We have to rationalize the denominator now.  Multiply the fraction by

[tex]\frac{\sqrt{85} }{\sqrt{85} }[/tex]

Doing that gives us the final

[tex]\frac{9\sqrt{85} }{85}[/tex]

third choice from the top

express x^2-5x+8 in the form (x-a)^2+b where a and b are top-heavy fractions.

Answers

Answer:

Step-by-step explanation:

That a and b are actually h and k, the coordinates of the vertex of the parabola.  There is a formula to find h:

[tex]h=\frac{-b}{2a}[/tex]

then when you find h, sub it back into the original equation to find k.  For us, a = 1, b = -5, and c = 8:

[tex]h=\frac{-(-5)}{2(1)}=\frac{5}{2}[/tex]

so h (or a) = 5/2

Now we sub that value in for x to find k (or b):

[tex]k=1(\frac{5}{2})^2-5(\frac{5}{2})+8[/tex]

and k (or b) = 7/4.

Rewriting in vertex form:

[tex](x-\frac{5}{2})^2+\frac{7}{4}[/tex]

Final answer:

The expression x^2 - 5x + 8 can be written as (x - 5/2)^2 + 1.75 by the process of completing the square, where a = 5/2, and b = 1.75.

Explanation:

To express

x^2-5x+8

in the form

(x-a)^2+b

, we need to complete the square.

First, let's divide the coefficient of x, -5, by 2 to get -5/2 and square that to get 6.25. So, we add and subtract this inside the expression.

Therefore, x^2 - 5x + 8 becomes x^2 - 5x + 6.25 - 6.25 + 8.

This can be rewritten as (x - 5/2)^2 - 6.25 + 8 or (x - 5/2)^2 + 1.75.

Hence, the expression x^2 - 5x + 8 can be written in the form (x - a) ^2 + b where a = 5/2 and b = 1.75.

Learn more about Completing the Square here:

https://brainly.com/question/36246034

#SPJ3

these three lengths create a triangle, true or false, will mark brainliest

Answers

Question 9:

Answer: False

Step-by-step explanation: False. These sides will not create a triangle because the longest side equals the two other sides combined. 10=7+3. This will just be a line.

Question 10:

Answer: False

Step-by-step explanation: False. These sides will not create a triangle because the longest side equals the two other sides combined. 7=2+5. This will just be a line.

Find θ in degrees, minutes and second, given: sin θ = 0.9205

Answers

Answer:

  66°59'57.4379"

Step-by-step explanation:

A suitable calculator can find the angle whose sine is 0.9205 and convert that angle to degrees, minutes, and seconds

  θ = arcsin(0.9205) ≈ 66.999288° ≈ 66°59'57.4379"

___

Multiplying the fractional part of the degree measure by 60 minutes per degree gives the minutes measure:

  0.999288° ≈ 59.95730'

And multiplying the fractional part of that by 60 seconds per minute gives the seconds measure:

  0.95730' = 57.4379"

In total, we have 66°59'57.4379"

Point B ∈ |AC| so that AB:BC=2:1. Point D ∈ |AB| so that AD:DB=3:2. Find AD:DC
Thanks plz answer I don’t get it

Answers

Answer:

5:4

Step-by-step explanation:

If point B divides the segment AC in the ratio 2:1, then

AB=2x units and BC=x units.

If point D divides the segment AB in the ratio 3:2, then

AD=3y units and DB=2y units.

Since AD+DB=AB, then

[tex]3y+2y=2x\\ \\5y=2x\\ \\y=\dfrac{2}{5}x[/tex]

Now,

[tex]AD=3y\\ \\DC=DB+BC=2y+x=2y+\dfrac{2}{5}y=\dfrac{12}{5}y[/tex]

So,

[tex]AD:DC=3y:\dfrac{12}{5}y=15:12=5:4[/tex]

Answer:

AD:DC=6:9

Step-by-step explanation:

We know that:

AB:BC=2:1

AD:DB=3:2

We can conclude that:

AB+BC=AC

Then:

AB=2/3AC

BC=1/3AC

AD+DB=AB

Then

AD=3/5AB

DB=2/5AB

From the above we can replace:

AD=(3/5)(2/3AC)=6/15AC

On the other hand:

DC= DB+BC

DC=2/5AB+1/3AC

In terms of AC

DC=((2/5)(2/3AC))+1/3AC=4/15AC+1/3AC

DC=27/45AC=9/15AC

From:

AD=6/15AC

DC=9/15AC

we can say that:

AD:DC=6:9

Denver, Engle and Fido are all dogs who eat differing amounts of dog food. Denver gets 2 19 of the dog food. Engle and Fido share the rest of the food in the ratio 4 : 3 What is Fido's share of the dog food? Show your answer as a percentage, rounded to the nearest percent if necessary

Answers

Final answer:

Fido's share of the total dog food, when rounded to the nearest percent, is approximately 38% after considering the 4:3 ratio with Engle for the remaining food after Denver's part.

Explanation:

The question involves calculating Fido's share of the dog food in a ratio and expressing that share as a percentage. Denver eats 2/19 of the dog food, leaving 17/19 for Engle and Fido. Engle and Fido share this remaining dog food in a ratio of 4:3. To find out what fraction of the total dog food Fido gets, we first calculate the total parts that Engle and Fido's shares make, which is 4 + 3 = 7 parts. Fido's share is 3 parts out of these 7. We then multiply the fraction of the remaining food (17/19) by Fido's share (3/7) to get Fido's share of the total dog food.

Fido's share = (17/19) * (3/7) = (17*3) / (19*7) = 51/133

Now, we convert Fido's share to a percentage:

Percentage = (51/133) * 100% ≈ 38.35%

Rounded to the nearest percent, Fido's share is approximately 38% of the total dog food.

A construction crew is lengthening a road. The road started with a length of 51 miles, and the crew is adding 2 miles to the road each day. Let L represent the total length of the road (in miles), and let D represent the number of days the crew has worked. Write an equation relating L to D. Then use this equation to find the total length of the road after the crew has worked 33 days.

Answers

Answer:

Total length after 33 days will be 117 miles

Step-by-step explanation:

A construction crew is lengthening a road. The road started with a length of 51 miles.

Average addition of the road is = 2 miles per day

Let the number of days crew has worked are D and length of the road is L, then length of the road can represented by the equation

L = 2D + 51

If the number of days worked by the crew is = 33 days

Then total length of the road will be L = 2×33 + 51

L = 66 + 51

L = 117 miles

Total length of the road after 33 days of the construction will be 117 miles.

Solve the system of linear equations below. X + y = 4 2x + 3y = 0 A. X = -6, y = 2 B. X = -1, y = 5 C. X = 11 5 , y = 9 5 D. X = 12, y = -8

Answers

Final answer:

The solution to the system of linear equations X + Y = 4 and 2X + 3Y = 0 is obtained using the elimination method, resulting in X = 12 and Y = -8.

Explanation:

To solve the system of linear equations X + Y = 4 and 2X + 3Y = 0, we can use the substitution or elimination method. Let's use the elimination method for this solution.

Rewrite the first equation as Y = 4 - X.Substitute the expression for Y into the second equation: 2X + 3(4 - X) = 0.Simplify and solve for X: 2X + 12 - 3X = 0 which simplifies to -X + 12 = 0, yielding X = 12.Substitute X back into the first equation: Y = 4 - 12, giving Y = -8.

Therefore, the solution to the system is X = 12 and Y = -8, which corresponds to option D.

Suppose that a box contains r red balls and w white balls. Suppose also that balls are drawn from the box one at a time, at random, without replacement. (a)What is the probability that all r red balls will be obtained before any white balls are obtained? (b) What is the probability that all r red balls will be obtained before two white balls are obtained?

Answers

Answer: Part a) [tex]P(a)=\frac{1}{\binom{r+w}{r}}[/tex]

part b)[tex]P(b)=\frac{1}{\binom{r+w}{r}}+\frac{r}{\binom{r+w}{r}}[/tex]

Step-by-step explanation:

The probability is calculated as follows:

We have proability of any event E = [tex]P(E)=\frac{Favourablecases}{TotalCases}[/tex]

For part a)

Probability that a red ball is drawn in first attempt = [tex]P(E_{1})=\frac{r}{r+w}[/tex]

Probability that a red ball is drawn in second attempt=[tex]P(E_{2})=\frac{r-1}{r+w-1}[/tex]

Probability that a red ball is drawn in third attempt = [tex]P(E_{3})=\frac{r-2}{r+w-1}[/tex]

Generalising this result

Probability that a red ball is drawn in [tex}i^{th}[/tex] attempt = [tex]P(E_{i})=\frac{r-i}{r+w-i}[/tex]

Thus the probability that events [tex]E_{1},E_{2}....E_{i}[/tex] occur in succession is

[tex]P(E)=P(E_{1})\times P(E_{2})\times P(E_{3})\times ...[/tex]

Thus [tex]P(E)[/tex]=[tex]\frac{r}{r+w}\times \frac{r-1}{r+w-1}\times \frac{r-2}{r+w-2}\times ...\times \frac{1}{w}\\\\P(E)=\frac{r!}{(r+w)!}\times (w-1)![/tex]

Thus our probability becomes

[tex]P(E)=\frac{1}{\binom{r+w}{r}}[/tex]

Part b)

The event " r red balls are drawn before 2 whites are drawn" can happen in 2 ways

1) 'r' red balls are drawn before 2 white balls are drawn with probability same as calculated for part a.

2) exactly 1 white ball is drawn in between 'r' draws then a red ball again at [tex](r+1)^{th}[/tex] draw

We have to calculate probability of part 2 as we have already calculated probability of part 1.

For part 2 we have to figure out how many ways are there to draw a white ball among (r) red balls which is obtained by permutations of 1 white ball among (r) red balls which equals [tex]\binom{r}{r-1}[/tex]

Thus the probability becomes [tex]P(E_i)=\frac{\binom{r}{r-1}}{\binom{r+w}{r}}=\frac{r}{\binom{r+w}{r}}[/tex]

Thus required probability of case b becomes [tex]P(E)+ P(E_{i})[/tex]

= [tex]P(b)=\frac{1}{\binom{r+w}{r}}+\frac{r}{\binom{r+w}{r}}\\\\[/tex]

Final answer:

The probability that all r red balls will be obtained before any white balls are obtained is 1. Before two white balls are obtained, all red balls must be drawn, so the probability is 1/w. This is based on the assumption that the draws are random.

Explanation:

The subject of this question is probability theory, which falls under the broad subject of Mathematics. The first part of the question asks for the probability that all r red balls will be obtained before a white ball is obtained. The second part asks for the probability that all r red balls will be obtained before two white balls are obtained.

For part (a), the probability that all r red balls will be obtained before any white balls are obtained is 1 because the balls are drawn without replacement and we are considering r draws. Therefore, every draw will be a red ball before a white ball.

For part (b), as for drawing one white ball after obtaining all r red balls, the first white ball can be the (r+1)th draw. But before drawing the second white ball, all the red balls have to be obtained. Because the balls are drawn without replacement, the probability that all r red balls will be obtained before two white balls are obtained is 1/w, where w is the total white balls.

The main assumption here is that the draws are random. So the probability of drawing a red or white ball does not change after each draw. This question is at a High School level because it involves basic probability theory and combinatorial principles.

Learn more about Probability Theory here:

https://brainly.com/question/31469353

#SPJ3

Which expression is equivalent to

Answers

Answer:

Second option: 2x^10y^12

Step-by-step explanation:

Divide

60/30 = 2

When exponents are divided, it subtracts.

20 - 10 = 10

2x^10

24-12 = 12

y^12

Simplify

2x^10y^12

Answer:

Option No. 2

[tex]2x^{10}y^{12}[/tex]

Step-by-step explanation:

Given equation is:

[tex]\frac{60x^{20}y^{24}}{30x^{10}y^{12}}\\=\frac{30*2 * x^{20-10}y^{24-12}}{30}\\\\=2*x^{10}*y^{12}\\=2x^{10}y^{12}[/tex]

The rules for exponents for numerator and denominators are used. The powers can be shifted from numerator to denominator and vice versa but their sign is changed.

So, the correct answer is option 2:

[tex]2x^{10}y^{12}[/tex]

For a display, identical cubic boxes are stacked in square layers. Each layer consists of cubic boxes arranged in rows that form a square, and each layer has 1 fewer row and 1 fewer box in each remaining row than the layer directly below it. If the bottom layer has 81 boxes and the taop layer has only 1 box, how many boxes are in the display?

Answers

Answer:

285  boxes are in the display

Step-by-step explanation:

Given data

top layer box = 1

last row box = 81

to find out

how many box

solution

we know that every row is a square so that if the bottom layer has 81 squares it mean this is 9² and every row has one lesser box

so that next row will have 8^2 and than 7² and so on till 1²

so we can say that cubes in the rows as that

Sum of all Squares = 9² + 8² +..........+ 1²

Sum of Squares positive Consecutive Integers formula are

Sum of Squares of Consecutive Integers = (1/6)(n)(n+1)(2n+1)  

here n = 9 so equation will be

Sum of Squares of Consecutive Integers = (1/6) × (9) × (9+1) × (2×9+1)

Sum of Squares of Consecutive Integers = 285

so 285  boxes are in the display

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 236.8-cm and a standard deviation of 1.3-cm. For shipment, 29 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 236.5-cm and 236.7-cm. P(236.5-cm < M < 236.7-cm) =

Answers

Transform M to the standard normally distributed random variable Z via

[tex]Z=\dfrac{M-\mu_M}{\sigma_M}[/tex]

where [tex]\mu_M[/tex] and [tex]\sigma_M[/tex] are the mean and standard deviation for [tex]M[/tex], respectively. Then

[tex]P(236.5<M<236.7)=P(-0.2308<Z<-0.0769)\approx\boxed{0.0606}[/tex]

Answer:

0.0606.                        .                

hope this helps

Tom spent 13 of his monthly salary for rent and 15 of his monthly salary for his utility bill. if $1491 was left, what was his monthly salary?

Answers

Answer:

Step-by-step explanation:

.

Answer:

  $3195

Step-by-step explanation:

The fraction remaining was ...

  1 - 1/3 -1/5 = 15/15 -5/15 -3/15 = 7/15

The given amount is 7/15 of Tom' salary, ...

  $1491 = (7/15)×salary

  $1491×(15/7) = salary = $3195 . . . . . . . . . multiply by the inverse of the coefficient of salary

Tom's monthly salary was $3195.

HELPP!!
Select the correct answer.
What is the value of arcsin ?

Answers

For this case we have that by definition, it is called arcsine (arcsin) from a number to the angle that has that number as its sine.

We must find the [tex]arcsin (\frac {\sqrt {2}} {2})[/tex]. Then, we look for the angle whose sine is [tex]\frac {\sqrt {2}} {2}[/tex].

We have to, by definition:

[tex]Sin (45) = \frac {\sqrt {2}} {2}[/tex]

So, we have to:

[tex]arcsin (\frac {\sqrt {2}} {2}) = 45[/tex]

Answer:

Option B

Answer:

Choice B

Step-by-step explanation:

An option is to find the the square root of 2 in decimals is [tex]\frac{1.414213562}{2} ≈ 0.7071067812[/tex]

Now we can use the arc sine, which is the inverse of a sin.

To do this we must use a scientific calculator. By pressing the arc sin button and entering in 0.7071067812, we can find the arc sin, which is 45°.

Point G is the center of the small circle. Point X is the center of the large circle. Points G, Y, and X are all on line segment GX.



Marco wants to create a new circle using GX as a radius. What will be the area of Marco’s new circle?

10
16
356
676
R for GY=10
R for XY=16

Answers

Answer:

A = 676πcm²

Step-by-step explanation:

According to given data:

GY = 10 cm

XY = 16 cm

The formula for finding the area of the circle is:

A = πr²

Since we have two radius. By adding the two radius we get:

GY+XY=10+16

=26

Now put the value in the formula:

A=πr²

A = π(26cm)²

A = 676πcm²

Thus the correct option is 676....

Drag the tiles to the boxes to form correct pairs.
Match each addition operation to the correct sum.

Answers

Answer:

Part 1) 0.65 more than -4.35 ----------> -3.70

Part 2) 0.65 more than -4.35 ---------> 5.11

Part 3) 4.34 added to -8 ---------------> -3.66

Part 4) 9.14 added to -9.14 -------------> 0

Step-by-step explanation:

Part 1) we have

0.65 more than -4.35

The algebraic expression is equal to the sum of the number -4.35 plus 0.65

[tex]-4.35+0.65=-3.70[/tex]

Part 2) we have

1.98 added to 3.13

The algebraic expression is equal to the sum of the number 3.13 plus 1.98

[tex]3.13+1.98=5.11[/tex]

Part 3) we have

4.34 added to -8

The algebraic expression is equal to the sum of the number -8 plus 4.34

[tex]-8+4.34=-3.66[/tex]

Part 4) we have

9.14 added to -9.14

The algebraic expression is equal to the sum of the number -9.14 plus 9.14

[tex]-9.14+9.14=0[/tex]

Other Questions
What is the factored form of 3x+24y? -42.8451Round the result to the nearest tenth and then to the nearest hundredth A caterpillar tries to climb straight up a wall a meter high, but for every 2 cm up it climbs, it slides down 1 cm. Eventually, it reaches the top. When it reaches the top, it does not pull itself over so it will slide down 1 cm. What is the total displacement traveled? (Include direction, whether up, down, or n/a.) Suppose a plane accelerates from rest for 32.3, achieving a takeoff speed of 47.1 m/s after traveling a distance of 607 m down the runway. A smaller plane with the same acceleration has a takeoff speed of 28.2 m/s. Starting from rest, after what distance will this smaller plane reach its takeoff speed? What is the equation of the line that is tangent to the circle of radius 8 at (0,-8) and whose center is at the origin? Click to select your answer 2 3 4 When a function accepts multiple arguments, does it matter in what order the argumentsare passed? PLEASE HELP ME WITH THIS MATH QUESTION What are the two general categories into which the author divides all learners? A) growing and helplessB) lazy and industrious C) helpless and mastery orientedD) challenged and masterful A centrifuge is used to test space pilots. The centrifuge spins with acentripetal acceleration of 6.55 g. If the length of the centrifuge's arm is 18 m,what is the speed of the centrifuge? Which of the following should be considered to help prevent thetransmission of a foodborne illness?A. Not concerned with cross contamination.B. Limiting bare hand contact with ready-to-eat foods.C. Placing ill employees on the work schedule.D. Storing time/temperature control for safety foods at room temperature. He.....me home in his car.drove drive drives drivingpls solv this List the steps in isolating embryonic stem cells. Bureaucratization is A. the process through which an organization identifies an entirely new objective because its traditional goals have been either realized or denied. B. organized patterns of beliefs and behavior centered on basic social needs. C. an element or process of society that may disrupt a social system or lead to a decrease in stability. D. the process by which a group, organization, or social movement becomes increasingly bureaucratic. An elevator starts at the main floor and goes up 8 floors. It then goes back fown 5 floors. What integer represents elevator final position with respect to the main floor? Which element would be a strong reducing agent?F2BaNaCl2 Devonte wants to improve his grades, so he set the following goal:I will study more each week for the rest of the school year.However, it is not a MAD goal. Select the area he should improve. Attainable; replace "study more each week" with "get straight A's." Deadline; replace "rest of the school year" with "more often." Long-term; replace "rest of the school year" with "rest of my life." Measurable; replace "study more each week" with an actual amount of study time. The products in cellular respiration are _____.A: carbon dioxide and glucoseB: carbon dioxide, water, and ATPC: glucose and oxygenD: water, oxygen, and ATP Factor completely. X^3+6x+x^2+6 SOS I need help with this questionEquation: 2x^2 + 10x - 3x - 15Step1: Factor completely (10 points)step2: after the polynomial is factored, solve the zeroes of the functionstep3: describe the end behavior of the graphstep4: will the vertex of the function be minimum or maximum function? The seasons are caused by