Ivan started the week on page 35 of his book and read 20 pages each night. What page would Ivan be on if he reads for 8 nights

Answers

Answer 1

Answer:

160 plus 35 = 185

Step-by-step explanation:

8×20

hopefully this helps you


Related Questions

You and a friend are selling lemonade. You sell three times as many cups as your friend. What percent of the cups sold were sold by your friend? Explain.

Answers

Answer:

Step-by-step explanation:

Friend sells x cups

You sell 3x cups

Total cups sold:: 4x

Ans: x/4x = 1/4 = 25%

Final answer:

The fraction of cups sold by your friend is x/4x, which gives us 25% of the total sales when converted to a percentage.

Explanation:

To find out what percent of the cups sold were sold by your friend, we can set up a simple ratio.

Let's assume your friend sold x cups.

According to the problem, you sold three times as many cups, so you sold 3x cups.

The total number of cups sold is the sum of the cups you both sold, which is x + 3x = 4x cups.

Now, we want to find out what fraction of the total sales x represents.

Since your friend sold x cups out of the total 4x, the fraction is x/4x.

To convert this fraction to a percentage, we multiply it by 100%.

Therefore, the percentage of cups sold by your friend is (x/4x) × 100% = 25%.

This calculation shows that your friend sold 25% of the cups.

Suppose that a, b \in \mathbb{Z}a,b∈Z, not both 00, and let d=\gcd(a, b)d=gcd(a,b). Bezout's theorem states that dd can be written as a linear combination of aa and bb, that is, there exist integers m, n \in \mathbb{Z}m,n∈Z such that d = am + bnd=am+bn. Prove that, on the other hand, any linear combination of aa and bb is divisible by dd. That is, suppose that t = ax + byt=ax+by for some integers x, y \in \mathbb{Z}x,y∈Z. Prove that d \, | \, td∣t.

Answers

Answer:

Step-by-step explanation:

Recall that we say that d | a if there exists an integer k for which a = dk. So, let d = gcd(a,b) and let x, y be integers. Let t = ax+by.

We know that [tex]d | a, d | b[/tex] so there exists integers k,m such that a = kd and b = md. Then,

[tex] t = ax+by = (kd)x+(md)y = d(kx+my)[/tex]. Recall that since k,  x, m, y are integers, then (kx+my) is also an integer. This proves that d | t.

is 8 · 9 -5= 72-5 an expression?

Answers

Answer:no

Step-by-step explanation:

expressions don't have equal sides

so it's an equation

please like and Mark as brainliest

Law firm averages 149 cases per year with a standard deviation of 14 points. Suppose the law firm's cases per year are normally distributed. Let X= the number of cases per year. Then X∼N(149,14). Round your answers to THREE decimal places.

Answers

Answer: the z- score when x= 186 is 2.643

the mean is 149

this z score tells you that x= 186 is 2.643 standard dev. to the right of the mean

A local hotel wants to estimate the proportion of its guests that are from out-of-state. Preliminary estimates are that 45% of the hotel guests are from out-of-state. How large a sample should be taken to estimate the proportion of out-of-state guests with a margin of error no larger than 5% and with a 95% level of confidence

Answers

Answer:

[tex]n=\frac{0.45(1-0.45)}{(\frac{0.05}{1.96})^2}=380.32[/tex]  

And rounded up we have that n=381

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

Solution to the problem

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. And the critical value would be given by:

[tex]z_{\alpha/2}=-1.96, z_{1-\alpha/2}=1.96[/tex]

The margin of error for the proportion interval is given by this formula:  

[tex] ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex]    (a)  

And on this case we have that [tex]ME =\pm 0.05[/tex] and we are interested in order to find the value of n, if we solve n from equation (a) we got:  

[tex]n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}[/tex]   (b)  

And replacing into equation (b) the values from part a we got:

[tex]n=\frac{0.45(1-0.45)}{(\frac{0.05}{1.96})^2}=380.32[/tex]  

And rounded up we have that n=381

Final answer:

To estimate the proportion of out-of-state hotel guests with a 95% confidence level and a margin of error of 5%, a sample size of at least 385 guests is needed.

Explanation:

To estimate the proportion of out-of-state guests at a local hotel with a margin of error of no more than 5% and a 95% level of confidence, we can use the formula for determining sample size for a proportion:

n = (Z^2 * p * (1 - p)) / E^2

Where:
- n is the sample size
- Z is the Z-score corresponding to the confidence level (1.96 for 95% confidence)
- p is the preliminary estimate of the proportion (0.45, or 45%, in this case)
- E is the desired margin of error (0.05, or 5%, here)

Substituting the known values, we get:

n = (1.96^2 * 0.45 * (1 - 0.45)) / 0.05^2

n = 384.16

Since we cannot have a fraction of a person, we would round up to the nearest whole number, which gives us a sample size of 385. Therefore, the hotel should sample at least 385 guests to meet their requirements.

which of the following radical expressions is equivalent to....

Answers

Answer:

:=?¿ZV16

Step-by-step explanation:

The diagonal of a square has length 10√2. Find the area of the square.

Answers

Answer: [tex]A = 100[/tex] square unit

Step-by-step explanation:

The formula for calculating the area of a square when the diagonal is given is :

[tex]Area = d^{2} / 2[/tex]

That is :

[tex]A = \frac{(10\sqrt{2})^{2}}{2}[/tex]

[tex]A = \frac{100(2)}{2}[/tex]

[tex]A = 100[/tex] square unit

An experienced ice skater spins on the ice, creating a perfect circle with a diameter of 8 feet. What is the circles radius?

Answers

Answer:

radius-4

Step-by-step explanation:

the radius is half of the diameter

Solutes in the bloodstream enter cells through osmosis, which is the diffusion of fluid through a semipermeable membrane. Let C = C(t) be the concentration of a certain solute inside a particular cell. The rate at which the concentration inside the cell is changing is proportional to the difference in the concentration of the solute in the bloodstream and the concentration within the cell. Let k be the constant of proportionality. Suppose the concentration of a solute in the bloodstream is maintained at a constant level of L gm/cubic cm. Find the differential equation that best models this situation. (Use C for the concentration within the cell, not C(t).)

Answers

Answer:

since the rate at  which concentration inside the cell is proportional to the difference in the concentration of the solute in the blood stream and the concentration within the cell, then the rate of change of concentration within the cell is equals to K(L-C).

Thus, the  required differential equation is Δc/Δt = K( L - C ).

Step-by-step explanation:

The differential equation that models solute diffusion in osmosis is dC/dt = k*(L - C), representing the idea that the rate of change of the solute's concentration within the cell is proportional to the difference between the external and internal concentrations.

The differential equation that models this situation based on osmosis is expressed as dC/dt = k*(L - C), where C is the concentration of a solute within the cell, L is the constant level concentration in the bloodstream, and k is the constant of proportionality.

This equation is a simple expression of the rate of change being proportional to the difference between the outside and inside concentration levels. In this case, the rate of change of the concentration of solutes, dC/dt, is proportional to the difference between the concentration outside the cell, L, and the concentration inside the cell, C. The constant of proportionality is k.

This differential equation is a first order linear differential equation and represents processes that occur widely in nature, including in the diffusion of solutes through membranes in osmosis.

Learn more about Differential Equation here:

https://brainly.com/question/28052300

#SPJ6

A particular project network has two paths through it: Path A and Path B. Path A has an expected completion time of 15 weeks and a variance in completion time of 8 weeks, while Path B has an expected completion time of 16 weeks and a variance in completion time of 4 weeks. What is the probability that this project is going to take more than 18 weeks?

Answers

Answer:

Probability that this project is going to take more than 18 weeks = 0.99991

Step-by-step explanation:

When independent distributions are combined, the combined mean and combined variance are given through the relation

Combined mean = Σ λᵢμᵢ

(summing all of the distributions in the manner that they are combined)

Combined variance = Σ λᵢ²σᵢ²

(summing all of the distributions in the manner that they are combined)

For this distribution, the total time the project will take = A + B

A ~ (15, 8)

B ~ (16, 4)

Combined mean = μ₁ + μ₂ = 15 + 16 = 31

Combined variance = 1²σ₁² + 1²σ₂² = 8 + 4 = 12

Combined Standard Deviation = √(12) = 3.464 weeks

So, with the right assumption that this combined distribution is a normal distribution

Probability that this project is going to take more than 18 weeks

P(x > 18)

We first normalize/standardize 18

The standardized score for any value is the value minus the mean then divided by the standard deviation.

z = (x - μ)/σ = (18 - 31)/3.464 = - 3.75

The required probability

P(x > 18) = P(z > -3.75)

We'll use data from the normal probability table for these probabilities

P(x > 18) = P(z > -3.75) = 1 - P(x ≤ -3.75)

= 1 - 0.00009 = 0.99991

Hope this Helps!!!

ktoś mi to rozwiarze pls

Answers

a)

[tex]2a+(3a-7)=2a+3a-7=5a-7[/tex]

b)

[tex](2x-3)+x=2x-3+x=3x-3[/tex]

c)

[tex]7-(5x+4)=7-5x-4=3-5x[/tex]

d)

[tex]3x-(y-2x)=3x-y+2x=5x-y[/tex]

e)

[tex]-(3a+6)-4=-3a-6-4=-3a-10[/tex]

f)

[tex]-(x-2y)-3x=-x+2y-3x=2y-4x[/tex]

g)

[tex](2p-1)+(3+5p)=2p-1+3+5p=7p+2[/tex]

h)

[tex](4-2x)-(7x-2)=4-2x-7x+2=6-9x[/tex]

i)

[tex]-(2x-1)+(3x+1)=-2x+1+3x+1=x+2[/tex]

j)

[tex](2m+4n)+(m-0,5n)=2m+4n+m-0,5n=3m+3,5n[/tex]

k)

[tex](4a-7b)-(2a+3b)=4a-7b-2a-3b=2a-10b[/tex]

l)

[tex]-(2p-r)-(2r-p)=-2p+r-2r+p=-p-r[/tex]

Proof: let LaTeX: P\left(n\right)=\sum_{k=1}^n\frac{1}{k(k+1)}=1-\frac{1}{n+1}.P ( n ) = ∑ k = 1 n 1 k ( k + 1 ) = 1 − 1 n + 1 . Base case: P(1) = 1/2. Inductive step: suppose P(n) has already been proven for some arbitrary n. The statement P(n+1) is LaTeX: P\left(n+1\right)=\sum_{k=1}^{n+1}\frac{1}{k\left(k+1\right)}=1-\frac{1}{n+2}P ( n + 1 ) = ∑ k = 1 n + 1 1 k ( k + 1 ) = 1 − 1 n + 2 This concludes the proof by induction.

Answers

Answer:

[tex]\\\sum_{k=1}^{n+1}\frac{1}{k(k+1)}\\ \\ \\=\sum_{k=1}^n\frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)} \\ \\ =1-\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}\\ \\ \\ =1+\frac{1-(n+2)}{(n+1)(n+2)} \\ \\ \\ \\\sum_{k=1}^{n+1}\frac{1}{k(k+1)} =1-\frac{1}{n+2}[/tex]

Step-by-step explanation:

The question says; Proof that :

[tex]Let : P\left(n\right)=\sum_{k=1}^n\frac{1}{k(k+1)}=1-\frac{1}{n+1}[/tex]

Base case: P(1) = 1/2.

Inductive step: suppose P(n) has already been proven for some arbitrary n.  The statement P(n+1) is :

[tex]P\left(n+1\right)=\sum_{k=1}^{n+1}\frac{1}{k\left(k+1\right)}=1-\frac{1}{n+2}[/tex]

This concludes the proof by induction.

We Proof that:

The proof abuses the notation P(n) to make reference to the common values of the two sides of the equation to be proved. Moreover, it doesn't makes any sense to define P(n) as the common value of the two sides because it assumes the conclusion that the two sides are equal.

At the very least, the definition of P(n) in the first statement suppose to have be in quote or in parenthesis as shown below.

[tex]Let : P\left(n\right)=(\sum_{k=1}^n\frac{1}{k(k+1)}=1-\frac{1}{n+1})[/tex]

However , P(n) is a statement.

The proof writer confused stating P(n+1) with showing that it must be true; given that P(n) is true.

As such ; the correct proof for P(n+1) is:

[tex]\\\sum_{k=1}^{n+1}\frac{1}{k(k+1)}\\ \\ \\=\sum_{k=1}^n\frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)} \\ \\ =1-\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}\\ \\ \\ =1+\frac{1-(n+2)}{(n+1)(n+2)} \\ \\ \\ \\\sum_{k=1}^{n+1}\frac{1}{k(k+1)} =1-\frac{1}{n+2}[/tex]

How do I work this problem-×+6×=10

Answers

Answer:

add -x to 6x to get 5x then divide by 5 to get 2 x is 2

Step-by-step explanation:hope this helps god bless

Step-by-step explanation:

I think you have to find value of x

-x + 6x = 10

5x = 10

x = 10 / 5 = 2

x = 2

What is probability?

Answers

Probability is a numerical description of how likely an event is to occur or how likely it is that a proposition is true.

Answer:

Probability is the chance of you getting something

for example the chances (or probability) of the dice landing on 2 or 3 is 3 out of 6 (3/6)

hope this helps!

A random sample of 500 army recruits has a mean height of 68 inches with a standard deviation of 2.5 inches. If a 95% confidence interval is constructed, with all the conditions having been met, what is the margin of error?
68
6.02
0.22
184

Answers

Answer:

0.22

Step-by-step explanation:

Sample given is 500, so use z-score for the critical value

Given 95% confidence interval;

∝=100-95 =5% =0.05

∝/2 = 0.05/2 =0.025 ----because you are interested with one tail area

1-0.025= 0.975 -----area to the left

proceed to z-table to read 0.975 = 1.96 as the critical value

standard deviation from the question is 2.5 but because this is a sample then;

standard error for the mean is= standard deviation/√sample= 2.5/√500

=0.1118

Margin of error=1.96*0.1118 =0.2191

The margin of error is approximately 0.219 inches. Therefore, the correct answer is approximately 0.22 inches. Option (c) is correct.

To find the margin of error for a 95% confidence interval, we first need to determine the critical value for a 95% confidence interval.

For a normal distribution, with a 95% confidence level, the critical value is approximately 1.96.

Then, we use the formula for the margin of error:

[tex]\[ \text{Margin of Error} = \text{Critical Value} \times \frac{\text{Standard Deviation}}{\sqrt{\text{Sample Size}}} \][/tex]

Given:

Sample mean height [tex](\( \bar{x} \))[/tex] = 68 inchesStandard deviation [tex](\( \sigma \))[/tex] = 2.5 inchesSample size [tex](\( n \))[/tex] = 500The critical value [tex](\( z \))[/tex] for a 95% confidence interval is approximately 1.96

Let's calculate the margin of error:

[tex]\[ \text{Margin of Error} = 1.96 \times \frac{2.5}{\sqrt{500}} \][/tex]

[tex]\[ \text{Margin of Error} = 1.96 \times \frac{2.5}{\sqrt{500}} \][/tex]

[tex]\[ \text{Margin of Error} \approx1.96 \times \frac{2.5}{\sqrt{500}} \][/tex]

[tex]\[ \text{Margin of Error} \approx 1.96 \times \frac{2.5}{22.36} \][/tex]

[tex]\[ \text{Margin of Error} \approx 1.96 \times 0.1118 \][/tex]

[tex]\[ \text{Margin of Error} \approx 0.219 \][/tex]

So, the margin of error is approximately 0.219 inches. Therefore, the correct answer is approximately 0.22 inches.

A person measures the contents of 25 pop cans and finds the mean content to be 12.1 fluid ounces with a standard deviation of 0.2 ounces. Construct a 99% confidence interval for the average fluid content of a can.

Answers

Answer:

The 99% confidence interval for the average fluid content of a can is between 11.54 and 12.66 fluid ounces.

Step-by-step explanation:

We are in posession of the sample's standard deviation, so we use the student t-distribution to solve this question.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 25 - 1 = 24

99% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 24 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.99}{2} = 0.995([tex]t_{995}[/tex]). So we have T = 2.797

The margin of error is:

M = T*s = 2.797*0.2 = 0.56

In which s is the standard deviation of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 12.1 - 0.56 = 11.54 fluid ounces.

The upper end of the interval is the sample mean added to M. So it is 12.1 + 0.56 = 12.66 fluid ounces.

The 99% confidence interval for the average fluid content of a can is between 11.54 and 12.66 fluid ounces.

State the conclusion based on the results of the test. The standard deviation standard deviation in in the pressure required to open a certain valve is known to be sigma equals 1.1 psi. σ=1.1 psi. Due to changes in the manufacturing​ process, the​ quality-control manager feels that the pressure pressure variability variability has changed changed. The null hypothesis was not rejected not rejected. Choose the correct answer below. A. There is is sufficient evidence that the standard deviation standard deviation in in the pressure required to open a certain valve has changed changed. B. There is is sufficient evidence that the standard deviation standard deviation in in the pressure required to open a certain valve has not changed. C. The standard deviation standard deviation in in the pressure has not changed. D. There is not is not sufficient evidence that the standard deviation standard deviation in in the pressure required to open a certain valve has not changed. E. There is not is not sufficient evidence that the standard deviation standard deviation in in the pressure required to open a certain valve has changed changed. F. The standard deviation standard deviation in in the pressure has changed changed.

Answers

Answer:

B

Step-by-step explanation:

Null hypothesis is not rejected if the test statistics show that the difference between observed and expected value is not significant and any difference is only due to chance.

So there is sufficient evidence from statistics that null hypothesis is true and the standard deviation in the pressure required to open a certain valve has not changed.

since evidence has to be there when null hypothesis is tested, optionC,  D and E are rejected.

There is no change in standard deviation so option A and F are rejected.

If ax + y=23, 3x - y = 9, and x =8, what is the value of a ?

Answers

Answer:

a = 1

Step-by-step explanation:

x = 8

3x - y = 9

3(8) - y = 9

24 - y = 9

-y = 9 - 24

-y = -15

y = 15

ax + y = 23

a(8) + 15 = 23

8a = 23 - 15

8a = 8

a = 8/8

a = 1

simplify the expression -2/3 divided by 3 3/4

Answers

Answer:

-8/45

I hope this helped!

Step-by-step explanation:

-2/3 ÷ 3 3/4

A citrus farmer who grows mandarin oranges finds that the diameters of mandarin oranges harvested on their farm follow a normal distribution with a mean of 5.85 cm and a standard deviation of 0.24 cm. Find the probability that a randomly selected mandarin orange from this farm has a diameter larger than 6.0 cm. Enter your probability as a decimal value rounded to 3 decimal places.

Answers

Answer:

0.266

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 5.85, \sigma = 0.24[/tex]

Find the probability that a randomly selected mandarin orange from this farm has a diameter larger than 6.0 cm.

This is 1 subtracted by the pvalue of Z when X = 6.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{6 - 5.85}{0.24}[/tex]

[tex]Z = 0.625[/tex]

[tex]Z = 0.625[/tex] has a pvalue of 0.734

1 - 0.734 = 0.266

Answer:

[tex]P(X>6)=P(\frac{X-\mu}{\sigma}>\frac{6-\mu}{\sigma})=P(Z>\frac{6-5.85}{0.24})=P(z>0.625)[/tex]

And we can find this probability using the complement rule and the normal standard table or excel:

[tex]P(z>0.625)=1-P(z<0.625)=1-0.734= 0.266[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the diameters of mandarin oranges of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(5.85,0.24)[/tex]  

Where [tex]\mu=5.85[/tex] and [tex]\sigma=0.24[/tex]

We are interested on this probability

[tex]P(X>6)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X>6)=P(\frac{X-\mu}{\sigma}>\frac{6-\mu}{\sigma})=P(Z>\frac{6-5.85}{0.24})=P(z>0.625)[/tex]

And we can find this probability using the complement rule and the normal standard table or excel:

[tex]P(z>0.625)=1-P(z<0.625)=1-0.734= 0.266[/tex]

Schadek Silkscreen Printing Inc. purchases plastic cups and imprints them with logos for sporting events, proms, birthdays, and other special occasions. Zack Schadek, the owner, received a large shipment this morning. To ensure the quality of the shipment, he selected a random sample of 300 cups and inspected them for defects. He found 15 to be defective.

a. What is the estimatedproportion defective in the population?

b. Develop a 95 percent confidenceinterval for the proportion defective.

c. Zack has an agreement withhis supplier that he is to return lots that are 10 percent or moredefective.

Answers

Answer:

(a) The estimated proportion of defective in the population is 0.05.

(b) The 95% confidence interval for the proportion defective cups is (2.5%, 7.5%).

(c) Zack does not needs to return the lots.

Step-by-step explanation:

Let X = number of defective cups.

The random sample of cups selected is of size, n = 300.

The number of defective cps in the sample is, X = 15.

(a)

The proportion of the defective cups in the population can be estimated by the sample proportion because the sample selected is quite large.

The sample proportion of defective cups is:

[tex]\hat p=\frac{X}{n}=\frac{15}{300}=0.05[/tex]

Thus, the estimated proportion of defective in the population is 0.05.

(b)

The (1 - α)% confidence interval for population proportion is:

[tex]CI=\hat p \pm z_{\alpha/2}\times\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

Compute the critical value of z for 95% confidence level as follows:

[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]

Compute the 95% confidence interval for p as follows:

[tex]CI=\hat p \pm z_{\alpha/2}\times\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

     [tex]=0.05 \pm 1.96\times\sqrt{\frac{0.05(1-0.05)}{300}}[/tex]

     [tex]=0.05\pm 0.025\\=(0.025, 0.075)\\[/tex]

Thus, the 95% confidence interval for the proportion defective cups is (2.5%, 7.5%).

(c)

It is provided that Zack has an agreement with his supplier that he is to return lots that are 10% or more defective.

The 95% confidence interval for the proportion defective is (2.5%, 7.5%). This implies that 95% of the lots have 2.5% to 7.5% defective items.

Thus, Zack does not needs to return the lots.

The estimated proportion of defective in the population is 0.05 and the 95 percent confidence interval for the proportion defective is (0.025,0.075).

Given :

Zack Schadek, the owner, received a large shipment this morning. To ensure the quality of the shipment, he selected a random sample of 300 cups and inspected them for defects. He found 15 to be defective.

a) The formula given below is used in order to determine the estimated proportion of defective in the population.

[tex]\hat{p} = \dfrac{X}{n}[/tex]

[tex]\hat{p} = \dfrac{15}{300}[/tex]

[tex]\hat{p} = 0.05[/tex]

So, the estimated proportion of defective in the population is 0.05.

b) The below formula is used in order to determine the 95 percent confidence interval for the proportion defective.

[tex]CI =\hat{p}\pm z_{\alpha /2}\times \sqrt{ \dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

Now, substitute the known terms in the above expression.

[tex]CI =0.05 \pm 1.96\times \sqrt{ \dfrac{0.05(1-0.05))}{300}}[/tex]

[tex]CI = 0.05\pm 0.025[/tex]

So, the 95 percent confidence interval for the proportion defective is (0.025,0.075).

c) According to the given data, Zack has an agreement with his supplier that he is to return lots that are 10 percent or more defective.

So, from the above calculation, it can be concluded that he did not have to return the lots.

For more information, refer to the link given below:

https://brainly.com/question/10951564

A 95% confidence interval was computed using a sample of 16 lithium batteries, which had a sample mean life of 645 hours. The confidence interval was (628.5, 661.5) hours. Which of the following would produce a confidence interval that is wider than the one originally computed (assuming everything else remained the same)? Select ALL that are correct. Having a sample with a larger standard deviation. Using a 99% confidence level instead of 95%. Removing an outlier from the data. Using a 90% confidence level instead of 95%. Testing 10 batteries instead of 16. Testing 24 batteries instead of 16.

Answers

Answer:

Step-by-step explanation:

Hello!

The mean life of 16 lithium batteries was estimated with a 95% CI:

(628.5, 661.5) hours

Assuming that the variable "X: Duration time (life) of a lithium battery(hours)" has a normal distribution and the statistic used to estimate the population mean was s Student's t, the formula for the interval is:

[X[bar]±[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]]

The amplitude of the interval is calculated as:

a= Upper bond - Lower bond

a= [X[bar]+[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]] -[X[bar]-[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]]

and the semiamplitude (d) is half the amplitude

d=(Upper bond - Lower bond)/2

d=([X[bar]+[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]] -[X[bar]-[tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]] )/2

d= [tex]t_{n-1;1-\alpha /2}* \frac{S}{\sqrt{n} }[/tex]

The sample mean marks where the center of the calculated interval will be. The terms of the formula that affect the width or amplitude of the interval is the value of the statistic, the sample standard deviation and the sample size.

Using the semiamplitude of the interval I'll analyze each one of the posibilities to see wich one will result in an increase of its amplitude.

Original interval:

Amplitude: a= 661.5 - 628.5= 33

semiamplitude d=a/2= 33/2= 16.5

1) Having a sample with a larger standard deviation.

The standard deviation has a direct relationship with the semiamplitude of the interval, if you increase the standard deviation, it will increase the semiamplitude of the CI

↑d= [tex]t_{n-1;1-\alpha /2}[/tex] * ↑S/√n

2) Using a 99% confidence level instead of 95%.

d= [tex]t_{n_1;1-\alpha /2}[/tex] * S/√n

Increasing the confidence level increases the value of t you will use for the interval and therefore increases the semiamplitude:

95% ⇒ [tex]t_{15;0.975}= 2.131[/tex]

99% ⇒ [tex]t_{15;0.995}= 2.947[/tex]

The confidence level and the semiamplitude have a direct relationship:

↑d= ↑[tex]t_{n_1;1-\alpha /2}[/tex] * S/√n

3) Removing an outlier from the data.

Removing one outlier has two different effects:

1) the sample size is reduced in one (from 16 batteries to 15 batteries)

2) especially if the outlier is far away from the rest of the sample, the standard deviation will decrease when you take it out.

In this particular case, the modification of the standard deviation will have a higher impact in the semiamplitude of the interval than the modification of the sample size (just one unit change is negligible)

↓d= [tex]t_{n_1;1-\alpha /2}[/tex] * ↓S/√n

Since the standard deviation and the semiamplitude have a direct relationship, decreasing S will cause d to decrease.

4) Using a 90% confidence level instead of 95%.

↓d= ↓[tex]t_{n_1;1-\alpha /2}[/tex] * S/√n

Using a lower confidence level will decrease the value of t used to calculate the interval and thus decrease the semiamplitude.

5) Testing 10 batteries instead of 16. and 6) Testing 24 batteries instead of 16.

The sample size has an indirect relationship with the semiamplitude if the interval, meaning that if you increase n, the semiamplitude will decrease but if you decrease n then the semiamplitude will increase:

From 16 batteries to 10 batteries: ↑d= [tex]t_{n_1;1-\alpha /2}[/tex] * S/√↓n

From 16 batteries to 24 batteries: ↓d= [tex]t_{n_1;1-\alpha /2}[/tex] * S/√↑n

I hope this helps!

Suppose a random sample of size is selected from a population with . Find the value of the standard error of the mean in each of the following cases (use the finite population correction factor if appropriate). a. The population size is infinite (to 2 decimals). b. The population size is (to 2 decimals). c. The population size is (to 2 decimals). d. The population size is (to 2 decimals).

Answers

Answer:

A) σ_x' = 1.4142

B) σ_x' = 1.4135

C) σ_x' = 1.4073

D) σ_x' = 1.343

Step-by-step explanation:

We are given;

σ = 10

n = 50

A) when size is infinite, the standard deviation of the sample mean is given by the formula;

σ_x' = σ/√n

Thus,

σ_x' = 10/√50

σ_x' = 1.4142

B) size is given, thus, the standard deviation of the sample mean is given by the formula;

σ_x' = (σ/√n)√((N - n)/(N - 1))

Thus, with size of N = 50,000, we have;

σ_x' = 1.4142 x √((50000 - 50)/(50000 - 1))

σ_x' = 1.4142 x 0.9995

σ_x' = 1.4135

C) at N = 5000;

σ_x' = 1.4142 x √((5000 - 50)/(5000 - 1))

σ_x' = 1.4073

D) at N = 500;

σ_x' = 1.4142 x √((500 - 50)/(500 - 1))

σ_x' = 1.343

The value of the standard error in each of the following are:

A) σ_x' = 1.4142

B) σ_x' = 1.4135

C) σ_x' = 1.4073

D) σ_x' = 1.343

Standard error calculation:

Given:

σ = 10

n = 50

A) when size is infinite, the standard deviation of the sample mean is given by the formula;

σ_x' = σ/√n

Thus,

σ_x' = 10/√50

σ_x' = 1.4142

B) size is given, thus, the standard deviation of the sample mean is given by the formula;

σ_x' = (σ/√n)√((N - n)/(N - 1))

Thus, with size of N = 50,000, we have;

σ_x' = 1.4142 x √((50000 - 50)/(50000 - 1))

σ_x' = 1.4142 x 0.9995

σ_x' = 1.4135

C) at N = 5000;

σ_x' = 1.4142 x √((5000 - 50)/(5000 - 1))

σ_x' = 1.4073

D) at N = 500;

σ_x' = 1.4142 x √((500 - 50)/(500 - 1))

σ_x' = 1.343

Find more information about Standard errors here:

brainly.com/question/1191244

Solve the inequality (2z + 3) (z +2)

Answers

Answer:

2z^2+7z+6

because you multiply 2z with z and 2 then multiply 3 with z and 2 and combine like terms

Answer:

(2z + 3) (z +2)

combine like terms: (2z⋅z)+(2z⋅2)+3z+(3⋅2)

2z^2+7z+6

A 2-column table with 4 rows. The first column is labeled x with entries 0, 1, 4, 5. The second column is labeled y with entries 0, 1, 4, 5.
What is the correlation coefficient for the data shown in the table?

0
1
4
5

Answers

The correlation coefficient for the data is 0.0091.

This can be obtained by using the formula of correlation coefficient.

Calculate the correlation coefficient from the table:

The following information is obtained from the table,

∑x  = 10

∑y = 10

∑xy = 42

∑x² = 42

∑y² = 42

The formula for finding the correlation coefficient,

r = n∑xy- ∑x∑y/(n∑x²-(∑x)²)(n∑y²-(∑y)²)

r = (5×42)-(10×10)/((5×42)-10²)((5×42)-10²)

 =[tex]\frac{110}{110.110}[/tex]

=[tex]\frac{1}{110}[/tex]

=0.0091

Thus, the correlation coefficient of the given data is 0.0091.

Learn more about correlation coefficient on :

https://brainly.com/question/2326546

#SPJ2

Answer:

B) 1

Step-by-step explanation:

Got it right 2024 edg

The SAT and ACT college entrance exams are taken by thousands of students each year. The mathematics portions of each of these exams produce scores that are approximately normally distributed. In recent years, SAT mathematics exam scores have averaged 480 with standard deviation 100. The average and standard deviation for ACT mathematics scores are 18 and 6, respectively. (a) An engineering school sets 555 as the minimum SAT math score for new students. What percentage of students will score below 555 in a typical year? (Round your answer to two decimal places.)

Answers

Answer:

77.34% of students will score below 555 in a typical year

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

SAT:

[tex]\mu = 480, \sigma = 100[/tex]

(a) An engineering school sets 555 as the minimum SAT math score for new students. What percentage of students will score below 555 in a typical year?

This is the pvalue of Z when X = 555. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{555 - 480}{100}[/tex]

[tex]Z = 0.75[/tex]

[tex]Z = 0.75[/tex] has a pvalue of 0.7734.

77.34% of students will score below 555 in a typical year

Integrated circuits consist of electric channels that are etched onto silicon wafers. A certain proportion of circuits are defective because of "undercutting," which occurs when too much material is etched away so that the channels, which consist of the unetched portions of the wafers, are too narrow. A redesigned process, involving lower pressure in the etching chamber, is being investigated. The goal is to reduce the rate of undercutting to less than 5%. Out of the first 1000 circuits manufactured by the new process, only 35 show evidence of undercutting. Can you conclude that the goal has been met? Find the P-value and state a conclusion.

Answers

Answer:

There is statistical evidence to support the claim that the goal of reducing the rate of undercutting to less than 5% has been met.

P-value=0.01923.

Step-by-step explanation:

We have to test the hypothesis that the proportion of defective circuits is under 5%.

Then, the null and alternative hypothesis are:

[tex]H_0: \pi=0.05\\\\H_a:\pi<0.05[/tex]

We will assume a level of significance of 0.05.

The sample, of size n=1000, has 35 defecteive circuits, so the sample proportion is:

[tex]p=35/1000=0.035[/tex]

The standard error is calculated as if the null hypothesis is true, so it is:

[tex]\sigma_p=\sqrt{\dfrac{\pi(1-\pi)}{n}}=\sqrt{\dfrac{0.05*0.95}{1000}}}=\sqrt{0.0000475}=0.007[/tex]

The z-statistic can be calculated as:

[tex]z=\dfrac{p-\pi+0.5/n}{\sigma_p}=\dfrac{0.035-0.050+0.5/1000}{0.007}=\dfrac{-0.0145}{0.007}= -2.07[/tex]

For this one-tailed test, the P-value is:

[tex]P-value=P(z<-2.07)=0.01923[/tex]

As the P-value is smaller than the significance level, the effect is significant and the null hypothesis is rejected. There is statistical evidence to support the claim that the goal of reducing the rate of undercutting to less than 5% has been met.

The distance between flaws on a long cable is exponentially distributed with mean 12 m.


a. Find the probability that the distance between two flaws is greater than 15m.


b. Find the probability that the distance between two flaws is between 8 and 20 m.


c. Find the median distance.


d. Find the standard deviation of the distances.


e. Find the 65th percentile of the distances.

Answers

Final answer:

The question asks for various measures of an exponentially distributed statistic, the distance between flaws on a cable. To find these, we use formulas specific to the exponential distribution; for example, the median is calculated as ln(2) * mean, and the standard deviation is equal to the mean, computed with the formula σ = √variance = √mean.

Explanation:

The problem can be modeled using the exponential distribution in statistics. The exponential distribution is often used to model the time elapsed between events in a Poisson point process, or in our case, the distance between the flaws in the cable.

The probability that the distance between two flaws is greater than 15m can be calculated using the formula:
P(X > 15) = e-15/mean
The probability that the distance is between 8 and 20m is obtained by first getting the value of the probability at 8m and then subtracting it from the probability at 20m:
The median of an exponential distribution is obtained using the formula:
Median = ln(2) * mean
The standard deviation for an exponential distribution is the same as the mean, which in this case is 12m. This is calculated using the formula:
σ = √variance = √mean
The 65th percentile of the distances is calculated using the inverse of the CDF (cumulative distribution function), the formula for this is: q = -mean*ln(1-p)

Learn more about Exponential Distribution here:

https://brainly.com/question/37170119

#SPJ3

Final answer:

In this problem, we're calculating properties of an exponential distribution representing the distances between flaws in a cable. The probability that a given distance is more than 15m is 22.31%, and between 8m and 20m is 48.57%. The median distance is around 8.317m, the standard deviation is 12m, and the 65th percentile is about 14.791m.

Explanation:

In this problem, the distance between flaws on a long cable is exponentially distributed with a mean of 12 m. That means the lambda (λ) parameter's rate of occurring flaws per meter is 1/mean, or approximately 0.0833.

For a given exponential distribution, the probability that a random variable X is greater than x is given by P(X > x) = e^(-λx). So, to find the probability that the distance between flaws is greater than 15 m, we substitute 15 for x to get P(X > 15) = e^(-0.0833 * 15) approximately equals 0.2231 or 22.31%. The probability that the distance between two flaws is between 8 and 20 m will be P(8 < X < 20) = P(X < 20) - P(X < 8) which equates to (1 - e^(-0.0833 * 20)) - (1 - e^(-0.0833 * 8)). This calculates to approximately 0.4857 or 48.57%. From the properties of the exponential distribution, the median distance can be calculated using the formula ln2/λ, so the median is approximately 8.317 m. The standard deviation of an exponential distribution is the reciprocal of λ, which is simply the mean (μ). So the standard deviation is also 12 m. The 65th percentile of an exponential distribution can be calculated using the formula: -ln(1 - p) / λ where p is the percentile in decimal form. So the 65th percentile is -ln(1 - 0.65) / 0.0833 ≈ 14.791 m. Learn more about Exponential Distribution here:

https://brainly.com/question/33722848

#SPJ2

nts) In many cases, it can be easier to describe a curve with Cartesian coordinates. Other times, polar coordinates may be easier. Below, four curves are described in words, and four choices of equations are given -- two are in Cartesian form and two in polar form. Match each description with the correct curve. A. A line through the origin that makes an angle of π/6 with the positive x-axis. B. A vertical line through the point (3, 3). C. A circle with radius 5 and cent

Answers

Answer:

The pairs are matched

Step-by-step explanation:

A. A line through the origin that makes an angle of [tex]\pi/6[/tex] with the positive x-axis.

Given a line through the origin that makes an angle of [tex]\pi/6[/tex] with the positive x-axis. The angle which the line makes with the x-axis is [tex]\pi/6[/tex].

Therefore, [tex]\theta = \pi/6[/tex]

B. A vertical line through the point (3, 3).

If a line passes through the point (3,3), x=3 and y=3. The vertical line through the point (3,3) is x=3

C. Given a circle center (h,k) and a center r, the standard form of the equation of the circle is given as:

[tex](x-h)^2+(y-k)^2=r^2[/tex]

Therefore, for a circle with radius 5 and center (2, 3), the standard form equation is:

[tex](x-2)^2+(y-3)^2=25[/tex]

D. A circle centered at the origin with radius.

For a circle centered at the origin with radius r=4.

The radius of the circle is 4 units.

r=4

Find the surface area of a cylinder Give your answer in pi
It has a radius of 5 in and the height of 13 in

Answers

Answer:

565.2 in²

Step-by-step explanation:

2pi × r × (r + h)

2 × 3.14 × 5 × (5 + 13)

31.4 × 18

565.2

Other Questions
were green algae the first plants Ellis gives a presentation to propose that his company, Ingenius Inc., eliminate its traditional departments and replace them with flexible teams that will allow employees to move from project to project as needed. He decides to use the PREP method of justifying this position. Which of the following is an example of the second step in the method? a. He cites two studies that analyze the positive effects that adopting the flexible team system has on productivity. b. He explains that, with the current structure, employees in one department may be underutilized while other departments are overtaxed. c. He closes by reiterating his position and summarizing the benefits he thinks Ingenius, Inc. will gain from adopting a flexible team system. d. He describes another company in their industry that has benefited from using the system he is urging Ingenius to adopt. e. He opens by clearly stating that he favors a reorganization that eliminates departments in favor of flexible teams. What forms and methods did imperialists use to control and manage colonies? What line is parallel to the line 8x+2y=12 An injury in which the epidermis remains intact, but blood vessels and cells in the dermis are injured,is called a(n):a.contusion.b.abrasion.c.concussion.d.avulsion. Humberto measured the length of a stick's shadow from sunrise to sunset during the day. What did he notice from his observations? A. Shadow length increased from sunrise to sunset. B. Shadow length increased from sunrise to noon. C. Shadow length decreased from sunrise to noon. D. Shadow length decreased from noon to sunset. In Chapter 10, Smith talks about a Puerto Rican named Pete who owned and operated a bodega across the street from the firehouse. Smith characterizes Pete as a typical Puerto Rican: lazy, with no ambition to succeed in the United States.a.trueb. false 2x + y = 3 2x y = 4 Using elimination to solve this system results in the equation . Swift Delivery is a small company that transports business packages between New York and Chicago. It operates a fleet of small vans that moves packages to and from a central depot within each city and uses a common carrier to deliver the packages between the depots in the two cities. Swift Delivery recently acquired approximately $4 million of cash capital from its owners, and its president, George Hay, is trying to identify the most profitable way to invest these funds. Todd Payne, the companys operations manager, believes that the money should be used to expand the fleet of city vans at a cost of $900,000. He argues that more vans would enable the company to expand its services into new markets, thereby increasing the revenue base. More specifically, he expects cash inflows to increase by $325,000 per year. The additional vans are expected to have an average useful life of four years and a combined salvage value of $100,000. Operating the vans will require additional working capital of $50,000, which will be recovered at the end of the fourth year. In contrast, Oscar Vance, the companys chief accountant, believes that the funds should be used to purchase large trucks to deliver the packages between the depots in the two cities. The conversion process would produce continuing improvement in operating savings and reduce cash outflows as follows: Year 1 Year 2 Year 3 Year 4 $ 175,000 $ 375,000 $ 450,000 $ 500,000 The large trucks are expected to cost $1,000,000 and to have a four-year useful life and a $81,250 salvage value. In addition to the purchase price of the trucks, up-front training costs are expected to amount to $20,000. Swift Deliverys management has established a 10 percent desired rate of return. (PV of $1 and PVA of $1) (Use appropriate factor(s) from the tables provided.) Required a.&b. Determine the net present value and present value index for each investment alternative. (Enter answers in whole dollar, not in million. Round your intermediate calculations and final answers to 2 decimal places.) Because most air pollution in the developed world is associated with transportation and energy production, the most effective air pollution strategy would be _________ measures, such as reducing electricity consumption, insulating homes and offices, and developing better public transportation. A triangle contains angles measuring 25 and 75. How many degrees is the third angle? What is the equation of the line that is perpendicular to thegiven line and has an x-intercept of 6?y=-3/4x+8y=-3/4x+6y=4/3x-8y=4/3x-6 Consider the functions:f(x) = x2g(x) = (x + 1)2 2h(x) = (x + 3)2 + 4Which statement describes the relationship between the minimums of the functions?a The minimum of h(x) is farther left and up than the minimum of f(x) and g(x).b The minimum of g(x) is in the fourth quadrant. The minimum of h(x) is in the first quadrant.c The minimum of g(x) is farther right and down than the minimum of f(x) and h(x).d The minimum of g(x) is in the second quadrant. The minimum of h(x) is in the first quadrant. The physics definition of energy states that energy ______. A. Cannot be transferred B. Is limitedC. Cannot be conserved D. Is a currency that allows you to do work The term_________refers to earthquakes that occur ~25 miles below the earth's surface, which are called_______quakes. Detecting the onset of such events can provide a warning that a large earthquake is imminent How was the first president killed and when? Can be any country in the world On January 1, Grouper Corp. had 61,600 shares of no-par common stock issued and outstanding. The stock has a stated value of $4 per share. During the year, the following transactions occurred. Apr. 1 Issued 12,150 additional shares of common stock for $13 per share. June 15 Declared a cash dividend of $1.65 per share to stockholders of record on June 30. July 10 Paid the $1.65 cash dividend. Dec. 1 Issued 5,400 additional shares of common stock for $13 per share. Dec. 15 Declared a cash dividend on outstanding shares of $1.75 per share to stockholders of record on December 31. (a) Prepare the entries, if any, on each of the three dates that involved dividends. A bag contains 5 yellow blocks, 2 green blocks and 3 blue blocks. If you choose one block and then another block without putting the first one back in the bag, what is the probability that the first block will be green and the second will be yellow Hey can someone answer this?Proteins are one of the four main types of _________ . biomolecules living complex2.One of the main functions of proteins is the creation of ________. sugars enzymes3.Enzymes are important for allowing and speeding up ________ in an organism. reactions chemicals IS ANYONE HELP ? this is my hw :)