Answer: 24 miles
Step-by-step explanation: 12 mph is two times as fast as 6 mph so 6 hours round trip is 2 hours for bike and 4 hours for jogging. You can either plug 2 for 12 (bike) or 4 for 6 (jog) either way you get 24
Answer:
24 miles
Step-by-step explanation:
there are 9 children in the classroom each student will get 6 pencils how many pencils will the teacher have to give out
Answer: 54
Step-by-step explanation:
Answer:
The teacher will have to give out 54 pencils
Step-by-step explanation:
there 9 children in the class. each student gets 6 pencils.
9 times 6 = 54
A company opened in 1998 and turned a profit its first year. The company's revenues increased annually thereafter. Which of the
following functions could model this situation where x represents the number of years in operation, and f(x) represents the
company's annual revenue [in millions]?
Answer:
B. f(x) = 884 • [tex]1.22^{x}[/tex]
Step-by-step explanation:
I think your question missed key information, allow me to add in and hope it will fit the orginal one. Please have a look at the attached photo
My answer:
Given that:
A company opened in 1998 and turned a profit its first year, it means that the company has initial value in its function The company's revenues increased annually thereafter => it is an exponental function with the base number is greater than 1 x represents the number of years in operation => which means x is the domain of the company revenue functionf(x) represents the company's annual revenueThe following functions could model this situation is:
B. f(x) = 884 • [tex]1.22^{x}[/tex] where:
884 is a profit its first year
1.22 growth rate in revenue
x represents the number of years in operation
Hope it will find you well.
Marge and Kimo equally Shared 1/4 of a pie that was left over. What fraction of the original pie did each friend get? Use the picture to help you find the solution
Answer:
1/8
Step-by-step explanation:
1/4 divided by 2
Final answer:
Each friend received 1/8 of the original pie after equally sharing 1/4 that was left over.
Explanation:
Marge and Kimo equally shared 1/4 of a pie that was left over. To determine the fraction of the original pie that each friend got, we divide that 1/4 by two, since there are two people sharing it. So, each friend received 1/8 of the original pie.
Step-by-step explanation:
The leftover pie is 1/4 of the whole pie.Divide that 1/4 portion by 2 to share equally between Marge and Kimo.Dividing 1/4 by 2 gives us 1/8.Therefore, each friend gets 1/8 of the original pie.1) What are the zeros of f(x) = (x + 4)(x – 7)?
Choose 1 answer:
® -4 and 7
®
4 and - 7
©
(-4,0) and (7,0)
0
(4,0) and (-7,0)
The zeros of the function f(x) = (x + 4)(x – 7) are x = -4 and x = 7. These values are where the function intersects the x-axis and can be expressed as points (-4, 0) and (7, 0) on a graph.
Explanation:To find the zeros of the function f(x) = (x + 4)(x – 7), we need to determine the values of x that make f(x) equal to zero. This means each factor in the product must be set equal to zero and solved for x individually.
Setting the first factor equal to zero gives us x + 4 = 0, which simplifies to x = -4.
Similarly, setting the second factor equal to zero gives us x – 7 = 0, which simplifies to x = 7. Thus, the zeros of the function are x = -4 and x = 7.
These can be written as the ordered pairs (-4,0) and (7,0) when we consider them as points on the Cartesian plane where the function intersects te x-axis.
The correct choice from the options provided would be -4 and 7, which corresponds to the first option.
It is not necessary to provide the y-coordinates when identifying the zeros of a function, as by definition, they are points where the y-value is zero.
Add mix numbers Madison made a fruit salad . She used 3 1 fourth cups of straw berries and 2 1 fourths cups of blueberries. How many cups of berries did Madison use?
Answer:
1 1/4
Step-by-step explanation:
For the strawberries, we will have to multiply 3 by 1/4 to get the total amount of strawberries used.
1/4 * 3 = 3/4
For the blueberries, we will have to multiply 2 by 1/4 to get the total amount of blueberries used.
1/4 * 2 = 2/4
Simplify that to get 1/2
Now we need to add 3/4 and 1/2
3/4 + 1/2 = 5/4
Simplify that and we get our answer;
1 1/4
What value of c makes x2 − 24x + c a perfect square trinomial?
Answer: 144
Step-by-step explanation: To find a value of c that would make this a perfect square, take -24 and divide it by 2 to get -12. Next, simply square -12 to get 144.
x^2 - 24x + 144 can be factored into (x - 12)(x - 12)
Answer:
144 is the correct answer
James has an ice cube tray that makes ice in the shape of spheres rather than cubes. Each sphere of ice has a
radius of 2 cm. One tray makes 6 spheres.
What is the total volume of ice the tray can make at one time?
Either enter a exact answer in terms of IT or use 3.14 for T.
Each sphere of ice has a radius of 2cm
one tray makes 6 spheres
What is the total volume of ice the tray can make at one time?
Total volume of each sphere is 33.51 cm^3
The tray can hold 6 of these at a time
33.5 * 6
201 cm^3 total volume of ice that the tray can make at one time
Written in pi
64 cm^3
Read more on Brainly.com - https://brainly.com/question/8790068#readmore
Answer: Its 64[tex]\pi[/tex]!!!
Step-by-step explanation:
Urgent!!! What is the volume of this rectangular prism? Picture provided.
A: 15/2x
B: 3x+12/2x+8
C: 15/2x+2
D: 15/8
Answer:
V = [tex]\frac{15}{2x}[/tex]
Step-by-step explanation:
Using the volume formula
V = [tex]\frac{12}{x}[/tex] × [tex]\frac{x+4}{4}[/tex] × [tex]\frac{5}{2x+8}[/tex] ← cancel 12 and 4 by 4 and factor 2x + 8
= [tex]\frac{3}{x}[/tex] × [tex]\frac{x+4}{1}[/tex] × [tex]\frac{5}{2(x+4)}[/tex] ← cancel (x + 4) on numerator/denominator
= [tex]\frac{3}{x}[/tex] × 1 × [tex]\frac{5}{2}[/tex]
= [tex]\frac{15}{2x}[/tex]
whats the nameof people that steal kids called
Answer:
Kidnappers
Step-by-step explanation:
Answer:
kidnappers
Step-by-step explanation:
In the given diagram, what is the measure of ∠ABC of parallelogram ABCD?
The known acute angle of the triangle is 46 degrees, so the unknown acute angle of that triangle is 90-46 = 44 degrees. In other words, the two acute angles of any right triangle must add to 90, so 46+44 = 90.
The 44 degree angle is adjacent to angle ADC, and it adds to angle ADC to form 180 degrees.
If x is the measure of angle ADC, then
44+(angleADC) = 180
44+x = 180
x = 180-44
x = 136
angle ADC = 136 degrees
For any parallelogram, the opposite angles are always congruent. Therefore, angle ABC is equal to angle ADC = 136, making ABC = 136 as well.
Answer: C. 136 degrees
Step-by-step explanation:
From the diagram, angle C is a right angle because it is formed by a perpendicular line. It means that
Angle BCD + 46 = 90
angle BCD = 90 - 45 = 44 degrees
The opposite angles in a parallelogram are equal while the adjacent angles are supplementary. Angle ABC and angle BCD are supplementary and the sum of supplementary angles is 180 degrees. Therefore,
Angle ABC + 44 = 180
Angle ABC = 180 - 44
Angle ABC = 136 degrees
What is the interest on $3,500 borrowed for two years at 2.5% interest?
Answer:
turn the percentage into a decmial and then multiply the money
Circle O is shown. Line segments A O and B O are radii. The length of O B is 16 inches. Angle A O B has a measure of StartFraction pi Over 4 EndFraction In circle O, angle AOB measures radians. What is the length of arc AB? π in
Answer:
4
Step-by-step explanation:
edg
Answer:
4
Step-by-step explanation:
i just got it right
For every four dollars that jamie saves in her account , her sister saves five dollars in her account . If Jamizne has $20.00 in her account, how much money does her sister have in her account?
Final answer:
By using the ratio of 4:5 for the amounts that Jamie and her sister save, we calculate that since Jamie has $20, her sister has $25 in her account.
Explanation:
To find out how much money Jamie's sister has in her account, we need to first understand the ratio of the amounts they save. For every four dollars that Jamie saves, her sister saves five dollars. This gives us a ratio of 4:5.
Since Jamie has $20 in her account, we can determine how many times four dollars fits into twenty dollars to find out how many 'units' of savings Jamie has made. We do this by dividing 20 by 4, which equals 5. So, Jamie has saved 5 units of 4 dollars each.
Knowing that each unit for Jamie's sister is $5, we calculate the total amount for her sister by multiplying 5 units with the sister's $5, which equals $25. Therefore, Jamie's sister has $25 in her account.
Final answer:
For every $4 Jamie saves, her sister saves $5. Jamie has $20, which is equal to 5 units of $4. Therefore, Jamie's sister has saved 5 units of $5, which amounts to $25.
Explanation:
The question asks how much money Jamie's sister would have in her account, given that Jamie has $20 and for every four dollars that Jamie saves, her sister saves five dollars. To find the amount Jamie's sister has saved, we use the ratio of their savings. Since Jamie has $20 and saves $4 for every $5 her sister saves, we can calculate the amount Jamie's sister has saved using the following steps:
First, determine how many 'four dollar' units Jamie has saved. She has saved $20, so that's $20/$4 = 5 units.
Since Jamie's sister saves $5 for each of these units, we multiply the number of units by $5 to find her savings, which is 5 units * $5/unit = $25.
Therefore, Jamie's sister has $25 in her account.
A rectangular prism aquarium holds 64 gallons of water. A similarly shaped aquarium holds 8 gallons of water. If a 1.5 ft2 cover fits on the smaller tank, what is the area of a cover that will fit on the larger tank
Answer:
The area of a cover that will fit on the larger tank is 6 square inches
Step-by-step explanation:
step 1
Find the scale factor
we know that
If two figures are similar, then the ratio of its Volumes is equal to the scale factor cubed
Let
z ---> the scale factor
so
[tex]z^3=\frac{64}{8}=8[/tex]
[tex]z=2[/tex]
step 2
we know that
If two figures are similar, then the ratio of its areas is equal to the scale factor squared
Let
z ---> the scale factor
x ---> the area of a cover that will fit on the larger tank
y ---> the area of a cover that will fit on the smaller tank
so
[tex]z^2=\frac{x}{y}[/tex]
we have
[tex]z=2\\y=1.5\ ft^2[/tex]
substitute the given values
[tex]2^2=\frac{x}{1.5}[/tex]
solve for x
[tex]x=4(1.5)=6\ ft^2[/tex]
The area of the cover that will fit on the larger aquarium is approximately 12 square feet, calculated by multiplying the area of the smaller cover by the square of the scaling factor for linear dimensions (≈ 2.83) due to the difference in volume.
Explanation:Understanding Area Scaling in Rectangular PrismsTo find the area of a cover that will fit on the larger aquarium, we begin by understanding that the area scales by the square of the linear dimensions.
Since the volume of the larger aquarium is 64 gallons and the smaller one is 8 gallons, the volume scales by a factor of 64/8 = 8. Taking the square root of 8 gives us the scaling factor for the linear dimensions, which is sqrt(8) ≈ 2.83. The larger tank's cover will therefore need to increase by this scaling factor squared for its area.
To calculate the area of the larger tank's cover, we multiply the area of the smaller cover by this scaling factor squared: 1.5 ft2 * 2.832 ≈ 12 ft2. Thus, the cover for the larger tank should be approximately 12 ft2 in area. This demonstrates the concept that area is proportional to the square of the linear dimensions when scaling similar shapes.
solve for x. Round to the nearest hundredth
Given:
The given triangle is a right angled triangle.
One of the angle is 64° and the length of one of the leg is x.
The length of the hypotenuse is 28.
We need to determine the value of x.
Value of x:
The value of x can be determined using the trigonometric ratio.
Thus, we have;
[tex]cos \ \theta=\frac{adj}{hyp}[/tex]
where [tex]\theta= 64[/tex], adj = x and hyp = 28
Substituting the values, we get;
[tex]cos\ 64=\frac{x}{28}[/tex]
Multiplying both sides by 28, we have;
[tex]cos \ 64 \times 28=x[/tex]
[tex]0.438\times 28=x[/tex]
[tex]12.264=x[/tex]
Rounding off to the nearest hundredth, we get;
[tex]12.26=x[/tex]
Therefore, the value of x is 12.26
Please Help!!!!! 17 Points!!!!!!! I don't know if I have the right answer.
Answer:
SAS
Step-by-step explanation:
The sides have the same ratio and the angle between them is congruent, so it's SAS
What is the product? StartFraction 2 y Over y minus 3 EndFraction divided by StartFraction 4 y minus 12 Over 2 y + 6 EndFraction
To simplify the expression, first rewrite the fractions:[tex]\( \frac{2y}{y - 3} \) and \( \frac{2(y - 3)}{y + 3} \)[/tex]. Then, divide the first fraction by the reciprocal of the second, yielding[tex]\( \frac{2y}{y - 3} \).[/tex]
let's simplify the expression:
[tex]\[ \frac{\frac{2y}{y - 3}}{\frac{4y - 12}{2y + 6}} \][/tex]
First, we'll simplify the fractions within the larger fractions:
[tex]\[ \frac{2y}{y - 3} = \frac{2y}{y - 3} \times \frac{(y - 3)}{(y - 3)} = \frac{2y(y - 3)}{(y - 3)^2} = \frac{2y^2 - 6y}{y^2 - 6y + 9} \][/tex]
[tex]\[ \frac{4y - 12}{2y + 6} = \frac{4(y - 3)}{2(y + 3)} = \frac{2(y - 3)}{y + 3} \][/tex]
Now, we'll divide the first fraction by the second fraction. This is equivalent to multiplying by the reciprocal:
[tex]\[ \frac{\frac{2y^2 - 6y}{y^2 - 6y + 9}}{\frac{2(y - 3)}{y + 3}} = \frac{2y^2 - 6y}{y^2 - 6y + 9} \times \frac{y + 3}{2(y - 3)} \][/tex]
Now, let's cancel out common factors:
[tex]\[ = \frac{2y(y + 3)}{(y - 3)(y + 3)} \times \frac{y + 3}{2(y - 3)} \][/tex]
[tex]\[ = \frac{2y}{y - 3} \][/tex]
So, the simplified expression is [tex]\( \frac{2y}{y - 3} \).[/tex]
Which unit of measurement can be used to express the volume of this prism
The unit of measure used to express the volume of a prism is cubic units correct option is c.
Volume refers to the amount of space occupied by a three-dimensional object. A prism, being a three-dimensional shape with length, width, and height, necessitates a measurement that encapsulates all three dimensions.
Prisms have a base shape that repeats through their height. Calculating volume involves finding the space enclosed within this repeating shape. By multiplying the area of the prism's base by its height.
Cubic units represent the volume of an object, akin to how square units represent area. They measure the number of unit cubes needed to fill the three-dimensional space within the prism. This measurement allows for precise quantification of space in a three-dimensional context.
complete the question
Which unit of measure can be used to express the volume of the prism?
a) unit squares
b) square units
c) cubic units
d) units
Find the length of the intercepted arc with a central angle of measure θ=π/6 on a circle with radius r = 3. Round to the nearest tenth.
Answer:
Step-by-step explanation:
The formula for determining the length of an arc is expressed as
Length of arc = θ/360 × 2πr
Where
θ represents the central angle.
r represents the radius of the circle.
π is a constant whose value is 3.14
From the information given,
Radius, r = 3
θ = π/6
2π = 360 degrees
π = 360/2 = 180
Therefore,
θ = 180/6 = 30 degrees
Therefore,
Length of arc = 30/360 × 2 × 3.14 × 3
Length of arc = 1.6 to the nearest tenth
Final answer:
To find the length of the intercepted arc on a circle with radius 3 and a central angle of π/6, calculate using the formula s = rθ. The result is approximately 1.6 units after rounding to the nearest tenth.
Explanation:
The question asks to find the length of the intercepted arc given a central angle of measure θ=π/6 on a circle with radius r = 3 and to round the answer to the nearest tenth. To calculate the arc length (θ), we use the formula s = rθ, where θ is measured in radians. Given θ=π/6 and r=3, the arc length s is therefore 3*(π/6)= π/2. To get a numerical answer, substitute π with approximately 3.14159, resulting in s = (3*3.14159)/6 which simplifies to s ≈ 1.57. Rounding to the nearest tenth gives us an arc length of 1.6 units.
A fair coin is flipped eight times. What is the probability of the coin landing heads up exactly 2 times?
Answer:
50%
Step-by-step explanation:
no matter how many times it is flip you will get heads or tails.
Answer:
50%
Step-by-step explanation:
two sides 1/2= 50%
What two numbers multiply to be 72 and add up to be 27
Answer:
9x8=72 and 25+2=27
Step-by-step explanation:
1x9=9
2x9=18
3x9=27
4x9=36
5x9=45
6x9=54
7x9=63
8x9=72
brainleist please i really need it
The mean absolute deviation is 0.1 what conclusions can be drawn A. The data points are closer to the media. B. The data points are far from the median C. The data points are far from the mean D. The data points are close to the mean
Answer:
D. The data points are close to the mean
Step-by-step explanation:
given data
mean absolute deviation = 0.1
The mean absolute deviation is the average of the absolute deviations of the data points relative to the mean. This means that the mean absolute deviation is averaged through the data, telling how far each data point is. The small value of the mean absolute deviation indicates that the mean difference (absolute deviation) between the data points and the mean is small and therefore the data points are close to the mean. The large value of the mean absolute deviation indicates that the data points are far above the mean. so correct option is D. The data points are close to the mean
A wedding cake has two layers, as shown. Each layer is in the shape of a cube. The bottom of the cake and the area where the two cakes meet is not frosted. What is the area of the cake that is frosted? Show and explain your work.
The area of the cake that is frosted is 464 in²
What is the area of the cake that is frosted?
Bottom cake = 10 inches
Top cake = 6 inches
The lateral area of the bottom cube is 4 faces, each of which is a 10-inch square.
Lateral area = 4 × s²
= 4 × (10 in)²
= 400 in²
Top cube
The top area is the difference in area between a 10-inch square and a 6-inch square;
= (10 in)² - (6 in)²
= (100 -36) in²
= 64 in²
Therefore,
Area of the cake frosted = the sum of the lateral area and the top frosted area.
Area of the cake frosted = 400 in² +64 in²
= 464 in²
A rectangular photograph is 7 inches long and 6 inches wide. The photograph is framed using a material that is x inches wide. If the area of the frame and photograph combined is 156 square inches, what is the width of the framing material
Answer:
The width of the framing material is 3 inches
Step-by-step explanation:
we know that
The area of the frame and photograph combined is given by the expression
[tex]156=(7+2x)(6+2x)[/tex]
solve for x
Expanded the expression
[tex]156=42+14x+12x+4x^2\\4x^2+26x+42-156=0[/tex]
[tex]4x^2+26x-114=0[/tex]
solve the quadratic equation by graphing
using a graphing tool
The solution is x=3 in
see the attached figure
therefore
The width of the framing material is 3 inches
The width of the framing material is [tex]\( x = 3 \)[/tex] inches
Given:
- Length of the photograph = 7 inches
- Width of the photograph = 6 inches
- Width of framing material = x inches
- Area of frame and photograph combined = 156 square inches
The total length of the framed photograph would be [tex]\( 7 + 2x \)[/tex] inches, and the total width would be [tex]\( 6 + 2x \)[/tex] inches.
So, the area of the framed photograph is the product of its total length and total width:
[tex]\[ \text{Area of framed photograph} = (7 + 2x)(6 + 2x) \][/tex]
Given that the area of the framed photograph is 156 square inches, we set up the equation:
[tex]\[ (7 + 2x)(6 + 2x) = 156 \][/tex]
Expanding and simplifying:
[tex]\[ 42 + 14x + 12x + 4x^2 = 156 \][/tex]
[tex]\[ 4x^2 + 26x + 42 = 156 \][/tex]
[tex]\[ 4x^2 + 26x - 114 = 0 \][/tex]
Now, let's solve this quadratic equation for x . We can simplify it by dividing all terms by 2:
[tex]\[ 2x^2 + 13x - 57 = 0 \][/tex]
Using the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}} \][/tex]
Where:
- a = 2
- b = 13
- c = -57
Plugging in the values:
[tex]\[ x = \frac{{-13 \pm \sqrt{{13^2 - 4(2)(-57)}}}}{{2(2)}} \][/tex]
[tex]\[ x = \frac{{-13 \pm \sqrt{{625}}}}{{4}} \][/tex]
[tex]\[ x = \frac{{-13 \pm 25}}{{4}} \][/tex]
So, we have two possible solutions for x:
[tex]\[ x_1 = \frac{{-13 + 25}}{{4}} = 3 \][/tex]
[tex]\[ x_2 = \frac{{-13 - 25}}{{4}} = -9 \][/tex]
Since the width of the framing material cannot be negative, we discard [tex]\( x_2 \).[/tex]
Therefore, the width of the framing material is [tex]\( x = 3 \)[/tex] inches.
In her class of 10 girls and 8 boys, the teacher has to select 1 girl AND 1 boy. In how many ways can she make her selection? PLZ CORRECT ANSWER FOR TEST!
A.3060
B.5040
C.1260
D.73
Answer:
The answer is A
Step-by-step explanation:
Tristan spends a total of $38.75 on 5 drinks and 2 bags of popcorn. Noah spends a total of $37.25 on 3 drinks and 4 bags of popcorn. Write a system of equations that can be used to find the price of one drink and the price of one bag of popcorn. Using these equations, determine and state the price of a bag of popcorn, to the nearest cent.
Answer:
We use Simultaneous Equation to express the problem
From the equation, a bag of popcorn will cost $5
Step-by-step explanation:
We can represent drink with d and bad of popcorn with p
If Tristan spent $38.75 on 5 drinks and 2 bags of popcorn, the we can interpret it as
5d + 2p = 38.75 ....................... eqn 1
And if Noah spent $37.25 on 3 drinks and 4 bags of popcorn, we can interpret it also as
3d + 4p = 37.25 ........................ eqn 2
This is now a Simultaneous Equation
Since we are to state the price of a bag of popcorn, then we can use the elimination method to eliminate d and solve for p
To do this, Multiply eqn 1 by 3 and eqn 2 by 5
(5d + 2p = 38.75)*3
(3d + 4p = 37.25)*5
The we will have
15d + 6p = 116.25 .......................... eqn 3
15d + 20p = 186.25 ...................... eqn 4
If we subtract eqn 3 from eqn 4, we will have
14p = 70
Divide both sides by 14 to get the value of p, and we will have
p = 70/14
p = 5
Therefore a bag of popcorn equals to $5
Use Cramer's Rule to find the determinant of the coefficient matrix of this system of equations.
Answer:
Determinant = -12
Step-by-step explanation:
rewrite the system as
-2 = 2x - 3y + 0z
0 = 0x + y - 2z
1 = -3x + 2y - z
then the coefficient matrix is
{ [2, -3, 0]
[0, 1, -2]
[-3, 2, -1] }
to find determinant
{ [2, -3, 0] , 2, -3
[0, 1, -2] , 0, 1
[-3, 2, -1] }, -3, 2
determinant = 2*1*-1 + (-3 * -2 * -3) + (0*0*2) - 0 - (2*-2*2) - 0
determinant = -2 - 18 + 0 - 0 + 8 = -12
Josh's grandparents put $3,000 into a college savings account when he was born. The account earns 6% interest per year. How long will it take before he has $15,000?
Answer:
Therefore it will take 28 years.
Step-by-step explanation:
To find the years, we use the following formula,
[tex]A=P(1+r)^n[/tex]
A= Total balance after n years
P= Initial amount.
r= Rate of interest per year.
n = Time in years.
Given that, Josh's grandparents put $3,000 into a college saving account when he was born. The account earn 6% interest per years.
Here A=$15,000,P=$3,000, r=6%=0.06 ,n=?
[tex]\therefore 15,000=3,000(1+0.06)^n[/tex]
[tex]\Rightarrow (1.06)^n=\frac{15,000}{3,000}[/tex]
[tex]\Rightarrow (1.06)^n=5[/tex]
Taking ln both sides
[tex]\Rightarrow ln(1.06)^n=ln(5)[/tex]
[tex]\Rightarrow n=\frac{ln(5)}{ln(1.06)}[/tex]
[tex]\Rightarrow n\approx 28[/tex]
Therefore it will take 28 years.
Explain how the exterior angle relates to the interior angles.
Answer: The exterior angle, D, is supplementary to the adjacent interior angle, C. Together, they form a straight line, measuring 180°. The measure of the remote interior angles, A and B are equal to the measure of the exterior angle D.
Step-by-step explanation: I just did the assignment.
Answer:
Sample answer: The exterior angle, D, is supplementary to the adjacent interior angle, C. Together, they form a straight line, measuring 180°. The measure of the remote interior angles, A and B are equal to the measure of the exterior angle D.
Step-by-step explanation:
The shoes still have a marginal cost of $25. You want to earn a profit, so you charge a price of _
525
$10
$50
Answer:
$50
Step-by-step explanation:
Let's write an equation to solve:
We can represent the profit as "p"
In that case, we have:
(p - 25) = 35
Adding 25:
p = 25.
If you charge 50, you will get 25 dollars back.
If you charge 10, you will get no profit.
Thus, the answer is $50.