Jerry knocks a flowerpot off its third-story ledge, 9.5 m above the ground. If it falls freely, how fast is the flowerpot moving when it crashes to the sidewalk?

Answers

Answer 1

Answer:

13.65 m/s

Explanation:

t = Time taken

u = Initial velocity = 0

v = Final velocity

s = Displacement = 9.5 m

a = Acceleration = 9.81 m/s²

[tex]v^2-u^2=2as\\\Rightarrow v=\sqrt{2as-u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 9.5-0^2}\\\Rightarrow v=13.65\ m/s[/tex]

The flower pot is moving at a speed of 13.65 m/s when it crashes the sidewalk.


Related Questions

A can contains 375 mL of soda. How much is left after 308 mL is removed?

Answers

Answer:

Volume left, v = 67 mL

Explanation:

Given that,

Volume of soda contained in a can, V = 375 mL

We need to find the volume of soda left after 308 mL of soda is removed, V' = 308 mL

Let v is the left volume of soda. It can be calculated using simple calculations as :

v = V - V'

v = 375 mL - 308 mL

v = 67 mL

So, the left volume in the can is 67 mL. Hence, this is the required solution.

A squirrel runs along an overhead telephone wire that stretches from the top of one pole to the next. The creature is initially at position xi = 3.65 m, as measured from the center of the wire segment. It then undergoes a displacement of Δx = -6.81 m. What is the squirrel\'s final position xf? xf = _____ m

Answers

Answer:

xf = - 3.16 m

Explanation:

the squirrel was initially in the position xi = 3.65 m, then it had a displacement of Δx = -6.81 m.

The negative sign indicates that it moved in the opposite direction, so we must subtract this displacement Δx = -6.81 m to the initial position xi = 3.65 m, to find its final position.

3.65 m - 6.81 m = - 3.16 m

What is the potential energy at the origin due to an electric field of 5 x 10^6 N/C located at x=43cm,y=28cm?

Answers

Answer:

potential energy at origin is [tex]2.57*10^{6} volt[/tex]

Explanation:

given data:

electric field E = 5*10^{6} N/C

at x = 43 cm, y = 28 cm

distance btween E and origin

[tex]\Delta r = \sqrt{43^2 +28^2}[/tex]

[tex]\Delta r = 51.313 cm[/tex]

potential energy per unit charge [tex]\Delta V = - Edr[/tex]

[tex]\Delta V = 5*10^6*51.313*10^{-2} J/C[/tex]

[tex]\Delta V  =  2.57*10^{6} volt[/tex]

potential energy at origin is 2.57*10^{6} volt

A neutron star is the remnant left after certain supernovae (explosions of giant stars). Typically, neutron stars are about 18 km in diameter and have around the same mass as our sun. What is a typical neutron star density in g/cm^3?

Answers

Answer:

[tex]Density=6.51*10^{14}g/cm^{3[/tex]

Explanation:

Sun mass:

Ms=1.989 × 10^30 kg

Neutron star has the same mass.

Radius Neutron:

R=9Km (because diameter is 18Km)

R=9*10^3m

Density neutron star:

[tex]D=Mn/Vol=Ms/(4/3*\pi*R^3)=1.989*10^{30} /(4/3*\pi*(9*10^{3})^{3})=6.51*10^{17}kg/m^{3}[/tex]

[tex]D=6.51*10^{17}kg/m^{3}*(1000g/1Kg)*(1m^{3}/1000000cm^{3})=6.51*10^{14}g/cm^{3[/tex]

The density of a neutron star is about 10¹⁴ grams / cm³.

What is neutron star?

Any member of the class of extremely dense, compact stars known as neutron stars is assumed to be predominantly made of neutrons. The average diameter of a neutron star is 18 km (12 miles). Their masses range from 1.18 to 1.97 times those of the Sun, with the majority being 1.35 times the Sun. They have exceptionally high mean densities, almost 10¹⁴ times that of water.

This is similar to the density of an atomic nucleus, and one may think of a neutron star as a massive nucleus. Where the pressure is greatest, at the centre of the star, it is not known for sure what is there; hypotheses include hyperons, kaons, and pions. Most of the particles in the intermediate layers are neutrons, which are likely in a "superfluid" condition.

Learn more about neutron star here:

https://brainly.com/question/1322201

#SPJ2

If a train is travelling 200km/hour eastward for 1800 seconds how far does it travel?

Answers

Answer:

Distance, d = 99990 meters

Explanation:

It is given that,

Speed of the train, v = 200 km/h = 55.55 m/s

Time taken, t = 1800 s

Let d is the distance covered by the train. We know that the speed of an object is given by total distance covered divided by total time taken. Mathematically, it is given by :

[tex]v=\dfrac{d}{t}[/tex]

[tex]d=v\times t[/tex]

[tex]d=55.55\times 1800[/tex]

d = 99990 m

So, the distance covered by the train is 99990 meters. Hence, this is the required solution.

What is the strength of the electric field between two parallel conducting plates separated by 6 cm and having a potential difference (voltage) between them of 4.18 ×10^4 V ? Give answer in terms of 10^6 V/m.

Answers

Answer:

[tex]E=0.697*10^{6}V/m\\[/tex]

Explanation:

If the voltage is constant, the relation between the electric field E and the voltage V , for two plates separated by a distance d, is:

[tex]V=E*d\\[/tex]

d=6cm=0.06m

V=4.18×10^4 V

We solve to find E:

[tex]E=V/d=4.18*10^{4}/0.06=6.97*10^{5}=0.697*10^{6}V/m\\[/tex]

5. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg. The ropes, fastened at different heights, make angles of 52 and 40 with the horizontal. Find the tension in each wire and the magnitude of each tension. Hint: The lengths of the wires have nothing to do with the tension in each wire. slader

Answers

Final answer:

The tension in the rope must equal the weight of the supported mass. For the given situation, the tension can be calculated by multiplying the mass by the acceleration due to gravity.

Explanation:

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton's second law. If the 5.00-kg mass in the figure is stationary, then its acceleration is zero, and thus Fnet = 0. The only external forces acting on the mass are its weight w and the tension T supplied by the rope. Thus, T - w = 0.

Thus, for a 5.00-kg mass (neglecting the mass of the rope), we can find that T = mg = (5.00 kg) (9.80 m/s²) = 49.0 N.

Thus, Tension in the rope equals the weight of the supported mass (5.00 kg) due to Newton's second law, making T = mg = 49.0 N.

Learn more about Tension in ropes here:

https://brainly.com/question/30794023

#SPJ12

Two point charges totaling 8.90 μC exert a repulsive force of 0.120 N on one another when separated by 0.460 m. What is the charge on each? Assume that the two charges are negative. What is the charge on each if the force is attractive?

Answers

Explanation:

Let [tex]q_1[/tex] is the first charge and [tex]q_2[/tex] is the second charge.

Force between them, F = 0.12 N

Distance between charges, d = 0.46 m

(a) Force acting between two point charges is given by :

[tex]F=k\dfrac{q_1q_2}{d^2}[/tex]

[tex]q_1q_2=\dfrac{Fd^2}{k}[/tex]

[tex]q_1q_2=\dfrac{0.12\times (0.46)^2}{9\times 10^9}[/tex]

[tex]q_1q_2=2.82\times 10^{-12}[/tex]..............(1)

Also,

[tex]q_1+q_2=-8.9\ \mu C=-8.9\times 10^{-6}\ C[/tex]............(2) (both charges are negative)

On solving equation (1) and (2) :

[tex]q_1=-8.571\ C[/tex]

and

[tex]q_2=-0.329\ C[/tex]

(b) If the force is attractive, F = -0.12 N

[tex]q_1q_2=\dfrac{Fd^2}{k}[/tex]

[tex]q_1q_2=\dfrac{-0.12\times (0.46)^2}{9\times 10^9}[/tex]

[tex]q_1q_2=-2.82\times 10^{-12}[/tex]..............(3)

[tex]q_1+q_2=-8.9\ \mu C=-8.9\times 10^{-6}\ C[/tex]............(4)    

Solving equation (3) and (4) we get :

[tex]q_1=-0.306\ C[/tex]

[tex]q_2=9.206\ C[/tex]      

Hence, this is the required solution.                                  

Final answer:

Using Coulomb's law, set up a system of equations with q1 and q2 as unknowns and solve to find the values of the individual charges for the case of repulsive force. Repeat the process for attractive forces, keeping in mind that charges will have the opposite sign.

Explanation:

This problem can be solved using the formula for Coulomb's law, which states that the force between two charges is equal to the product of the charges divided by the distance squared, times the Coulomb constant: F = k*q1*q2/r², where F is the force, k is the Coulomb constant (8.99 * 10^9 N.m²/C²), q1 and q2 are the charges, and r is the distance between them.

For repulsive force, both charges have the same sign. But in this particular problem, we are given that the total charge is 8.90 μC, so let's take q1 and q2 as unknowns. Now q1 + q2 = 8.90 μC and using the above formula we get another equation. Now you have two equations to solve the unknown charges. Same procedure applies for the attractive force, but know that charges are of opposite sign for attractive force.

Learn more about Coulomb's Law here:

https://brainly.com/question/506926

#SPJ11

A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.50 m/s and observes that it takes 1.2 s to reach the water. How high above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable. Round your answer to the nearest whole number.

Answers

Answer:

The answer is 9 m.

Explanation:

Using the kinematic equation for an object in free fall:

[tex]y = y_o - v_o-\frac{1}{2}gt^{2}[/tex]

In this case:

[tex]v_o = \textrm{Initial velocity} = 1.5[m/s]\\t = \textrm{air time} =  1.2 [s][/tex][tex]y_o = 0[/tex]

[tex]g = \textrm{gravity} = 9.8 [m/s^{2} ][/tex]

Plugging those values into the previous equation:

[tex]y = 0 - 1.5*1.2-\frac{1}{2}*9.8*1.2^{2} \\y = -8.85 [m] \approx -9 [m][/tex]

The negative sign is because the reference taken. If I see everything from the rescuer point of view.

A concave mirror produces a real image that is three times as large as the object. If the object is 20 cm in front of the mirror, what is the image distance? What is the focal length of this mirror?

Answers

The distance of the image is 60 cm and the focal length of this concave mirror is 30 cm.

What is focal length of the lens?

The focal length of the lens is length of the distance between the middle of the lens to the focal point.

It can be find out using the following formula as,

[tex]\dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}[/tex]

Here, (v)is the distance of the image, (u) is the distance of the object, and (f) is the focal length of the lens.

Here, the concave mirror produces a real image that is three times as large as the object. The object is 20 cm in front of the mirror, and the concave mirror produces a real image that is three times as large as the object.

Hence, the value of magnification of the mirror is 3.

The object distance is 20 cm thus the image distance, using the magnification formula, can be given as,

[tex]m=\dfrac{v}{u}\\3=\dfrac{v}{20}\\v=60\rm cm[/tex]

Put the values in the lens formula as,

[tex]\dfrac{1}{60}+\dfrac{1}{20}=\dfrac{1}{f}\\f=30 \rm \; cm[/tex]

Hence, the distance of the image is 60 cm and the focal length of this concave mirror is 30 cm.

Learn more about the focal length here;

https://brainly.com/question/25779311

Final answer:

Using the mirror equation and magnification formula, the image distance is found to be -60 cm and the focal length of the concave mirror is calculated to be 30 cm.

Explanation:

The question involves determining the image distance and the focal length of a concave mirror that produces a real image three times larger than the object. The object is placed 20 cm in front of the mirror. To find these values, we can use the mirror equation which is 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance.

Given that the magnification (m) is -3 (negative sign since the image is real and inverted), and magnification is also equal to -di/do, we can express di as -3do. We are told that do is 20 cm, so di is -3(20 cm) = -60 cm (negative because the image is on the same side as the object).

Now, we can plug these values into the mirror equation to find the focal length (f):

1/f = 1/do + 1/di1/f = 1/20 + 1/(-60)1/f = 1/20 - 1/601/f = (3-1)/601/f = 2/60f = 60/2f = 30 cm

Therefore, the image distance is -60 cm and the focal length of the concave mirror is 30 cm.

If y = 0.02 sin (30x – 200t) (SI units), the frequency of the wave is

Answers

Answer:

Frequency of the wave will be 31.84 Hz

Explanation:

We have given the equation [tex]y=0.02sin(30x-200t)[/tex]-----eqn 1

The standard equation of sine wave is given by [tex]y=Asin(kx-\omega t)[/tex]----eqn 2

On comparing eqn 1 and eqn 2

[tex]\omega =200[/tex]

Angular frequency [tex]\omega[/tex] is given by [tex]\omega =2\pi f[/tex]

So [tex]200=2\times 3.14\times f[/tex]

[tex]f=31.84Hz[/tex]

A compound microscope operated in near point adjustment comprises an objective lens of focal length 5.0 cm and an eyepiece lens of focal length 12.0 cm. If the near-point distance is 25.0 cm, and the overall magnification of the microscope is required to be 12.0 x, how far apart must the lenses be placed?

Answers

Answer:

28.8 cm

Explanation:

Magnification in a microscope is:

M = Mo * Me

Where

Mo: magnification of the objective,

Me: Magnification of the eyepiece.

The magnification of the objective if:

Me = npd/fe

Where:

npd: near point distance

fe: focal length of the eyepiece

The magnification of the objective:

Mo = d/fo

Where

d: the distance between lenses

fo: focal length of the objective

Then

M = npd/fe * d/fo

d = M * fe * fo / npd

d = 12 * 5 * 12 / 25 = 28.8 cm

The density of a nuclear matter is about 10^18kg/m^3. given that 1mL is equal in volume to cm^3, what is the density of nuclear matter in megawatts per micrometer that is Mg/uL?

Answers

Answer:

The density of nuclear matter is [tex]10^{6}\ Mg/\mu L[/tex]

Explanation:

Given that,

Density [tex]\rho= 10^{18}\ kg/m^3[/tex]

Using unit conversation,

[tex]\Rightarrow \dfrac{10^{18}\ kg}{1\ m^3}\times\dfrac{1 Mg}{10^{6}g}\times\dfrac{1000\ g}{1\ kg}\times\dfrac{1\ m^3}{10^6\ cm^3}\times\dfrac{1\ cm^3}{1\ mL}\times\dfrac{1000\ mL}{1\ L}\times\dfrac{10^{-6}\ L}{1\ \muL}[/tex]

[tex]\Rightarrow \dfrac{10^{18}\times10^{3}\times10^{3}\times10^{-6}}{10^{6}\times10^{6}\times10^{6}}[/tex]

The density of nuclear matter is

[tex]\rho=10^{6}\ Mg/\mu L[/tex]

Hence, The density of nuclear matter is [tex]10^{6}\ Mg/\mu L[/tex]

For a monatomic ideal gas, temperature is proportional to : the square of the average atomic velocity.
the average atomic velocity.
the atomic mean free path.
the number of atoms.

Answers

Answer:

the square of the average atomic velocity.

Explanation:

From the formulas for kinetic energy and temperature for a monoatomic gas, which has three translational degrees of freedom, the relationship between root mean square velocity and temperature is as follows:

[tex]v_{rms}=\sqrt{\frac{3RT}{M}}[/tex] (1)

Where  [tex]v_{rms}[/tex] is the root mean square velocity, M is the molar mass of the gas, R is the universal constant of the ideal gases and T is the temperature.

The root mean square velocity is a measure of the velocity of the particles in a gas. It is defined as the square root of the mean square velocity of the gas molecules:

[tex]v_{rms}=\sqrt{<v^2>}[/tex] (2)

substituting 2 in 1, we find the relationship between mean square speed and temperature:

[tex]\sqrt{<v^2>}=\sqrt{\frac{3RT}{M}}\\T=\frac{M<v^2>}{3R}\\\\T\sim  <v^2>[/tex]

Final answer:

The temperature of a monatomic ideal gas is directly proportional to the average atomic velocity.

Explanation:

The temperature of a monatomic ideal gas is directly proportional to the average atomic velocity. As the temperature increases, the average atomic velocity also increases. This relationship is a result of the fact that temperature is a measure of the kinetic energy of the gas particles, and the average velocity is related to the kinetic energy. Therefore, temperature and average atomic velocity are directly proportional in a monatomic ideal gas.

The electric field at 4 cm from the center of a long copper rod of radius 2 cm has a magnitude of 4 N/C and is directed outward from the axis of the rod. (a) How much charge per unit length (in C/m) exists on the copper rod?
(b) What would be the electric flux (in N · m^2/C) through a cube of side 3 cm situated such that the rod passes through opposite sides of the cube perpendicularly?

Answers

Final answer:

To find the charge per unit length on the copper rod, use the formula E = k * λ / r. Plug in the given values to find the charge per unit length. The electric flux through the cube can be calculated by multiplying the electric field by the area of one face of the cube.

Explanation:

(a) To find the charge per unit length on the copper rod, we can use the formula for an electric field (E = k * λ / r), where E is the electric field, k is the electrostatic constant, λ is the charge per unit length, and r is the distance from the center of the rod. Rearranging the formula, we can solve for λ: (λ = E * r / k). Plugging in the given values, we have: λ = (4 N/C) * (0.04 m) / (9 x 10^9 Nm^2/C^2) = 1.78 x 10^-10 C/m.

(b) The electric flux through a surface is given by the formula (Φ = E * A), where Φ is the electric flux, E is the electric field, and A is the area of the surface. In this case, the electric flux through the cube can be calculated by multiplying the electric field (4 N/C) by the area of one face of the cube (3 cm)^2 = (0.03 m)^2 = 9 x 10^-4 m^2. Therefore, the electric flux is Φ = (4 N/C) * (9 x 10^-4 m^2) = 3.6 x 10^-3 Nm^2/C.

(a) The charge per unit length on the copper rod is [tex]\( {8.90 \times 10^{-10} \, \text{C/m}} \).[/tex]

(b) The electric flux through the cube is [tex]\( {0.0036 \, \text{N} \cdot \text{m}^2/\text{C}} \).[/tex]

(a): Charge per Unit Length on the Copper Rod

The electric field ( E ) at a distance ( r ) from the axis of a long charged rod is given by:

[tex]\[E = \frac{2k\lambda}{r}\][/tex]

From the given data:

[tex]\[4 = \frac{2 \cdot 8.99 \times 10^9 \cdot \lambda}{0.04}\][/tex]

Solving for [tex]\( \lambda \):[/tex]

[tex]\[\lambda = \frac{4 \cdot 0.04}{2 \cdot 8.99 \times 10^9}\][/tex]

[tex]\[\lambda = \frac{0.16}{1.798 \times 10^9}\][/tex]

[tex]\[\lambda \approx 8.90 \times 10^{-10} \, \text{C/m}\][/tex]

(b): Electric Flux through a Cube

To find the electric flux [tex]\( \Phi_E \)[/tex] through the cube, we use Gauss's law, which states:

[tex]\[\Phi_E = \oint_S \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\text{enclosed}}}{\epsilon_0}\][/tex]

Since the rod is long and the cube is oriented such that the rod passes through opposite sides perpendicularly, the electric flux [tex]\( \Phi_E \)[/tex] through the cube is:

[tex]\[\Phi_E = E \cdot A\][/tex]

Calculate ( A ):

[tex]\[A = a^2 = (0.03)^2 = 0.0009 \, \text{m}^2\][/tex]

Now, calculate [tex]\( \Phi_E \):[/tex]

[tex]\[\Phi_E = 4 \times 0.0009\][/tex]

[tex]\[\Phi_E = 0.0036 \, \text{N} \cdot \text{m}^2/\text{C}\][/tex]

A car is driven east for a distance of 47 km, then north for 28 km, and then in a direction 35° east of north for 27 km. Determine (a) the magnitude of the car's total displacement from its starting point and (b) the angle (from east) of the car's total displacement measured from its starting direction.

Answers

Answer:

(a) 82 Km

(b) 32°

Explanation:

First you should draw the vectors in the cartesian plane (please see the picture below).

As the car is driven east for a distance of 47 Km, your first vector should be drawn from the origin (0,0) and on the x axis

Then the car is driven north for a distance of 28 Km, so your second vector should be drawn from the origin and on the y axis.

And the car finally goes east of north for 27Km, so the third vector should be drawn from the origin east of north forming an 35° angle with x axis.

Then you should find the components of the vector in x and y:

For Vector 1 ([tex]V_{1}[/tex])

[tex]V_{1x}=47Km[/tex]

[tex]V_{1y}=0[/tex]

For Vector 2 ([tex]V_{2}[/tex])

[tex]V_{2x}=0[/tex]

[tex]V_{2y}=28Km[/tex]

For Vector 3 ([tex]V_{3}[/tex])

[tex]V_{3x}=27cos37^{o}[/tex]

[tex]V_{3x}=21.56[/tex]

[tex]V_{3y}=27sin37^{o}[/tex]

[tex]V_{3y}=16.25[/tex]

To find the magnitud of the car´s total displacement, (R) you should add up all the x and y components.

For the x component:

[tex]R_{x}=V_{1x}+V_{2x}+V_{3x}[/tex]

[tex]R_{x}=47+0+21.56[/tex]

[tex]R_{x}=68.56Km[/tex]

For the x component:

[tex]R_{y}=V_{1y}+V_{2y}+V_{3y}[/tex]

[tex]R_{y}=0+28+16.25[/tex]

[tex]R_{y}=44.25Km[/tex]

Now please see the second picture that is showing the components x and y as the sides of a right triangle, and we are going to use the Pythagorean theorem to find the resultant, R.

[tex]R=\sqrt{R_{x}^{2}+R_{y}^{2}[/tex]

[tex]R=\sqrt{68.56^{2}+44.25^{2}}[/tex]

[tex]R=82Km[/tex]

And to find the angle of the car´s total displacement (α), we use the same right triangle with the relationship between its legs.

[tex]tan(\alpha)=\frac{44.25}{68.56}[/tex]

[tex]tan(\alpha)=0.64[/tex]

[tex]\alpha=tan^{-1}(0.64)[/tex]

[tex]\alpha =32^{o}[/tex]

What is the acceleration of an electron that has moved between -1.5V and 3.0V? Assume is began at rest.

Answers

Answer:

Insufficient data.

Explanation:

Hi!

The data you have is only potential diference, so you know that the variation in potential energy of the electron when moving from -1.5V to 3.0V, is 4.5 V.

But you cannot know the acceleration. For that you need to know the electric field, so you can calculate force.

The height of a door is measured by four people and their measured values are 217.6 cm, 217.2 cm, 216.8 cm, and 217.9 cm. (a) What is the average value of these four measurements? (Enter your answer to the nearest tenths place.)
(b) What is the standard deviation for the four measurements?

Answers

Answer:

a) To the nearest tenth the average value of the measures is 217.4cm

b) The standard deviation for the four measurements is 0.415

Explanation:

The average is the result of adding all the values and dividing by the number of measures, in this case 4 then

[tex]Average = \frac{217.6 + 217.2 + 216.8 + 217.9}{4} \\[/tex]

[tex]Average = \frac{869.5}{4} \\[/tex]

[tex]Average = 217.375 [/tex]

a) To the nearest tenth the average value of the measures is 217.4cm

The standard deviation equals to the square root of the variance, and the variance is the adition of all the square of the difference between the measure and the average for each value divided by the number of measurements

So first, we must calculate the variance:

[tex]Variance = \frac{(217.6-217.4)^2+(217.2-217.4)^2+(216.8-217.4)^2+(217.9-217.4)^2}{4}[/tex].

[tex]Variance = \frac{(0.2)^2+(-0.2)^2+(-0,6)^2+(0.5)^2}{4}[/tex].

[tex]Variance = \frac{0.04+0.04+0.36+0.25}{4}[/tex].

[tex]Variance = \frac{0.69}{4}[/tex].

[tex]Variance = 0.1725[/tex].

This represent the difference between the average and the measurements.

Now calculate the standard deviation

Standard deviation  = [tex]\sqrt{Variance}[/tex]

Standard deviation  = [tex]\sqrt{0.1725}[/tex]

Standard deviation  = 0.415

b) The standard deviation for the four measurements is 0.415

This measure represent a standard way to know what is normal in this sample. so the differences between the average should be of ±0.415

Final answer:

The average value of the four door height measurements is 217.4 cm, and the standard deviation of these measurements is approximately 0.4 cm.

Explanation:

To find the average value of the four measurements: 217.6 cm, 217.2 cm, 216.8 cm, and 217.9 cm, you add them up and then divide by the number of measurements, which is four:

Average = (217.6 + 217.2 + 216.8 + 217.9) / 4 = 217.375

Rounded to the nearest tenths place, the average is 217.4 cm.

For the standard deviation, we first calculate the variance. First, find the difference of each measurement from the mean, square that difference, and then find the average of those squared differences. Finally, take the square root of that average to find the standard deviation:


 Sum of squared differences = (217.6 - 217.375)² + (217.2 - 217.375)² + (216.8 - 217.375)² + (217.9 - 217.375)²
 Variance = Sum of squared differences / 3 (Note: Divisor is 3 because for the sample standard deviation, we use n-1)
 Standard Deviation = √Variance

Substituting the values and performing the calculations gives us a standard deviation of approximately 0.4 cm.

Calculate work done by the electrostatic force to move the charge with the magnitude of 1nC between two points 2cm spaced, along the equipotential line, corresponding to the potential of 1V

Answers

Answer:

work done is = 0

Explanation:

given data

distance = 2 cm

potential = 1 V

charge with magnitude = 1 nC

to find out

work done by the electrostatic force

solution

we know that at equipotential surface is that surface which have equal potential at each every point that we say

work done will be

work done = ∫dw

∫dw = [tex]\int\limits^v1_v2 {q} \, dv[/tex]

here q is charge

so

net work done = q ( v2 - v1 )

and

so v2 = v1 = 0

so

work done is = 0

Final answer:

No work is done in moving a charge along an equipotential line because there is no difference in electric potential along that line, making the work done by the electrostatic force zero.

Explanation:

The question asks to calculate the work done by the electrostatic force when moving a charge along an equipotential line. By definition, the potential difference along an equipotential line is zero. Therefore, the work done W by the electric force to move a charge q in an electric potential V along an equipotential line is given by the equation W = qΔV, where ΔV is the change in electric potential. Since ΔV is zero along an equipotential line, the work done is also zero. No work is required to move a charge along an equipotential line because there is no change in electric potential energy.

An electron with speed 2.45 x 10^7 m/s is traveling parallel to a uniform electric field of magnitude 1.18 x 10^4N/C . How much time will elapse before it returns to its starting point?

Answers

Answer:

time will elapse before it return to  its staring point is 23.6 ns

Explanation:

given data

speed u = 2.45 × [tex]10^{7}[/tex] m/s

uniform electric field E = 1.18 × [tex]10^{4}[/tex] N/C

to find out

How much time will elapse before it returns to its starting point

solution

we find acceleration first by electrostatic force that is

F = Eq

here

F = ma by newton law

so

ma = Eq

here m is mass , a is acceleration and E is uniform electric field and q is charge of electron

so

put here all value

9.11 × [tex]10^{-31}[/tex] kg ×a = 1.18 × [tex]10^{4}[/tex] × 1.602 × [tex]10^{-19}[/tex]

a = 20.75 × [tex]10^{14}[/tex] m/s²

so acceleration is 20.75 × [tex]10^{14}[/tex] m/s²

and

time required by electron before come rest is

use equation of motion

v = u + at

here v is zero and u is speed given and t is time so put all value

2.45 × [tex]10^{7}[/tex] = 0 + 20.75 × [tex]10^{14}[/tex] (t)

t = 11.80 × [tex]10^{-9}[/tex] s

so time will elapse before it return to  its staring point is

time = 2t

time = 2 ×11.80 × [tex]10^{-9}[/tex]

time is 23.6 × [tex]10^{-9}[/tex] s

time will elapse before it return to  its staring point is 23.6 ns

An architect is redesigning a rectangular room on the blueprints of a house. She decides to double the width of the room, increase the length by 50 percent, and increase the height by 20 percent. By what factor has the volume of the room increased?

Answers

Answer:3.6

Explanation:

Given

Architect decide to double the width

length increases by 50 percent

height increases by 20 percent

Let L,B,H be length,height and width of rectangular room

L'=1.5L

B'=2B

H'=1.2H

therefore new volume V'=L'\times B'\times H'

[tex]V'=1.5L\times 2B\times 1.2H[/tex]

V'=3.6LBH

new volume is 3.6 times the original

Suppose that a constant force is applied to an object with a mass of 12kg, it’s creates an acceleration of 5m/s^2. The acceleration of another object produced by the same force is 4m/s^2, what is the mass of this object?

Answers

Answer:

Mass of second object will be 15 kg

Explanation:

We have given mass of first object = 12 kg

Acceleration [tex]a=5m/sec^2[/tex]

According to second law of motion we know that force F = MA

So force [tex]F=12\times 5=60N[/tex]

As the same force is applied to the second object of acceleration [tex]a=4m/Sec^2[/tex]

So force = ma

[tex]60=m\times 4[/tex]

m = 15 kg

So mass of second object will be 15 kg

A small block with mass 0.0475 kg slides in a vertical circle of radius 0.425 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.95 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the normal force exerted on the block has magnitude 0.670 N. How much work was done on the block by friction during the motion of the block from point A to point B?

Answers

Answer:0.10283 J

Explanation:

Given

mass of block(m)=0.0475 kg

radius of track (r)=0.425 m

when the Block is at Bottom Normal has a magnitude of 3.95 N

Force acting on block at bottom

[tex]N-mg=\frac{mu^2}{r}[/tex]

[tex]N=mg+\frac{mu^2}{r}[/tex]

[tex]3.95=0.0475\timess 9.81+\frac{0.0475\times u^2}{0.425}[/tex]

[tex]u^2=31.172[/tex]

[tex]u=\sqrt{31.172}[/tex]

u=5.583 m/s

At top point

[tex]N+mg=\frac{mv^2}{r}[/tex]

[tex]0.670+0.0475\timess 9.81=\frac{mv^2}{r}[/tex]

[tex]v^2=10.1639[/tex]

v=3.188 m/s

Using Energy conservation

[tex]\frac{mu^2}{2}=\frac{mv^2}{2}+mg\left ( 2r\right )+W_f[/tex]

[tex]W_f=0.4989-0.39607[/tex]

[tex]W_f=0.10283 J[/tex]

i.e. 0.10283  J of energy is wasted while moving up.

The work done on the block by friction during the motion of the block from point A to point B is 0.102 J.

Velocity of the block at top circle

The velocity of the block at the top of the vertical circle is calculated as follows;

[tex]W + mg = \frac{mv^2}{r} \\\\0.67 + 0.0475(9.8)= \frac{0.0475v^2}{0.425} \\\\1.136 = 0.112 v^2\\\\v^2 = 10.14\\\\v = 3.18 \ m/s[/tex]

Velocity of the block at bottom circle

The velocity of the block at the bottom of the vertical circle is calculated as follows;

[tex]W - mg = \frac{mv^2}{r} \\\\3.95 - 0.0475(9.8)= \frac{0.0475v^2}{0.425} \\\\3.485 = 0.112 v^2\\\\v^2 = 31.12\\\\v = 5.58 \ m/s[/tex]

Work done by friction

The work done by friction is the change in the kinetic energy of the block.

[tex]W _f =P.E_f - \Delta K.E \\\\W_f = mgh - \frac{1}{2} m(v_f^2 - v_i^2)\\\\Wf = 0.0475\times 9.8(2 \times 0.425) - \frac{1}{2} \times 0.0475(5.58^2 - 3.18^2)\\\\W_f = 0.396 - 0.498\\\\W_f = -0.102 \ J[/tex]

Thus, the work done on the block by friction during the motion of the block from point A to point B is 0.102 J.

Learn more about work done by friction here: https://brainly.com/question/12878672

A neutron star is the remnant left after certain supernovae (explosions of giant stars). Typically, neutron stars are about 23 km in diameter and have around the same mass as our sun. What is a typical neutron star density in g/cm^3? Express your answer in grams per cubic centimeter.

Answers

Answer:

3.122×10¹⁴ g/cm³

Explanation:

Diameter of neutron star = 23 km = 2300000 cm

Radius of neutron star = 2300000/2 = 1150000 cm = r

Mass of neutron star = 1.989 × 10³⁰ kg = 1.989 × 10³³ g = m

Volume of neutron star

[tex]v=\frac{4}{3}\pi r^3\\\Rightarrow v=\frac{4}{3}\pi 1150000^3[/tex]

Density = Mass / Volume

[tex]\rho=\frac{m}{v}\\\Rightarrow \rho=\frac{1.989\times 10^{33}}{\frac{4}{3}\pi 1150000^3}\\\Rightarrow \rho=3.122\times 10^{14}\ g/cm^3[/tex]

∴ Density of neutron star is 3.122×10¹⁴ g/cm³

Final answer:

The typical density of a neutron star is about 10¹⁴g/cm³. This is calculated by dividing the mass of the star in grams by its volume in cubic centimeters, and taking into account that a neutron star's mass is typically 1.4 solar masses and its diameter is about 20 kilometers.

Explanation:

To calculate the density of a neutron star, we consider it as a sphere with a typical mass of 1.4 solar masses and a diameter of about 20 kilometers. The formula for density (d) is mass (m) divided by volume (V), and the volume of a sphere is given by the formula V = ⅔πr3, where r is the radius of the sphere.

First, we convert the solar mass to kilograms (1 solar mass = 1.99 × 1030 kg) and 1.4 solar masses to kg gives us 2.786 × 1030 kg. Next, we convert the diameter to radius in centimeters (10,000 cm), then calculate the volume. Now we can find the density:

Mass: 2.786 × 1030 kg
Volume: ⅔π(105 cm)³= 4.18879 × 1015 cm³
Density = Mass/Volume
Density = 2.786 × 1030 kg / 4.18879 × 1015 cm³

The density, in grams per cubic centimeter (g/cm³), is calculated by converting the mass from kilograms to grams. This gives us a typical neutron star density of about 1014 g/cm³, which is exceedingly high compared to materials we experience on Earth.

Tectonic plates are large segments of the earth's crust that move slowly. Suppose one such plate has an average speed of 6.0 cm per year. (a) What distance does it move in 71 seconds at this speed?
m
(b) What is its speed in miles per million years?
mi/My

Answers

Answer:

1.35×10⁻⁷ m

37.278 mi/My

Explanation:

Speed of the tectonic plate= 6 cm/yr

Converting to seconds

[tex]6=\frac{6}{365.25\times 24\times 60\times 60}[/tex]

So in one second it will move

[tex]\frac{6}{365.25\times 24\times 60\times 60}[/tex]

In 71 seconds

[tex]71\times \frac{6}{365.25\times 24\times 60\times 60}=1.35\times 10^{-5}\ cm[/tex]

The tectonic plate will move 1.35×10⁻⁵ cm or 1.35×10⁻⁷ m

Convert to mi/My

1 cm = 6.213×10⁻⁶ mi

1 M = 10⁶ years

[tex]6\times 6.213\times 10^{-6}\times 10^6=37.278\ mi/My[/tex]

Speed of the tectonic plate is 37.278 mi/My

What is the de Broglie wavelength for a proton (m = 1.67× 10^−27 kg) moving at a speed of 9.50 × 10^6 m/s? (h = 6.63 × 10^−34 J⋅s)

Answers

Answer:

De broglie wavelength = 4.17 pm

Explanation:

We have given mass of proton [tex]m=1.67\times 10^{-27}kg[/tex]

Speed of proton v [tex]v=9.50\times 10^{6}m/sec[/tex]

Plank's constant [tex]h=6.63\times 10^{-34}J-s[/tex]

We have to find de broglie wavelength

De broglie wavelength is given by [tex]\lambda =\frac{h}{mv}=\frac{6.63\times 10^{-34}}{1.67\times 10^{-27}\times 9.5\times 10^6}=4.17\times 10^{-12}m=4.17pm[/tex]

In quantum mechanics, the fundamental constant called Planck's constant, h, has dimensions of [ML^2T^-1 ]. Construct a quantity with the dimensions of length using h, a mass m, and c, the speed of light.

Answers

Answer:

h/(m*c)

Explanation:

Hi!

Lets denote the units of X as [X]

Since the dimentions of h are:

[tex][h] = \frac{ML^{2}}{T}[/tex]

If we divide [h] by the units of mass, we get:

[tex]\frac{[h]}{[m]} = \frac{L^{2}}{T}}[/tex]

Also we know that:

[tex][c] = \frac{L}{T}[/tex]

So:

[tex][\frac{h}{mc}] = \frac{L^{2}}{T}}*\frac{T}{L}=L[/tex]

Therefore

 h/(mc) has dimentiosn of length

Final answer:

To construct a quantity with the dimensions of length using Planck's constant (h), mass (m), and the speed of light (c), the formula L = h/(mc) can be used. This length scale is relevant in the realms of quantum mechanics and high-energy physics.

Explanation:

The student has asked how to construct a quantity with the dimensions of length using Planck's constant (h), a mass (m), and the speed of light (c). To achieve this, we can use the formula for the Planck length given by:

Lp = √hG/c³

Where G is Newton's gravitational constant. However, since we need to construct a length using just h, m, and c without G, we can rearrange the Planck length equation to:

L = h/(mc)

This gives a length L which is dependent on the mass m in addition to Planck's constant h and the speed of light c. This length scale is significant in quantum mechanics and high-energy physics, where extremely small distances are relevant.

A rocket carrying a satellite is accelerating straight up from the earth's surface. At 1.15 s after liftoff, the rocket clears the top of its launch platform, 70 m above the ground. After an additional 4.70 s, it is 1.15 km above the ground. Part A
Calculate the magnitude of the average velocity of the rocket for the 4.70 s part of its flight.
Express your answer in meters per second. Part B
Calculate the magnitude of the average velocity of the rocket the first 5.85 s of its flight.
Express your answer in meters per second.

Answers

Answer:

a) [tex]v=230 m/s[/tex]

b) [tex]v=196.5 m/s[/tex]

Explanation:

a) The formula for average velocity is

[tex]v=\frac{y_{2}-y_{1}  }{t_{2}-t_{1}  }[/tex]

For the first Δt=4.7s

[tex]v=\frac{(1150-70)m}{(4.7)s} =230 m/s[/tex]

b) For the secont  Δt=5.85s we know that the displacement is 1150m. So, the average velocity is:

[tex]v=\frac{(1150)m}{(5.85)s}=196.5m/s[/tex]

Calculate the de Broglie wavelength of an electron and a one-ton car, both moving with speed of 100 km/hour. Based on your calculation could you predict which will behave like a "quantum particle" and why. Please explain each step in words and detail.

Answers

Answer :

(a). The wavelength of electron is 26.22 μm.

(b).The wavelength of car is [tex]2.38\times10^{-38}\ m[/tex]

Explanation :

Given that,

Speed = 100 km/hr

Mass of car = 1 ton

(a). We need to calculate the wavelength of electron

Using formula of wavelength

[tex]\lambda_{e}=\dfrac{h}{p}[/tex]

[tex]\lambda_{e}=\dfrac{h}{mv}[/tex]

Put the value into the formula

[tex]\lambda_{e}=\dfrac{6.63\times10^{-34}}{9.1\times10^{-31}\times100\times\dfrac{5}{18}}[/tex]

[tex]\lambda=0.00002622[/tex]

[tex]\lambda=26.22\times10^{-6}\ m[/tex]

[tex]\lambda=26.22\ \mu m[/tex]

(II).  We need to calculate the wavelength of car

Using formula of wavelength again

[tex]\lambda_{e}=\dfrac{6.63\times10^{-34}}{1000\times100\times\dfrac{5}{18}}[/tex]

[tex]\lambda=2.38\times10^{-38}\ m[/tex]

The wavelength of the electron is greater than the dimension of electron and the wavelength of car is less than the dimension of car.

Therefore, electron is quantum particle and car is classical.

Hence, (a). The wavelength of electron is 26.22 μm.

(b).The wavelength of car is [tex]2.38\times10^{-38}\ m[/tex].

Which of the following must always be the same: a. Time - a second for example b. Distance - a meter for example The speed of Light - 3E8 m/s d. Weight - how much does an apple weight.

Answers

Answer:

The speed of light remains the same.

Explanation:

(a)  Time : second, hour minutes are example of time.

(b) Distance : meter, kilometers etc are some example of distance.

(c) The speed of light : It always remains constant. It is equal to [tex]3\times 10^8\ m/s[/tex].

(d) The weight of an object is given by the product of mass of an object and the acceleration due to gravity. As the value of g is not same everywhere, its weight varies.

So, the speed of light is always remains the same. Hence, the correct option is (c).                                                                

Other Questions
d A marathon runner runs at a average speed of 5.33 meters per second for the first73600 seconds and then at a speed of 5.00 meters per second for the next 4200seconds. What is the average speed of the marathon runner in meters per second?F5.1 m/sG2.6 m/sH0.4 m/sJ 1.06 m/s 1. Frank delivered packages and mail to the school every day.What is the simple predict and what is the simple subject A tensile test was operated to test some important mechanical properties. The specimen has a gage length = 1.8 in and diameter = 0.8 in. Yielding occurs at a load of 30,000 lb. The corresponding gage length = 1.8075 in, which is the 0.2 percent yield point. The maximum load of 56,050 lb is reached at a gage length = 2.35 in. Determine (a) yield strength, (b) modulus of elasticity, and (c) tensile strength. (d) If fracture occurs at a gage length of 2.5 in, determine the percent elongation. (e) If the specimen necked to an area=0.35 in^2, determine the percent reduction in area. Mr. Smith donated $378 to 2 charities. Charity A received 5 times as much as Charity B. How much did Charity B received from Mr Smith? !!!MARK AS BRAINLIEST!!!Which inequality's solution is graphed here? A) x - 8 < 6 B) x + 8 < 6 C) x - 8 < 2 D) x - 8 < -6 Briefly highlight the four stages in the product life cycle................................................... If the Fed engages in an open market sale with a bond dealer, the bond dealer's bank's transactions deposits liabilities will ________ and the money supply will ________. a) increase; decrease b) increase; increase c) decrease; decrease d) decrease; increase Give a critical discussion on why hardness test needs to perform in engineering practice. b) Discuss 2 possible source of errors (other than parallax error) and how it's can effect the result. A production possibilities frontier (PPF) is A. a curve showing the maximum attainable combinations of two products that may be produced with available resources and current technology. B. a curve that shows the potential productive capabilities of the frontier (defined as the area outside of cities) of a developing economy. C. a curve that illustrates the demand of two goods for the average consumer. D. a curve showing the generally attainable combinations of two products that may be produced with all planned or potential, yet undeveloped technology. What is the significance of the year 1529 to Texas history What is an extraneous solution? a solution that was found due to an arithmetic error a solution that satisfies the original equation an apparent solution that is not a real number an apparent solution that does not satisfy the original equation A company had purchased $10,000 of inventory in the month of January, took advantage of purchase discounts of $500, and paid $1000 to have the goods shipped to their factory. They paid $250 to insure the inventory against fire and spent $750 to store the inventory. The company did not return any of the inventory they purchased. What is the company's 'net purchases' for the month of January? Which excerpt from "A Cub Pilot" by Mark Twain develops the author's point of view? "This was almost an affront. It was about the plainest and simplest crossing in the whole river. One couldn't come to any harm, whether he ran it right or not; and as for depth, there had never been any bottom there." "A pilot must have a memory, but there are two higher qualities which he must also have." "Therefore pilots wisely train these cubs by various strategic tricks to look danger in the face a little more calmly." "It was a good enough lesson, but learned the hard way. Yet about the hardest part of it was that for months I so often had to hear a phrase which I conceived a particular distaste for. It was, 'Oh, Ben, if you love me, back her!'" Calculate the heat of reaction for the combustion of one mole of benzene molecules (CH) at 25 (Given the AHE: (CO()] = -393.5 kJ/mol, (H.0(0)] = -285.8 kJ/mol, (CH(B)] = 82.6 kl/mol) write 0.3232323232... as a fractionwrite 2.555555... as a mixed number What is the amount of heat, in Sl units, necessary to melt 1 lb of ice? Hard rock mines were operated by mining ____a. lumber companies b. trusts c. Chinese immigrants d. corporations What is the equation of the line passing through the points (2, 2) and (3, 1) 2. To get to the semi finals, a dancer has to score at least an average of 8 points. There are 4 judges in thecompetition. The first three judges gave the dancer 8.9 points, 7.1 points and 8.3 points. What is the lowestscore 4th judge can give this dancer in order for her to move to the semi finals? Show all your work and justifyall your steps. You will not receive credit unless you justify the step. Please be sure to answer the question. Two factors that can be modified to optimize the cutting processes are feed and depth, and cutting velocity. a) True b) False