John has won the mega-bucks lottery, which pays $1, 000, 000. Suppose he deposits the money in a savings account that pays an annual interest of 8% compounded continuously. How long will this money last if he makes annual withdrawals of $100, 000?

Answers

Answer 1

Answer:20.91

Step-by-step explanation:

Given

Principal amount invested=[tex]\$ 1,000,000[/tex]

Rate of interest=8%

Annual Withdrawl=[tex]\$ 100,000[/tex]

compound interest is given by

A=[tex]\left (1+ \frac{r}{100}\right )^t[/tex]

Therefore reamining Amount after certain years

Net money will become zero after t year

[tex]1,000,000\left (1+ \frac{8}{100} \right )^t - 100,000\left ( \frac{\left ( 1.08\right )^{t}-1}{0.08}\right )[/tex]=0

[tex]0.8\left ( 1.08\right )^t=\left ( 1.08\right )^{t}-1[/tex]

t=20.91 years


Related Questions

Ryan has deposited $100 into a retirement account at the end of every month for 50 years. The interest rate on the account is 1.5% compounded monthly. a) How much is in the account after 45 years? b) How much inte rest was earned over the 45 years?

Answers

Answer:

future payment is $77056.92

total interest is paid after 45 year is  $23056.42

Step-by-step explanation:

Given data

payment (P) = $100

No of installment (n) = 12

rate of interest ( r ) = 1.5 %  i.e. = 0.015

time period (t) = 45 years

to find out

future payment and interest after 45 year

solution

we know future payment formula i.e. given below

future payment = payment × [tex](1+\frac{r}{n})^{nt} - 1) / (r/n)[/tex]

now put all these value in equation

future payment = $ 100  × [tex](1+\frac{0.015}{12})^{12*45} - 1) / (0.015/12)[/tex]  

future payment = $ 77056.92

payment paid in 45 year @ $100 total money is paid is 45 × 12 × $100 i.e. = $54000

total interest = future payment  - money paid

total interest = $77056.42 - $54000

total interest = $23056.42

Find the volume of the solid obtained by rotating the region bounded by the x-axis, the y-axis, the line y=2, and y=e^x about the y-axis. Round your answer to three decimal places.

Answers

Answer:

0.592

Step-by-step explanation:

The volume of the solid, rounded to three decimal places is 18.257.

The volume of the solid obtained by rotating the region around the y-axis can be found using the method of discs or washers. Since the region is bounded by the x-axis, the y-axis, the line y=2, and the curve [tex]y=e^x[/tex], we will integrate with respect to y.

The volume V of the solid of revolution is given by the integral:

[tex]\[ V = \pi \int_{a}^{b} [R(y)]^2 dy - \pi \int_{a}^{b} [r(y)]^2 dy \][/tex]

where [tex]\( R(y) \)[/tex] is the outer radius and [tex]\( r(y) \)[/tex] is the inner radius of the discs or washers.

In this case, the outer radius [tex]\( R(y) \)[/tex] is given by the line y=2, which is a horizontal line, so the outer radius is constant and equal to 2. The inner radius [tex]\( r(y) \)[/tex] is given by the curve [tex]y=e^x[/tex]. To express x in terms of y, we take the natural logarithm of both sides to get [tex]\( x = \ln(y) \)[/tex].

Now we can set up our integrals:

[tex]\[ V = \pi \int_{0}^{2} [2]^2 dy - \pi \int_{0}^{2} [\ln(y)]^2 dy \][/tex]

[tex]\[ V = \pi \int_{0}^{2} 4 dy - \pi \int_{0}^{2} [\ln(y)]^2 dy \][/tex]

The first integral is straight forward:

[tex]\[ \pi \int_{0}^{2} 4 dy = \pi \left[ 4y \right]_{0}^{2} = \pi [4(2) - 4(0)] = 8\pi \][/tex]

The second integral requires integration by parts. Let [tex]\( u = [\ln(y)]^2 \)[/tex]and [tex]\( dv = dy \)[/tex], then [tex]\( du = \frac{2\ln(y)}{y} dy \)[/tex] and [tex]\( v = y \)[/tex]. Applying integration by parts gives:

[tex]\[ \pi \int_{0}^{2} [\ln(y)]^2 dy = \pi \left[ y[\ln(y)]^2 - \int_{0}^{2} 2\ln(y) dy \right] \][/tex]

Now, we need to integrate [tex]\( 2\ln(y) \)[/tex] by parts again, with [tex]\( u = \ln(y) \)[/tex] and [tex]\( dv = dy \)[/tex], then [tex]\( du = \frac{1}{y} dy \)[/tex] and [tex]\( v = y \)[/tex]. This gives:

[tex]\[ \int_{0}^{2} 2\ln(y) dy = \left[ 2y\ln(y) - \int_{0}^{2} 2 dy \right] \][/tex]

[tex]\[ \int_{0}^{2} 2\ln(y) dy = \left[ 2y\ln(y) - 2y \right]_{0}^{2} \][/tex]

[tex]\[ \int_{0}^{2} 2\ln(y) dy = 2(2)\ln(2) - 2(2) - (0) \][/tex]

[tex]\[ \int_{0}^{2} 2\ln(y) dy = 4\ln(2) - 4 \][/tex]

Putting it all together:

[tex]\[ \pi \int_{0}^{2} [\ln(y)]^2 dy = \pi \left[ y[\ln(y)]^2 - (4\ln(2) - 4) \right]_{0}^{2} \][/tex]

[tex]\[ \pi \int_{0}^{2} [\ln(y)]^2 dy = \pi \left[ 2[\ln(2)]^2 - (4\ln(2) - 4) \right] - \pi \left[ \lim_{y \to 0} y[\ln(y)]^2 - (4\ln(2) - 4) \right] \][/tex]

The limit as y approaches 0 of [tex]\( y[\ln(y)]^2 \)[/tex] is 0, so we have:

[tex]\[ \pi \int_{0}^{2} [\ln(y)]^2 dy = \pi \left[ 2[\ln(2)]^2 - 4\ln(2) + 4 \right] \][/tex]

[tex]\[ \pi \int_{0}^{2} [\ln(y)]^2 dy = 2\pi[\ln(2)]^2 - 4\pi\ln(2) + 4\pi \][/tex]

Now, subtract this from the first integral:

[tex]\[ V = 8\pi - (2\pi[\ln(2)]^2 - 4\pi\ln(2) + 4\pi) \][/tex]

[tex]\[ V = 8\pi - 2\pi[\ln(2)]^2 + 4\pi\ln(2) - 4\pi \][/tex]

[tex]\[ V = 4\pi + 4\pi\ln(2) - 2\pi[\ln(2)]^2 \][/tex]

[tex]\[ V = 4\pi(1 + \ln(2) - \frac{1}{2}[\ln(2)]^2) \][/tex]

Rounded to three decimal places, the volume is:

[tex]\[ V \approx 4\pi(1 + \ln(2) - \frac{1}{2}[\ln(2)]^2) \approx 4\pi(1 + 0.693 - \frac{1}{2}(0.693)^2) \][/tex]

[tex]\[ V \approx 4\pi(1 + 0.693 - 0.240) \][/tex]

[tex]\[ V \approx 4\pi(1.453) \][/tex]

[tex]\[ V \approx 5.812\pi \][/tex]

[tex]\[ V \approx 18.257 \][/tex]

Therefore, the volume of the solid, rounded to three decimal places, is:

[tex]\[ \boxed{18.257} \][/tex].

The complete question is:

Find the volume of the solid obtained by rotating the region bounded by the x-axis, the y-axis, the line y=2, and [tex]y=e^x[/tex] about the y-axis. Round your answer to three decimal places.

Times for a surgical procedure are normally distributed. There are two methods. Method A has a mean of 33 minutes and a standard deviation of 8 minutes, while method B has a mean of 37 minutes and a standard deviation of 4.0 minutes. (a) Which procedure is preferred if the procedure must be completed within 34 minutes?

Answers

Answer:

Method A.

Step-by-step explanation:

For solving this question we need to find out the z-scores for both methods,

Since, the z-score formula is,

[tex]z=\frac{x-\mu}{\sigma}[/tex]

Where, [tex]\mu[/tex] is mean,

[tex]\sigma[/tex] is standard deviation,

Given,

For method A,

[tex]\mu = 33[/tex]

[tex]\sigma=8[/tex]

Thus, the z score for 34 is,

[tex]z_1=\frac{34-33}{8}=0.125[/tex]

While, for method B,

[tex]\mu = 37[/tex]

[tex]\sigma = 4[/tex]

Thus, the z score for 34 is,

[tex]z_2=\frac{34-37}{4}=-0.75[/tex],

Since, [tex]z_1 > z_2[/tex]

Hence, method A is preferred if the procedure must be completed within 34 minutes.

Comparison of two normal distribution can be done via intermediary standard normal distribution. The procedure to be preferred for  getting the procedure completed within 34 minutes is: Method A

How to get the z scores?

If we've got a normal distribution, then we can convert it to standard normal distribution and its values will give us the z score.

If we have

[tex]X \sim N(\mu, \sigma)[/tex]

(X is following normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] )

then it can be converted to standard normal distribution as

[tex]Z = \dfrac{X - \mu}{\sigma}, \\\\Z \sim N(0,1)[/tex]

(Know the fact that in continuous distribution, probability of a single point is 0, so we can write

[tex]P(Z \leq z) = P(Z < z) )[/tex]

Also, know that if we look for Z = z in z tables, the p value we get is

[tex]P(Z \leq z) = \rm p \: value[/tex]

Firstly, we need to figure out what the problem is asking, and a method which we can apply. Two normal distributions have to be compared. We can convert them to standard normal distribution for comparison. Then, we will get the p-value for 34 minutes(converted to standard normal variate's value) which will tell about the probability of obtaining time as 34 minutes(or under it)(this can be obtained with p value) in method A or B. The more the probability is there, the more chances for that method would be for getting completed within 34 minutes (compared to other method).

For method A:

Let X = time taken for completion of surgical procedure by method A,

Then, by given data, we have: [tex]X \sim N(\mu = 33, \sigma = 8)[/tex]

The probability that X will fall within value 34 is [tex]P(X \leq 34)[/tex]

Converting this whole thing to standard normal distribution, we get the needed probability as:

[tex]P(X \leq 34) = P(Z = \dfrac{X - \mu}{\sigma} \leq \dfrac{34 - 33}{8} ) = P(Z \leq 0.15)[/tex]

From the z-tables, the p value for Z = 0.15 is 0.5596

Thus, we get:

[tex]P(X \leq 34) = P(Z \leq 0.15 ) \approx 0.5596[/tex]

For method B:

Let Y = time taken for completion of surgical procedure by method B,

Then, by given data, we have: [tex]Y \sim N(\mu = 37, \sigma = 4)[/tex]

The probability that X will fall within value 34 is [tex]P(Y \leq 34)[/tex]

Converting this whole thing to standard normal distribution, we get the needed probability as:

[tex]P(Y \leq 34) = P(Z = \dfrac{Y - \mu}{\sigma} \leq \dfrac{34 - 37}{4} ) = P(Z \leq -0.25)[/tex]

From the z-tables, the p value for Z = -0.25 is 0.4013

Thus, we get:

[tex]P(Y \leq 34) = P(Z \leq -0.25 ) \approx 0.4013[/tex]

Thus, we see that:

P(method A will make surgical procedure last within 34 minutes) = 0.5596   > P(method B will make surgical procedure last within 34 minutes) =  0.4013

Thus, method A should be preferred, as there is higher chances for method A to get the surgery completed within 34 minutes than method B.

Learn more about standard normal distribution here:

https://brainly.com/question/10984889

Determine whether the system of linear equations has one and only one solution, infinitely many solutions, or no solution. 2x-y=5 and 4x+ky=2

Answers

Answer:

The system of linear equations has infinitely many solutions

Step-by-step explanation:

Let's modified the equations and find the answer.

Using the first equation:

[tex]2x-y=5[/tex] we can multiply by 2 in both sides, obtaining:

[tex]2*(2x-y)=2*5[/tex] which can by simplified as:

[tex]4x-2y=10[/tex] which is equal to:

[tex]4x=2y+10[/tex]

Considering the second equation:

[tex]=4x+ky=2[/tex]

Taking into account that from the first equation we know that: [tex]4x=2y+10[/tex], we can express the second equation as:

[tex]2y+10+ky=2[/tex], which can be simplified as:

[tex](2+k)y=2-10[/tex]

[tex](2+k)y=-8[/tex]

[tex]y=-8/(2+k)[/tex]

Because (-8) is being divided by (2+k), then (2+k) can't be equal to 0, so:

[tex]2+k=0[/tex] if [tex]k=-2[/tex]

This means that k can be any number different than -2, and for each of these solutions, there is a different solution for y, allowing also, different solutions for x.

For example, if k=0 then

[tex]y=-8/(2+0)[/tex] which give us y=-4, and, because:

[tex]4x=2y+10[/tex] if y=-4 then [tex]x=(-8+10)/4=0.5[/tex]

Now let's try with k=-1, then:

[tex]y=-8/(2-1)[/tex] which give us y=-8, and, because:

[tex]4x=2y+10[/tex] if y=-8 then [tex]x=(-16+10)/4=-1.5[/tex].

Then, the system of linear equations has infinitely many solutions

If f(x) = 3x^2 - 2 and g(x) = 4x + 2


what is the value of (f + g)(2) ?

please show work!!

Answers

Hello!

The answer is:

[tex](f+g)(2)=20[/tex]

Why?

To solve the problem, we need to add the given functions, and then, evaluate the resultant function with the given value of "x" which is equal to 2.

We need to remember that:

[tex](f+-g)(x)=f(x)+-g(x)[/tex]

So, we are given the functions:

[tex]f(x)=3x^2-2\\g(x)=4x+2\\[/tex]

Then, adding the functions , we have:

[tex](f+g)(x)=f(x)+g(x)=(3x^2-2)+(4x+2)[/tex]

[tex](f+g)(x)=3x^2-2+4x+2=3x^2+4x-2+2=3x^2+4x[/tex]

Therefore, we have that:

[tex](f+g)(x)=3x^2+4x[/tex]

Now, evaluating the function, we have:

[tex](f+g)(2)=3(2)^2+4(2)=3*4+4*2=12+8=20[/tex]

Hence, we have that the answer is:

[tex](f+g)(2)=20[/tex]

Have a nice day!

Convert 3,A5D Base 16 to Base 10

Answers

Answer:

14941.

Step-by-step explanation:

In base 16 we have that :

A=10, B=11, C=12, D=13, E=14, F=15 and the process of change is:

3: [tex]3*16^{0}= 3[/tex]

A5D= [tex]10*16^{2}+5*16^{1}+13*16^{0}= 2560+80+13=2653.[/tex]

3A5D =  [tex]3*16^{3}+10*16^{2}+5*16^{1}+13*16^{0}= 12288+2560+80+13=14941.[/tex]

y"+4y = 8 sin 2x. Trial Solution using annihilator technique
Linear Algebra and Differential equations
I am so confused why would you multiple by X up(x)

Answers

A second order linear, non - homogeneous ODE has a form of [tex]ay''+by'+cy=g(x)[/tex]

The general solution to, [tex]a(x)y''+b(x)y'+c(x)y=0[/tex]

Can be written as,

[tex]y=y_h+y_p[/tex]

Where [tex]y_h[/tex] is a solution to the homogeneous ODE and [tex]y_p[/tex] the particular solution, function that satisfies the non - homogeneous equation.

We can solve [tex]y_h[/tex] by rewriting the equation,

[tex]ay''+by'+cy=0\Longrightarrow(e^{xy})''+4e^{xy}=0[/tex]

Which simplifies to,

[tex]e^{xy}(y^2+4)=0[/tex]

From here we get two solutions,

[tex]y_{h1}=2i, y_{h2}=-2i[/tex]

So the form here refines,

[tex]y_h=c_1\cos(2x)+c_2\sin(2x)[/tex]

The same thing we do with [tex]y_p[/tex] to get form of,

[tex]y_p=-2x\cos(2x)[/tex]

From here the final form emerges,

[tex]y=\boxed{c_1\cos(2x)+c_2\sin(2x)-2x\cos(2x)}[/tex]

Hope this helps.

r3t40

4, Find a number x such that x = 1 mod 4, x 2 mod 7, and x 5 mod 9.

Answers

4, 7 and 9 are mutually coprime, so you can use the Chinese remainder theorem.

Start with

[tex]x=7\cdot9+4\cdot2\cdot9+4\cdot7\cdot5[/tex]

Taken mod 4, the last two terms vanish and we're left with

[tex]x\equiv63\equiv64-1\equiv-1\equiv3\pmod4[/tex]

We have [tex]3^2\equiv9\equiv1\pmod4[/tex], so we can multiply the first term by 3 to guarantee that we end up with 1 mod 4.

[tex]x=7\cdot9\cdot3+4\cdot2\cdot9+4\cdot7\cdot5[/tex]

Taken mod 7, the first and last terms vanish and we're left with

[tex]x\equiv72\equiv2\pmod7[/tex]

which is what we want, so no adjustments needed here.

[tex]x=7\cdot9\cdot3+4\cdot2\cdot9+4\cdot7\cdot5[/tex]

Taken mod 9, the first two terms vanish and we're left with

[tex]x\equiv140\equiv5\pmod9[/tex]

so we don't need to make any adjustments here, and we end up with [tex]x=401[/tex].

By the Chinese remainder theorem, we find that any [tex]x[/tex] such that

[tex]x\equiv401\pmod{4\cdot7\cdot9}\implies x\equiv149\pmod{252}[/tex]

is a solution to this system, i.e. [tex]x=149+252n[/tex] for any integer [tex]n[/tex], the smallest and positive of which is 149.

Final answer:

The problem is about finding a number x that satisfies a system of modular arithmetic equations. It can be solved using the Chinese Remainder Theorem which is part of number theory in mathematics. More information is needed to solve this specific system.

Explanation:

The problem at hand is to find a number x which satisfies the conditions x ≡ 1 (mod 4), x ≡ 2 (mod 7), and x ≡ 5 (mod 9). This falls under the mathematical concept of modular arithmetic.

Modular arithmetic is a system of arithmetic for integers, where numbers wrap around once reaching a certain value—the modulus.

The expressions x ≡ 1 (mod 4), x ≡ 2 (mod 7), and x ≡ 5 (mod 9) mean that when x is divided by 4, the remainder is 1; when x is divided by 7, the remainder is 2; and when x is divided by 9, the remainder is 5 respectively.

This is a type of problem known as a system of linear congruences, which can be solved by applying the Chinese Remainder Theorem. However, the information provided is insufficient to provide a specific numerical solution to the system of congruences. It is recommended that the student consults the section of their classroom material that discusses the Chinese Remainder Theorem and its applications.

Learn more about Modular Arithmetic here:

https://brainly.com/question/13089800

#SPJ12

Find the volumes of the solids generated by revolving the triangle with vertices (2, 2)​, (2, 6)​, and (5, 6) about ​a) the​ x-axis, ​b) the​ y-axis, ​c) the line x=7​, and ​d) the line y=2.

Answers

About the [tex]x[/tex]-axis (washer method):

[tex]\displaystyle\pi\int_2^5\left(6^2-\left(\frac43x-\frac23\right)^2\right)\,\mathrm dx=\frac{16\pi}9\int_2^5(20+x-x^2)\,\mathrm dx=\boxed{56\pi}[/tex]

About the [tex]y[/tex]-axis (shell method):

[tex]\displaystyle2\pi\int_2^5x\left(6-\left(\frac43x-\frac23\right)\right)\,\mathrm dx=\frac{8\pi}3\int_2^5x(5-x)\,\mathrm dx=\boxed{36\pi}[/tex]

About [tex]x=7[/tex] (shell method):

[tex]\displaystyle2\pi\int_2^5(7-x)\left(6-\left(\frac43x-\frac23\right)\right)\,\mathrm dx=\frac{8\pi}3\int_2^5(35-12x+x^2)\,\mathrm dx=\boxed{48\pi}[/tex]

About [tex]y=2[/tex] (washer method):

[tex]\displaystyle\pi\int_2^5\left((6-2)^2-\left(\frac43x-\frac23-2\right)^2\right)\,\mathrm dx=\frac{16\pi}9\int_2^5(5+4x-x^2)\,\mathrm dx=\boxed{32\pi}[/tex]

The y-coordinates of the two intersection points of the triangle and the line y=2 (Option d).

In this explanation, we will explore how to find the volumes of solids formed by revolving a triangle with given vertices about different axes and lines. We'll use basic calculus principles to calculate the volumes and understand the concept of rotation in three-dimensional space.

a) To find the volume of the solid generated by revolving the triangle about the x-axis, we imagine rotating the triangle in a circular motion around the x-axis. This forms a three-dimensional shape known as a "solid of revolution."* To calculate the volume, we integrate the cross-sectional area of each infinitesimally thin slice of the solid perpendicular to the x-axis, from the x-coordinate of the leftmost point to the rightmost point.

Let's use the "disk method" to integrate the cross-sectional areas. Each disk has a radius equal to the y-coordinate of the triangle at a particular x-coordinate. The formula for the volume using the disk method is:

Vx = ∫[from a to b] π * (y)² dx

Where (a, b) are the x-coordinates of the leftmost and rightmost points of the triangle, and y represents the y-coordinate of the triangle at a specific x.

b) Similarly, to find the volume of the solid formed by revolving the triangle about the y-axis, we use the "washer method". In this case, the inner radius of each washer is given by the x-coordinate of the triangle at a particular y-coordinate. The formula for the volume using the washer method is:

Vy = ∫[from c to d] π * (x)² dy

Where (c, d) are the y-coordinates of the bottommost and topmost points of the triangle, and x represents the x-coordinate of the triangle at a specific y.

c) To find the volume of the solid formed by revolving the triangle about the line x=7, we use the "shell method".

We integrate the circumference of each cylindrical shell formed between the triangle and the line x=7. The formula for the volume using the shell method is:

V7 = ∫[from e to f] 2π * (x-7) * y dx

Where (e, f) are the x-coordinates of the two intersection points of the triangle and the line x=7.

d) Lastly, to find the volume of the solid formed by revolving the triangle about the line y=2, we can use the shell method as well, considering cylindrical shells formed between the triangle and the line y=2. The formula for the volume using the shell method is:

Vy=2 = ∫[from g to h] 2π * (y-2) * x dy

Where (g, h) are the y-coordinates of the two intersection points of the triangle and the line y=2.

By calculating the integrals using these formulas, we can find the volumes of the solids generated by revolving the triangle about the specified axes and lines. Remember to always set up the integral limits correctly based on the x or y coordinates of the triangle's vertices.

To know more about Volumes here

https://brainly.com/question/33353951

#SPJ2

What is the product of -3/1 3 and -8/ 7 8

Answers

Answer:

(2/13)²

Step-by-step explanation:

-3/13 x -8/78 ( - x - is + )

+ 3 x 8 / 13 x 78 = 24/1014 = 4/169  =(2/13)²

A recipe that makes 3 dozen peanut butter cookies calls for 1 and 1/4 cups of flour. How much flour would you need to make 7 dozen cookies?

Answers

Answer:

[tex]2\frac{11}{12}[/tex] cups of flour are nedeed

Step-by-step explanation:

we know that

3 dozen peanut butter cookies calls for 1 and 1/4 cups of flour

Convert mixed number to an improper fraction

[tex]1\frac{1}{4}\ cups=\frac{1*4+1}{4}=\frac{5}{4}\ cups[/tex]

using proportion

Find out how much flour would you need to make 7 dozen cookies

Let

x ----> the number of cups of flour

[tex]\frac{3}{(5/4)}\frac{dozen}{cups}=\frac{7}{x}\frac{dozen}{cups} \\ \\x=7*(5/4)/3\\ \\x=\frac{35}{12}\ cups[/tex]

Convert to mixed number

[tex]\frac{35}{12}\ cups=\frac{24}{12}+\frac{11}{12}=2\frac{11}{12}\ cups[/tex]

Answer:

2.92 or 2 and 23/25 cups are required for 7 dozen cookies

Step-by-step explanation:

Determine the required number of flour for 3 dozen cookies. Use it to find flour required for 7 dozen cookies.

Dozen cookies               Flour

        3                             1 + 1/4

        7                                x

Cross multiply to find the value of x

3x = 7(1+1/4)

3x = 7(5/4)

12x = 35

x = 2.92 cups or 2 and 23/25 cups

Therefore, 2.92 cups or 2 and 23/25 cups of flour are required for 7 dozen peanut butter cookies.

!!

Find a second independent solution y1=x xy"-xy'+y=0

Answers

We can use reduction of order. Given that [tex]y_1(x)=x[/tex] is a known solution, we look for a solution of the form [tex]y_2(x)=v(x)y_1(x)[/tex]. It has derivatives [tex]{y_2}'=v'y_1+v{y_1}'[/tex] and [tex]{y_2}''=v''y_1+2v'{y_1}'+v{y_1}''[/tex]. Substituting these into the ODE gives

[tex]x(xv''+2v')-x(xv'+v)+xv=0[/tex]

[tex]x^2v''+(2x-x^2)v'=0[/tex]

Let [tex]w(x)=v'(x)[/tex] so that [tex]w'(x)=v''(x)[/tex] and we get an ODE linear in [tex]w[/tex]:

[tex]x^2w'+(2x-x^2)w=0[/tex]

Divide both sides by [tex]e^x[/tex]:

[tex]x^2e^{-x}w'+(2x-x^2)e^{-x}w=0/tex]

Since [tex](x^2e^{-x})=(2x-x^2)e^{-x}[/tex], we can condense the left side as the derivative of a product:

[tex](x^2e^{-x}w)'=0[/tex]

Integrate both sides and solve for [tex]w(x)[/tex]:

[tex]x^2e^{-x}w=C\implies w=\dfrac{Ce^x}{x^2}[/tex]

Integrate both sides again to solve for [tex]v(x)[/tex]. Unfortunately, there is no closed form for the integral of the right side, but we can leave the result in the form of a definite integral:

[tex]v=\displaystyle C_2+C_1\int_{x_0}^x\frac{e^t}{t^2}\,\mathrm dt[/tex]

where [tex]x_0[/tex] is any point on an interval over which a solution to the ODE exists.

Finally, multiply by [tex]y_1(x)[/tex] to solve for [tex]y_2(x)[/tex]:

[tex]y_2=\displaystyle C_2x+C_1x\int_{x_0}^x\frac{e^t}{t^2}\,\mathrm dt[/tex]

[tex]y_1(x)[/tex] already accounts for the [tex]C_2x[/tex] term above, so the second independent solution is

[tex]y_2=x\displaystyle\int_{x_0}^x\frac{e^t}{t^2}\,\mathrm dt[/tex]

(show the supposition, proof and conclusion)

Use proof by contradiction to show that If a and b are rational numbers with b ≠ 0 and x is an irrational number, then a + bx is irrational.

Answers

Answer:

Step-by-step explanation:

We are given that a and b are rational numbers where [tex]b\neq0[/tex] and x is irrational number .

We have to prove a+bx is irrational number by contradiction.

Supposition:let  a+bx is a rational number then it can be written in [tex]\frac{p}{q}[/tex] form

[tex]a+bx=\frac{p}{q}[/tex] where [tex]q\neq0[/tex] where p and q are integers.

Proof:[tex]a+bx=\frac{p}{q}[/tex]

After dividing p and q by common factor except 1 then we get

[tex]a+bx=\frac{r}{s}[/tex]

r and s are coprime therefore, there is no common factor of r and s except 1.

[tex]a+bx=\frac{r}{s}[/tex] where r and s are integers.

[tex]bx=\frac{r}{s}-a[/tex]

[tex]x=\frac{\frac{r}{s}-a}{b}[/tex]

When we subtract one rational from other rational number then we get again a rational number and we divide one rational by other rational number then we get quotient number which is also rational.

Therefore, the number on the right hand of equal to is rational number but x is a irrational number .A rational number is not equal to an irrational number .Therefore, it is contradict by taking a+bx is a rational number .Hence, a+bx is an irrational number.

Conclusion: a+bx is an irrational number.

Compute the entry (the number in the second row and second column) of the product matrix resulting from the following multiplication:

[1 2] [9 6]
[3 4] [5 7]

Answers

Answer:

The entry on the second row and second column of the product matrix is [tex]c_{22} = 40[/tex].

Step-by-step explanation:

Let's define as A and B the given matrixes:

[tex]A = \left[\begin{array}{cc}1&2\\3&4\end{array}\right][/tex]

[tex]B = \left[\begin{array}{cc}9&6\\5&7\end{array}\right][/tex]

The product matrix C entry in the first row and first column [tex]c_{1,1}[/tex] or [tex]c_{11}[/tex] can be computer multiplying first row of A by first column of B (see example attached).

The product matrix C entry in the first row and second column [tex]c_{1,2}[/tex] or [tex]c_{12}[/tex] can be computer multiplying first row of A by second column of B.

The product matrix C entry in the second row and first column [tex]c_{2,1}[/tex] or [tex]c_{21}[/tex] can be computer multiplying second row of A by first column of B.

The product matrix C entry in the second row and second column [tex]c_{2,2}[/tex] or [tex]c_{22}[/tex] can be computer multiplying second row of A by second column of B.

Then, let's compute [tex]c_{22}[/tex] by doing the dot product between [3 4] and [6 7]...

[tex]c_{22} = [3 4] . [6 7] = 3*4 + 4*7 = 12 + 28 = 40[/tex]

The distance between my house and Memphis is 150 km. If I drive in my car, it takes me 72 min to make the first 100 km of the drive. If I keep traveling at the same rate, how many more minutes will it take to drive the remaining distance? Round your answer to the nearest tenth.

Answers

Set up a ratio:

You drove 72 minutes and 100 km = 72/100

You want the number of minutes (x) to drive 150 km = x/150

Set the ratios to equal each other and solve for x:

72/100 = x/150

Cross multiply:

(72 * 150) = 100 * x)

Simplify:

10,800/100x

Divide both sides by 100:

x = 10800/100 = 108

This means it would take 108 minutes to drive 150 km.

Now subtract the time you have already driven to fin how much more you need:

180 - 72 = 36 more minutes.

Answer:

36 min

Step-by-step explanation:

It takes 72 min to drive 100 km. 50 km are left to drive.

Half of the driving above is: It takes 36 min to drive 50 km.

The reading speed of second grade students in a large city is approximately​ normal, with a mean of 9090 words per minute​ (wpm) and a standard deviation of 10 wpm. Complete parts​ (a) through​ (f). ​(a) What is the probability a randomly selected student in the city will read more than 9494 words per​ minute? The probability is nothing.

Answers

Answer: 0.3446

Step-by-step explanation:

Given  : Mean : [tex]\mu = 90[/tex]

Standard deviation : [tex]\sigma = 10[/tex]

Also, the reading speed of second grade students in a large city is approximately​ normal.

Then , the formula to calculate the z-score is given by :_

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x =  94

[tex]z=\dfrac{94-90}{10}=0.4[/tex]

The p-value = [tex]P(z>0.4)=1-P(z<0.4)=1-0.6554217[/tex]

[tex]\\\\=0.3445783\approx0.3446[/tex]

Hence, the  probability a randomly selected student in the city will read more than 94 words per​ minute =0.3446

Translate the following ordinary-language sentences into logical symbolic form using capital letters for simple phrases and the standard symbols – “·,” “˅,” “¬,” “≡,” “⊃” – for the logical operators. 1. Either existing home sales will decrease or new housing starts will increase and unemployment will decrease only if the Federal Reserve decreases long-term interest rates and foreign trade deficits decrease or foreign trade deficits increase and manufacturing rates increase. 2. Germany will vote to limit the number of immigrants it admits and so will reject Angela Merkel’s international policies unless neighboring EU countries agree to a multi-national work visa program and either the World Bank revalues the Euro relative to the US dollar or the US-Russia brokered peace treaty is signed by Syria.

Answers

P - existing home sales will decrease

Q - new housing starts will increase

R - unemployment will decrease

S - the Federal Reserve decreases long-term interest rates

T - foreign trade deficits decrease

U - foreign trade deficits increase

V - manufacturing rates increase

[tex][(P \vee Q) \wedge R] \iff (S \wedge T) \vee (U \wedge V)[/tex]

P - Germany will vote to limit the number of immigrants it admits

Q - will reject Angela Merkel’s international policies

R - neighboring EU countries agree to a multi-national work visa program

S - the World Bank revalues the Euro relative to the US dollar

T - the US-Russia brokered peace treaty is signed by Syria.

[tex]\neg (R \wedge (S \vee T))\implies (P \implies R)\\[/tex]

A poll showed that 50.3% of Americans say they believe that some people see the future in their dreams. What is the probability of randomly selecting someone who does not believe that some people see the future in their dreams.

Answers

Answer:

The probability of randomly selecting someone who does not believe that some people see the future in their dreams =0.497.

Step-by-step explanation:

Given

Percent of Americans who Say  they believe that some people see the future in their dreams=50.3%

Total percentages=100%

Therefore, Number of americans who say they believe that some people see the future in their dreams=50.3

The probability of randomly selecting someone  who say  they believe that some people see the future in their dreams =[tex]\frac{50.3}{100}[/tex]

Hence, the probability of randomly selecting someone who believe that some people see the future in their dreams, P(E)=0.503

Now, the probability of randomly selecting someone who does not believe that some people see the future in their dreams ,P(E')= 1-P(E)

The probability of randomly selecting someone who does not believe that some people see the future in their dreams =1-0.503

Hence,the probability of randomly selecting someone who does not believe that some people see the future in their dreams=0.497.

Answer: 0.497

Step-by-step explanation:

Let A be the event that Americans believe that some people see the future in their dreams.

Then , the probability that Americans believe that some people see the future in their dreams is given by :-

[tex]P(A)=50.3\%=0.503[/tex]

We know that the complement of a event X is given by :-

[tex]P(X')=1-P(X)[/tex]

Hence, the probability of randomly selecting someone who does not believe that some people see the future in their dreams is

[tex]P(A')=1-P(A)\\\\=1-0.503=0.497[/tex]

Continuing the previous problem, use the data points (1950, 0.75) and (1997, 5.15) to find the slope. Show all work necessary for your calculations. If necessary, round your answer to the hundredths place. What does the slope represent in the context of the problem?

Answers

Answer:

Slope is 0.094,

It represents the average rate of change.

Step-by-step explanation:

Since, the slope is the ratio of difference in y-coordinates and the difference in x-coordinates,

Also, in a order pair, first element shows the x-coordinate and second element shows the y-coordinate.

Here, the data points are (1950, 0.75) and (1997, 5.15),

Thus, the slope is,

[tex]m=\frac{5.15-0.75}{1997-1950}[/tex]

[tex]=\frac{4.4}{47}[/tex]

[tex]=0.0936170212766[/tex]

[tex]\approx 0.094[/tex]

Also, Slope represents the average rate of change.

A survey of 400 randomly selected high school students determined that 68 play organized sports. ​(a) What is the probability that a randomly selected high school student plays organized​ sports? ​(b) Interpret this probability.

Answers

Answer: a) The probability that a randomly selected high school student plays organized​ sports = 0.17

b) The randomly selected high school student is unlikely to play organized​ sports.

Step-by-step explanation:

Given : A survey of 400 randomly selected high school students determined that 68 play organized sports.

Then , the probability that a randomly selected high school student plays organized​ sports is given by :-

[tex]\dfrac{\text{Favorable outcomes}}{\text{Total outcomes}}\\\\=\dfrac{68}{400}=0.17[/tex]

In percent , the  probability that a randomly selected high school student plays organized​ sports is 17%.

since 17% lies in the interval of unlikely events (0%, 25%).

It means that the randomly selected high school student is unlikely to play organized​ sports.

Final answer:

The probability that a randomly selected high school student plays organized sports is 0.17, which means there is a 17% chance, or a 1 in 6 chance, that a randomly picked student plays organized sports.

Explanation:

This question relates to the field of Statistics, particularly to the concept of Probability. In this problem, we are provided with a total number of High School students (400), and a number of students who play organized sports (68).

To find the probability, you would divide the number of students who play sports by the total number of students. That is, Probability = Number with desired characteristic (play sports) / Total number In this case, it would be 68 / 400 = 0.17

Interpreting the probability means describing what it represents in practical terms. Here, a probability of 0.17 means that if you were to randomly select a high school student, there is a 17% chance, or around 1 in 6 chance, that this student plays organized sports.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Suppose 56% of the registered voters in a country are Republican. If a sample of 447 voters is selected, what is the probability that the sample proportion of Republicans will be less than 60%? Round your answer to four decimal places.

Answers

Answer: 0.9554

Step-by-step explanation:

Given : The proportion of  the registered voters in a country are Republican = P=0.56

The number of voters = 447

The test statistic for proportion :-

[tex]z=\dfrac{p-P}{\sqrt{\dfrac{P(1-P)}{n}}}[/tex]

For p= 0.60

[tex]z=\dfrac{0.60-0.56}{\sqrt{\dfrac{0.56(1-0.56)}{447}}}\approx1.70[/tex]

Now, the probability that the sample proportion of Republicans will be less than 60% (by using the standard normal distribution table):-

[tex]P(x<0.60)=P(z<1.70)=0.9554345\approx0.9554[/tex]

Hence, the probability that the sample proportion of Republicans will be less than 60% = 0.9554

find a general solution of
t *(dy/dt)-(y^2)*lnt+y=0

Answers

[tex]t\dfrac{\mathrm dy}{\mathrm dt}-y^2\ln t+y=0[/tex]

Divide both sides by [tex]y(t)^2[/tex]:

[tex]ty^{-2}\dfrac{\mathrm dy}{\mathrm dt}-\ln t+y^{-1}=0[/tex]

Substitute [tex]v(t)=y(t)^{-1}[/tex], so that [tex]\dfrac{\mathrm dv}{\mathrm dt}=-y(t)^{-2}\dfrac{\mathrm dy}{\mathrm dt}[/tex].

[tex]-t\dfrac{\mathrm dv}{\mathrm dt}-\ln t+v=0[/tex]

[tex]t\dfrac{\mathrm dv}{\mathrm dt}-v=\ln t[/tex]

Divide both sides by [tex]t^2[/tex]:

[tex]\dfrac1t\dfrac{\mathrm dv}{\mathrm dt}-\dfrac1{t^2}v=\dfrac{\ln t}{t^2}[/tex]

The left side can be condensed as the derivative of a product:

[tex]\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac1tv\right]=\dfrac{\ln t}{t^2}[/tex]

Integrate both sides. The integral on the right side can be done by parts.

[tex]\displaystyle\int\frac{\ln t}{t^2}\,\mathrm dt=-\frac{\ln t}t+\int\frac{\mathrm dt}{t^2}=-\frac{\ln t}t-\frac1t+C[/tex]

[tex]\dfrac1tv=-\dfrac{\ln t}t-\dfrac1t+C[/tex]

[tex]v=-\ln t-1+Ct[/tex]

Now solve for [tex]y(t)[/tex].

[tex]y^{-1}=-\ln t-1+Ct[/tex]

[tex]\boxed{y(t)=\dfrac1{Ct-\ln t-1}}[/tex]

Use the transforms in section 4.1 to find the Laplace transform of the function. t^3/2 - e^-10t

Answers

Answer:

Laplace transformation of [tex]L(t^\frac{3}{2}-e^{-10t})[/tex]=[tex]\frac{3\sqrt{\pi} }{4 s^\frac{5}{2} }\ -\frac{1}{s+10}[/tex]

Step-by-step explanation:

Laplace transformation of [tex]L(t^\frac{3}{2}-e^{-10t}  )[/tex]

[tex]L(t^\frac{3}{2})=\int_{0 }^{\infty}t^\frac{3}{2}e^{-st}dt\\substitute \ u =st\\L(t^\frac{3}{2})=\int_{0 }^{\infty}\frac{u}{s} ^\frac{3}{2}e^{-u}\frac{du}{s}=\frac{1}{s^{\frac{5}{2}}}\int_{0 }^{\infty}{u} ^\frac{3}{2}e^{-u}{du}[/tex]

the integral is now in gamma function form

[tex]\frac{1}{s^{\frac{5}{2}}}\int_{0 }^{\infty}{u} ^\frac{3}{2}e^{-u}{du}=\frac{1}{s^{\frac{5}{2}}}\Gamma(\frac{5}{2})=\frac{1}{s^{\frac{5}{2}}}\times\frac{3}{2}\times\frac{1}{2} }\Gamma (\frac{1}{2} )=\frac{3\sqrt{\pi} }{4 s^\frac{5}{2} }[/tex]

now laplace of [tex]L(e^{-10t})[/tex]

[tex]L(e^{-10t})=\frac{1}{s+10}[/tex]

hence

Laplace transformation of [tex]L(t^\frac{3}{2}-e^{-10t})[/tex]=[tex]\frac{3\sqrt{\pi} }{4 s^\frac{5}{2} }\ -\frac{1}{s+10}[/tex]

The Laplace transform of the function [tex]t^3/2 - e^-10t[/tex] is (3/2√π)/[tex]s^5/2 - 1/(s + 10)[/tex].

To find the Laplace transform of the function[tex]t^3/2 - e-10t[/tex], we use the Laplace transform properties and tables.

Refer to the Laplace transform table: Apply to each term: Combine the results: The Laplace transform of the function is L{[tex]t^3/2 - e-10t[/tex]} =  (3/2√π)/[tex]s^5/2 - 1/(s + 10)[/tex].

Suppose your statistics instructor gave six examinations during the semester. You received the following grades (percent correct): 79, 64, 84, 82, 92, and 77. Instead of averaging the six scores, the instructor indicated he would randomly select two grades and compute the final percent correct based on the two percents. How many different samples, without replacement, of two test grades are possible

Answers

Answer:

15 samples

Step-by-step explanation:

The total sample space consists of 6 items

{79,64,84,82,92,77}

So,

n=6

The instructor has to randomly select 2 test scores out of 6.

So, r=6

The arrangement of scores selection doesn't matter so combinations will be used.

[tex]C(n,r)=\frac{n!}{r!(n-r)!} \\C(6,2)=\frac{6!}{2!(6-2)!}\\=\frac{6!}{2!*4!}\\=\frac{6*5*4!}{2!*4!} \\=\frac{30}{2}\\=15\ ways[/tex]

Therefore, there are 15 different samples are possible without replacement ..

Let S={1,2,3,4,5,6}.

How many subsets of cardinality 4 contain at least one odd number?

Answers

Answer:

15 subsets of cardinality 4 contain at least one odd number.

Step-by-step explanation:

Here the given set,

S={1,2,3,4,5,6},

Since, a set having cardinality 4 having 4 elements,

The number of odd digits = 3 ( 1, 3, 5 )

And, the number of even digits = 3 ( 2, 4, 6 )

Thus, the total possible arrangement of a set having 4 elements out of which atleast one odd number = [tex]^3C_1\times ^3C_3+^3C_2\times ^3C_2+^3C_3\times ^3C_1[/tex]

By using [tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex],

[tex]=3\times 1+3\times 3+1\times 3[/tex]

[tex]=3+9+3[/tex]

[tex]=15[/tex]

Hence, 15 subsets of cardinality 4 contain at least one odd number.

The waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 and 5 minutes. Find the probability that a randomly selected passenger has a waiting time greater than 1.25 minutes.

Answers

Answer: 0.75

Step-by-step explanation:

Given : Interval for uniform distribution : [0 minute, 5 minutes]

The probability density function will be :-

[tex]f(x)=\dfrac{1}{5-0}=\dfrac{1}{5}=0.2\ \ ,\ 0<x<5[/tex]

The probability that a given class period runs between 50.75 and 51.25 minutes is given by :-

[tex]P(x>1.25)=\int^{5}_{1.25}f(x)\ dx\\\\=(0.2)[x]^{5}_{1.25}\\\\=(0.2)(5-1.25)=0.75[/tex]

Hence,  the probability that a randomly selected passenger has a waiting time greater than 1.25 minutes = 0.75

Final answer:

The probability that a randomly selected passenger has a waiting time greater than 1.25 minutes is 1.

Explanation:

To find the probability that a randomly selected passenger has a waiting time greater than 1.25 minutes, we need to find the area under the probability density function (PDF) curve for values greater than 1.25. Since the waiting times between a subway departure schedule and the arrival of a passenger are uniformly distributed between 0 and 5 minutes, the PDF is a rectangle with height 1/5 and base 5. The area of the rectangle represents the probability.



The probability of a waiting time greater than 1.25 minutes is the ratio of the area of the rectangle representing waiting times greater than 1.25 minutes to the total area of the rectangle representing all waiting times.



To calculate this probability, we first need to find the area of the rectangle representing waiting times greater than 1.25 minutes. Since the base of the rectangle is 5 minutes and the height is 1/5, the area is given by:



Area = base * height = 5 * (1/5) = 1



The total area of the rectangle representing all waiting times is the area of the entire rectangle, which is also equal to:



Area = base * height = 5 * (1/5) = 1



Therefore, the probability of a randomly selected passenger having a waiting time greater than 1.25 minutes is:



Probability = Area of waiting times greater than 1.25 minutes / Total area = 1/1 = 1

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Please help me with this

Answers

Answer:

Right angles are congruent

Step-by-step explanation:

One right angle can be transformed to another using rigid transformations such as translation ,rotation and reflection.This is basically the definition of congruence because the idea is to transform one object to another.

A company builds a new wing for its east branch and knows that each additional room will gain $1200 of profit. The construction company will cost $44,000 to construct the wing.
How many rooms are need to break even? (Hint: You must PAY the fee to the construction company.)

If you wanted to make twice as much profit as you spent, how many rooms would need to be built?

Answers

Answer:

a. 37 rooms are need to break even.

b. 73 rooms are required to make twice as much profit as you spent.

Step-by-step explanation:

Revenue of the company from each additional room is $1200.

Total construction cost = $44,000.

At break even condition, total revenue is equal to total cost. In other words, the profit of the firm is zero at break even.

Let x be the number of rooms that are need to break even.

Total revenue of x room is

[tex]TR=1200x[/tex]

At break even,

Total revenue = Total cost

[tex]1200x=44000[/tex]

Divide both sides by 1200.

[tex]x=\frac{44000}{1200}=36.6667\approx 37[/tex]

Therefore, 37 rooms are need to break even.

Let y be the number of rooms to make twice as much profit as you spent.

Total revenue of y room is

[tex]TR=1200y[/tex]

Total revenue = 2 × Total cost

[tex]1200x=2\times 44000[/tex]

[tex]1200x=88000[/tex]

Divide both sides by 1200.

[tex]y=\frac{88000}{1200}=73.33\approx 73[/tex]

Therefore 73 rooms are required to make twice as much profit as you spent.


Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express your answer in terms of the parameters t and/or s.)

x + 2y + z = −4

−2x − 3y − z = 2

2x + 4y + 2z = −8

(x, y, z) =

Answers

Answer:

The system of linear equations has infinitely many solutions. x=t, y=2-t and z=t-8.

Step-by-step explanation:

The given educations are

[tex]x+2y+z=-4[/tex]

[tex]-2x-3y-z=2[/tex]

[tex]2x+4y+2z=-8[/tex]

Using the Gauss-Jordan elimination method, we get

[tex]\begin{bmatrix}1 & 2 & 1\\ -2 & -3 & -1\\ 2 & 4 & 2\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}-4\\ 2\\ -8\end{bmatrix}[/tex]

[tex]R_3\rightarrow R_3-2R_1[/tex]

[tex]\begin{bmatrix}1 & 2 &1\\ -2 & -3 & -1\\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}-4\\ 2\\ 0\end{bmatrix}[/tex]

Since elements of bottom row are 0, therefore the system of equations have infinitely many solutions.

[tex]0x+0y+0z=0\Rightarrow 0=0[/tex]

[tex]R_2\rightarrow R_2+2R_1[/tex]

[tex]\begin{bmatrix}1 & 2 &1\\ 0 & 1 & 1\\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}-4\\ -6\\ 0\end{bmatrix}[/tex]

[tex]R_1\rightarrow R_1-R_2[/tex]

[tex]\begin{bmatrix}1 & 1 &0\\ 0 & 1 & 1\\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}=\begin{bmatrix}2\\ -6\\ 0\end{bmatrix}[/tex]

[tex]x+y=2[/tex]

[tex]y+z=-6[/tex]

Let x=t

[tex]t+y=2\rightarrow y=2-t[/tex]

The value of y is 2-t.

[tex](2-t)+z=-6[/tex]

[tex]z=-6-2+t[/tex]

[tex]z=t-8[/tex]

The value of z is t-8.

Therefore the he system of linear equations has infinitely many solutions. x=t, y=2-t and z=t-8.

Final answer:

To solve the system of linear equations using the Gauss-Jordan elimination method, perform row operations on the augmented matrix to obtain the reduced row-echelon form. The solution is x = -2, y = 1, and z = 0.

Explanation:

To solve the system of linear equations using the Gauss-Jordan elimination method, we need to perform row operations to transform the augmented matrix into row-echelon form and then into reduced row-echelon form. Let's start by representing the system of equations as an augmented matrix:

[1 2 1 -4; -2 -3 -1 2; 2 4 2 -8]

Performing row operations, you can transform the augmented matrix into reduced row-echelon form, obtaining:
[1 0 0 -2; 0 1 0 1; 0 0 1 0]

The solution to the system is x = -2, y = 1, and z = 0. Therefore, (x, y, z) = (-2, 1, 0).

Learn more about system of linear equations here:

https://brainly.com/question/27063359

#SPJ3

At Southern States University​ (SSU) there are 399 students taking Finite Mathematics or Statistics. 238 are taking Finite​ Mathematics, 184 are taking​ Statistics, and 23 are taking both Finite Mathematics and Statistics. How many are taking Finite Mathematics but not ​ Statistics?

Answers

Answer:

  215

Step-by-step explanation:

The 238 taking Finite Math includes those taking Finite Math and Statistics. Subtracting out the 23 who are taking both leaves 215 taking Finite Math only.

215 students are taking Finite Mathematics but not Statistics.

To find out how many students are taking Finite Mathematics but not Statistics at Southern States University (SSU), let's break down the information given and use set theory concepts.

Total number of students taking either Finite Mathematics or Statistics: 399

Number of students taking Finite Mathematics: 238

Number of students taking Statistics: 184

Number of students taking both Finite Mathematics and Statistics: 23

First, we need to figure out how many students are taking only Finite Mathematics. We can do this by subtracting the number of students taking both Finite Mathematics and Statistics from the total number of students taking Finite Mathematics.

Number of students taking only Finite Mathematics = Total taking Finite Mathematics - Total taking both Finite Mathematics and Statistics

So,

Number of students taking only Finite Mathematics = 238 - 23

Number of students taking only Finite Mathematics = 215

Other Questions
The population of bacteria in a culture grows at a rate proportional to the number of bacteria present at time t. After 3 hours it is observed that 500 bacteria are present. After 10 hours 4000 bacteria are present. What was the initial number of bacteria? (Round your answer to the nearest integer.) If imports are $100 million less than exports, government expenditures are $500 million, consumer expenditures are $1 billion, and gross investment spending is $500 million, then GDP is What is the output of a system with the transfer function s/(s + 3)^2 and subject to a unit step input at time t = 0? The slope of MN is 3. Which segments are parallel to MN ? Select each correct answer.A= RS, where R is at (1, 3) and S is at (4, 2)B= PQ, where P is at (5, 6) and Q is at (8, 7)C= TU, where T is at (8, 1) and U is at (5, 10)D= WX, where W is at (2, 6) and X is at (4, 0)Report by TurtleAnderson In _________________________ cultures where status distinctions are important, leaders would be well advised to treat individuals with heightened status with more respect than they might do in a U.S. context. What characterizes the calcite compensation depth (CCD), in terms of input and destruction (dissolution)? a. the rate of destruction is greater than the rate of carbonate input. b. the rate of destruction is equal to the rate of carbonate input. c. carbonate dissolution is compensated for by increased carbonate input. d. high levels of productivity are compensated for by greater rates of dissolution. e. the rate of destruction is less than the rate of carbonate input. Oatmeal is packaged in a right circular cylindrical container that has aradius of 7 centimeters and a height of 16 centimeters.What is the surface area of this container in terms of pi? A sample of potassium is composed of 23% K-39, 48% K-40 and the remainder K-41. Calculate the average massof the sample. Determine the force between two long parallel wires, that are separated by a dis- tance of 0.1m the wire on the left has a current of 10A and the one on the right BT has a current of 15A, both going up. 31131 Question #22When you approach an intersection with a green traffic light, you shouldChoose an answer:A. Approach at a speed that will allow you tostop if the light changes.B. Be ready to speed up if the light turnsyellow.C. Always slow down by a few miles perhour, in case you need to stop. the percentage of totoal workers who are out of work but seeking jobs and willing to work is known as the ___ rate? the inverse of f(x)=4x+5 A company operated a small amusement park on property it owned near a residential neighborhood. On a day when the park was closed, a 10-year-old girl snuck into the park with some friends by climbing over a chain link fence. While climbing on one of the carnival rides, the girl slipped and cut her leg on an exposed gear assembly, sustaining serious injuries.Through her guardian ad litem, the girl brought suit against the company to recover damages for her injuries. At trial, she presented evidence of the accident and her injuries. In defense, the company established that the girl read and understood the "No Trespassing" signs that were attached to the fence. The company also established that it had not had any previous reports of children sneaking into the park when it was closed. Before submission of the case to the jury, the company moved for summary judgment.Is the court likely to grant the company's motion?A Yes, because the girl was a trespasser who the company had no reason to anticipate would be on the property.B Yes, because the girl knew she was trespassing and was old enough to recognize the danger.C No, because the jury could find that the company should have foreseen that children would sneak into the park.D No, because the appeal of the carnival rides attracted the girl into the park. Im giving all the points I have, plz help and get it right? Someone please help me Which best describes the graph of the cubic function f(x) = x^3 +x^2 +x +1? A. x increases, y increases along the entire graph. B. As x increases, y increases, decreases, and then increases again. C. As x increases, y decreases, increases and then decreases again. D. As x increases, y decrease along the entire graph. Answer the given two questions relating to demand and the law of demand. A shift in the demand curve can be caused by: (a) a change in the price of a good. (b) a change in the technology used by firms. (c) a change in one of the determinants of demand. (d) a change in the cost of production. Which of the choices illustrates the law of demand? (a) Kathy offers for sale more candy bars at $2 than at $1. (b) Joe wants to buy more candy bars at $2 than at $1. (c) None of the choices. (d) Sue wants to buy more candy bars at $1 than at $2. Match each technology to its use in flu treatmentA)rapid testsB)DNA-based testsC)antiviral drugs1)fast identification 2)quick diagnosis3)treatment of young children Which best describes the permeability of a membrane?OA. The number of molecules in the membraneOB. The total thickness of the membraneOC. The flexibility of the membraneOD. The ability to allow materials to cross a membrane For javaWrite a for loop to print all elements in courseGrades, following each element with a space (including the last). Print forwards, then backwards. End each loop with a newline. Ex: If courseGrades = {7, 9, 11, 10}, print:7 9 11 10 10 11 9 7 Hint: Use two for loops. Second loop starts with i = NUM_VALS - 1. Identify the sentence pattern.Some people are kind to others.S-LV-PAS-V-IO-DOS-V-DO