Answer:
25
Step-by-step explanation:
Subtract 17 from 42.
Answer:
42-17=25
Step-by-step explanation:
just subtract 17 from 42
Multiply the binomials (6a^3-5) (4a^3-11a)
For this case we must multiply the following expression:
[tex](6a ^ 3-5) (4a ^ 3-11a) =[/tex]
We apply distributive property considering that:
[tex]+ * + = +\\+ * - = -\\- * - = +[/tex]
So:
[tex]6a ^ 3 * 4a ^ 3-6a ^ 3 * 11a-5 * 4a ^ 3 + 5 * 11a =[/tex]
To multiply powers of the same base, we place the same base and add the exponents.
[tex]24a^ {3 + 3} -66a^ {3 + 1} -20a ^ 3 + 55a =\\24a ^ 6-66a ^ 4-20a ^ 3 + 55a[/tex]
Answer:
[tex]24a ^ 6-66a ^ 4-20a ^ 3 + 55a[/tex]
It is the morning of the community-wide yard sale that Joe has been anticipating. According to The Weather Channel there is a 10% probability of snow in his area today.
Which of the following best describes the most likely way the probability was determined? (2 points)
Select one:
a. Historically, in this area, it has snowed 10% of the time on days with similar meteorological conditions as today.
b. It snows 10% of the time on this date each year.
c. Historically, in the United States, it has snowed 10% of the time on days with similar meteorological conditions as today.
d. Historically, it snows 10% of the days during this month.
Answer:
A
Step-by-step explanation:
United states is too broad and too many different conditions for the land. You do not base weather on the date either.
Historically, in this area, it has snowed 10% of the time on days with similar meteorological conditions as today best describes the most likely way the probability was determined. Thus option A is correct.
What is probability?The mathematical discipline known as probability specializes with determining the possibility of an event occurring. Composite reliabilities vary from 0 to 1, with 1 representing certainty and 0 representing hesitation.
Probability, which expresses the probability of a risk, is calculated by dividing the total possible combinations by the frequency of favorable events. Mornings with weather levels comparable to today's, precipitation has fallen 10% of the time. The Weather Forecast estimates there remains a 10% chance of snowfall around his region today.
Therefore, option A is the correct option.
Learn more about probability, Here:
https://brainly.com/question/11234923
#SPJ2
PLEASE HELP with this problem!!!
Answer:
vavavagagavavava
Step-by-step explanation:
zvvsvwgsgsgsgsgsgsgshsgshs
svavavvavavavavavavagagagaa8uevqvdbdgeuwgesgdushsstsvcvsvwgcr AA ctqqfcexrcagscc2vsvgagsggGgwgdvvasvvevavsvdbbdaggsgwgagsgagagagagytsswdtt a tgzggaaccscscscscfsfsfsfsfsfsffsfscfsfsffsfsfsffffsfsfsfsbebwvwvwgwgsgwgsgsagwvwansnsb✨shh da jhhhshehqjqjjjjdjdjjdjsjsjsjsj. sorry
Which set of equations could be parametric equations?
y= x and y= 3x
y= x + 1 and y= 3x2
x= t and y=3t
x= 3y and y= x+1
The set of equations x = t and y = 3t could be parametric equations ⇒ 3rd answer
Step-by-step explanation:
Lets explain the meaning of parametric equations
A parametric equation is where the x and y coordinates are both written in terms of another letter
Examples:
x = 2t and y = 2 - t²x = 0.5 Ф and y = 2Ф, where Ф is measured from the positive x-axisLet us find the set of the parametric equations from the answer
Fist answer:
∵ y = x and y = 3x
∴ It is a set of linear equations
Second answer:
∵ y = x + 1 and y = 3x²
∴ It is a set of linear and quadratic equations
Third answer:
∵ x = t and y = 3t
∵ x and y are represented in terms of t
∴ It is a set of parametric equations
Fourth answer:
∵ x = 3y and y = x + 1
∴ It is a set of linear equations
The set of equations x = t and y = 3t could be parametric equations
learn more:
You can learn more about the parametric equations in brainly.com/question/1600331
#LearnwithBrainly
A chemist is using 357 milliliters of a solution of acid and water. If 13.2 % of the solution is acid, how many milliliters of acid are there? Round your answer to the nearest tenth.
Final answer:
To find the milliliters of acid in the solution, multiply the total volume of the solution by the acid percentage.
Explanation:
To find the milliliters of acid in the solution, we first need to calculate the volume of acid. We know that 13.2% of the solution is acid, so we can calculate the volume of acid by multiplying the total volume of the solution by the acid percentage:
Volume of acid = 357 mL * 0.132 = 47.124 mL
Rounding to the nearest tenth, we get:
Volume of acid = 47.1 mL
solve this system of equations.
x-y=2
2.5x + y =5
Answer:
x=2, y=0. (2, 0).
Step-by-step explanation:
x-y=2
2.5x+y=5
---------------
x=y+2
2.5(y+2)+y=5
2.5y+5+y=5
3.5y=5-5
3.5y=0
y=0/3.5
y=0
x=0+2=2
13. A point is ___
from two objects if it is the same distance from the objects.
Equidistant
When a point is equal between two objects, this is know as a equidistant. In geometry, an equidistant is a locus between two points in a perpendicular bisector.
______
Best Regards,
Wolfyy :)
Final answer:
A point is equidistant from two objects if it lies at the same distance from each object. This concept is framed within the realm of geometry, where theorems and corollaries help describe the spatial relationships between points and lines. Equidistance is a fundamental concept for understanding geometrical constructions and relationships.
Explanation:
A point is equidistant from two objects if it is the same distance from the objects. This can be understood through theorems and corollaries in geometry. For instance, a theorem states that if two lines are perpendicular to a third line, then points that are equidistant from the third line will also be equidistant from each other.
A corollary stemming from this theorem would be that two points that are equidistant from the ends of a straight line will determine a perpendicular bisector of that line. This signifies the point of intersection of both equidistant points with the line, which is also the midpoint of the straight line.
When it comes to determining if a point (x, y) is equidistant from two given lines represented by equations, we can use algebra to evaluate the relationships and find the solution that satisfies the distance criteria for the point in question.
In geometry, a point in space is considered the fundamental unit, which has no dimensions but can have a position that is described relative to other points. For example, to say that a point is equidistant from two other points or objects means that a rigid scale, if used, would measure the same distance from the point in question to each of the two objects.
2(7k + 1) - 5(3k + 3) = 1 - 2k + 6 + 5k
Answer:
k = -5
Step-by-step explanation:
2(7k + 1) - 5(3k + 3) = 1 - 2k + 6 + 5k
At first, we will break the parenthesis by multiplying by the adjacent number. As we know, (+) x (-) = (-) and (-) x (-) = (+) [Algebraic operation]
or, (2*7k) + (2*1) - (5*3k) - (5*3) = (1 + 6) + 5k - 2k
or, 14k + 2 - 15k - 15 = 7 + 3k
Interchanging the values, we can get,
or, 14k - 15k - 3k = 7 + 15 - 2
or, 14k - 18k = 22 - 2
or, -4k = 20
or, k = 20/(-4)
or, k = -5
Therefore, the answer is -5
Each side of a square courtyard is 8 meters long. It costs $31.00 per meter to replace the brick wall around the courtyard. How much would it cost to replace the brick wall? $
Answer:
Step-by-step explanation:
31 times 8
Answer:
It would cost 992.
Step-by-step explanation:
8 meters X 4 sides=32
32X$31.00=992.
What is the margin of error?
Will measured the diameter of a penny as 1.9 cm using the
ruler.
1.9 cm
1.5 cm to 2.0 cm
1.5 cm to 2.5 cm
1.85 cm to 1.95 cm
1.90 cm to 1.95 cm
@
2
3
4
Note: Ruler is not drawn to scale,
Answer:
The margin of error is 1.85 cm to 1.95 cm.
Step-by-step explanation:
Given:
Will measured the diameter of a penny as 1.9 cm using the ruler.
We need to find the margin error.
Now, as we know that the margin of error is a statistic expressing the amount of random sampling error in a survey's results.
It is an amount (usually small) that is allowed for in case of miscalculation or change of circumstances.
Now, we have the margin of error to be:
1.85 cm to 1.95 cm.
As, the value of change to the left and right of 19 is same and is small it is 0.05.
So, 1.9-0.05 = 1.85 cm
and 1.9+0.05 = 1.95 cm .
Hence, the margin of error is: ± 0.05.
Therefore, the margin of error is 1.85 cm to 1.95 cm.
gina has 250 in her saving account she puts in 4% of her monthly paycheck of 3,100 each month rodger has 350 in his savings account and put in 3% of his monthly salery of 2,900 each month in how many months to the nearest month will gina have more in her account than rodger does
Answer:
3 months
Explanation:
Amount saved in Gina’s saving account= 250
Amount Gina puts in her account each month= 4% of 3100
=[tex]\frac{4}{100} \times 3100[/tex]
= 4 × 31
= 124
Hence total amount added in each month =124
Therefore money credited x months
= 250 + 124 x
Amount saved in Rodger’s account = 350
Amount Rodger puts in his account each month = 3% of 2900
=[tex]\frac{3}{100} \times 290[/tex]
=87
Hence total amount added in each month = 87
Therefore money credited x months
=350 + 87 x
Now to calculate the nearest month when Gina have more in her account than Rodger does
=Amount of money credited in x months in Gina’s account ≥ Amount of money credited in x months in Rodger’s account
=250+124 x ≥ 350+87 x
=37 x≥100
= x≥2.78
=3
Tori earns $9 for each hour of dog walking .how many hours in all will it take tori to earn a total of $36
Answer:
4
Step-by-step explanation:
36 / 9 = 4
4 x 9 = 36
2. For numbers 2a-2d, choose Yes or No to indicate whether
the product is correct.
O No
22. 0.48 X 10 = 4.8
2b. 0.76 x 10 = 76
26. 0.01 x 100 = 0.1
2d. 0.50 X 1,000 = 500
o Yes
o Yes
o Yes
o Yes
O No
o No
O No
Find the slope and the y-intercept of the line.
6x + 3y = -3
Write your answers in simplest form.
Answer:
slope = - 2, y- intercept = - 1
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Rearrange 6x + 3y = - 3 into this form by subtracting 6x from both sides
3y = - 6x - 3 ( divide all terms by 3 )
y = - 2x - 1 ← in slope- intercept form
with slope m = - 2 and y- intercept c = - 1
Rewrite each fraction with a denominator of 24
2/3=
5/8=
Answer:
2/3=16/24
5/8=15/24
Step-by-step explanation:
2/3= 16/24
5/8= 15/24
because if you multiply across 2/3 by 8/8 equal 16/24
and if you multiply across 5/8 by 3/3 equal 15/24
The equivalent fraction for 2/3 and 5/8 are 16/24 and 15/24 respectively.
Given the following fractions
2/3
5/8
We are to rewrite the fractions as a denominator of 24.
For 2/3:
We will multiply both the numerator and denominator by 8 to have:
2/3 * 8/8 = 16/24
Similarly:
For 5/8:
We will multiply both the numerator and denominator by 3 to have:
5/8 * 3/3 = 15/24
Hence the equivalent fraction for 2/3 and 5/8 are 16/24 and 15/24 respectively.
Learn more on fractions here: https://brainly.com/question/78672
#SPJ2
Please answer this correctly
Answer:
20 cups
Step-by-step explanation:
16 ounces = 1 pound
8 ounces = 1 cup
16 ounces = 2 cups
1 pound = 2 cups
10 pounds = 20 cups
Answer:
20 cups
Step-by-step explanation:
Think
1 pound is 16 oz
So each cup has 8 oz
This you have to convert the 10 pound into ounces
Which then equals 160 ounces
Now divide 160 ounces by 8 and you get..
You get 20
So, 10 pounds of apples fit into 20 cups
9 candies cost less than $10 while 10 cost more than $11 how much does each candy cost
Answer:
this threw me off ,i got the same question:(
Step-by-step explanation:
Solve equation 9.6=1.2b
Answer:
b = 8 your welcome
Evaluate 6^0 + 6^1 +6^2
18
42
43
Answer:
it's 18 if your talking about multiplication
It's 42 if your talking about the powers
Step-by-step explanation:
Multiplication-(6•0)+(6•1)+(6•2)= 18
The powers-(6^0)+(6^1)+(6^2)=42
Answer:
the answer is 43
Step-by-step explanation:
Using the formula v= s/t , express s in terms of v and t; express t in terms of v and s.
Answer:
Express s in terms of v and t
s= v/t, multiplying both sides of the equation by t
Express t in terms of v and s
t= s/v ( from s=vt)
Step-by-step explanation:
Final answer:
To express s in terms of v and t, the formula is rearranged to s = vt. To express t in terms of v and s, the formula becomes t = s/v after rearranging.
Explanation:
To express s in terms of v and t using the formula v = s/t, we can rearrange the equation by multiplying both sides by t to get s = vt. Similarly, to express t in terms of v and s, we rearrange the formula to solve for t by dividing both sides by v, which gives us t = s/v.
To further clarify these transformations:
Expressing s: Start with v = s/t → Multiply both sides by t → vt = s.Expressing t: Start with v = s/t → Multiply both sides by t and then divide by v → s = vt → s/v = t.(03.06 LC)
The functions f(x) = (x+4)2+2 and g(x) = (x - 2)2-2 have been rewritten using the completing the
square method. Is the vertex for each function a minimum or a maximum? Explain your reasoning for
each function (10 points)
HTML Editore
BIVA - A - TEE 3 1 1 x x, E E
- EN O N V V O T T 12pt
Paragraph
-
Answer:
both are a minimum
Step-by-step explanation:
Given a quadratic function in vertex form
y = a(x - h)² + k
• If a > 0 then vertex is a minimum
• If a < 0 then vertex is a maximum
Here
f(x) = (x + 4)² + 2 ← with a = 1 > 0 ⇒ minimum vertex
g(x) = (x - 2)² - 2 ← with a = 1 > 0 ⇒ minimum vertex
Barry plays fullback on his high school team. Sometimes he looses yardage and sometimes he gains yardage. Determine Barry's total yardage in the game below:
+6,-3,0,15,-1,8,11,-6
Answer:
30
Step-by-step explanation:
Simplify from left to right
6-3+15-1+8+11-6
=3+15-1+8+11-6
=18-1+8+11-6
=17+8+11-6
=25+11-6
=36-6
=30
Please answer asap with an explanation
Answer:
The area of the given figure is [tex]66.5\ cm^2[/tex].
Step-by-step explanation:
To find out the area we should have to redraw the figure having nomenclature ABCDE and join BD. Thus we have a rectangle ABDE and a triangle BCD.
The new figure is in the attachment.
Given,
Length of AE = 7 cm
Length of DE = 8 cm
Length of CF = 11 cm
Solution,
Area of rectangle ABDE = [tex]length\times breadth=length\ of AE\timeslength\ of DE[/tex]
Area of ABDE = [tex]7\times8=56\ cm^2[/tex]
Now for triangle BCD,
Length of BD = length of AE = 7 cm
Length of GF = Length of DE = 8 cm
∴ Length of CG = Length of CF-Length of GF = [tex]11-8=3\ cm[/tex]
Area of triangle BCD = [tex]\frac{1}{2}\times base\times height}=\frac{1}{2}\times length\ of\ BD\times length\ of\ GF[/tex]
Area of BCD = [tex]\frac{1}{2}\times7\times3=\frac{21}{2}=10.5\ cm^2[/tex]
Area of ABCDE = Area of ABDE + Area of BCD = [tex]56+10.5=66.5\ cm^2[/tex]
Thus the area of the given figure is [tex]66.5\ cm^2[/tex].
Which of the following is equal to the rational expression when x≠5 or -1?
(x-7)(x + 1)
(x + 1)(x - 5)
Answer: (x-7)/(x-5)
The (x+1) terms divide and cancel out due to the rule that x/x = 1, when x is nonzero. In that rule, we can replace 'x' with any algebraic expression we want.
Jeremy and Justine work for a company that receives $45 for each unit of output sold. The company has a variable cost of $25 per item and a fixed cost of $1600.
Based on this information, Jeremy and Justine make some projections about potential profit.
• Jeremy states that for every 100 units of output sold, the company will make $3,600 in profit.
• Justine states that for every 300 units of output sold, the company will make $4,400 in profit.
The subject of this question is Business and the grade level is High School. Jeremy's projection is incorrect, while Justine's projection is correct.
Explanation:The subject of this question is Business and the grade level is High School.
Jeremy and Justine work for a company that receives $45 for each unit of output sold. The company has a variable cost of $25 per item and a fixed cost of $1600. To calculate profit, you subtract the total cost (fixed cost + variable cost) from the total revenue (45 * number of units sold).
Jeremy's projection states that for every 100 units of output sold, the company will make $3,600 in profit. Let's calculate this to verify if it's accurate. Justine's projection states that for every 300 units of output sold, the company will make $4,400 in profit. Let's calculate this to verify if it's accurate.
Learn more about Profit Projections here:https://brainly.com/question/32165676
#SPJ11
the perimeterp of rauls picture is 108 centimeters.the length of the picture is 18centimeters.what is the widthof the picture?
Answer:
36 cm
Step-by-step explanation:
We know that the perimeter is 2 l + 2 w.
In this case, the equation is 36 + 2 w = 108
2 w = 72
w = 36
Find the value of the following expression. 9 ( − 4 ) − 3 = a0
Answer: -39
Step-by-step explanation:
9 x -4 -3 = -39
Rearrange y=x2 (squared) to make x the subject.
Answer:
x = ±√y
Step-by-step explanation:
y = x²
±√y=√x²
±√y = x
prove that 3(x+1)(x+7)-(2x+5)² is never positive
To prove that 3(x+1)(x+7)-(2x+5)² is never positive, we can expand and simplify the expression to -x²+4x-4, which is always negative.
Explanation:To prove that 3(x+1)(x+7)-(2x+5)² is never positive, we can use algebraic manipulation and properties of quadratic equations. Let's expand and simplify the expression:
3(x+1)(x+7)-(2x+5)² = 3(x²+8x+7)-(4x²+20x+25) = 3x²+24x+21-4x²-20x-25 = -x²+4x-4
Since the leading coefficient of the quadratic term is negative (-1), the graph of this equation will be a downward-opening parabola. Therefore, the quadratic expression is never positive.
The expression [tex]\(3(x+1)(x+7)-(2x+5)^2\)[/tex] is never positive for all real values of x.
Step 1
To prove that [tex]\(3(x+1)(x+7)-(2x+5)^2\)[/tex] is never positive for all real values of x, we can simplify the expression and analyze its sign.
Expanding the expression:
[tex]\[3(x+1)(x+7)-(2x+5)^2 = 3(x^2 + 8x + 7) - (4x^2 + 20x + 25)\][/tex]
[tex]\[= 3x^2 + 24x + 21 - 4x^2 - 20x - 25\][/tex]
[tex]\[= -x^2 + 4x - 4\][/tex]
Step 2
Now, we have a quadratic expression [tex]\( -x^2 + 4x - 4\)[/tex]. The coefficient of [tex]\(x^2\)[/tex] is negative, indicating a downward-opening parabola. Therefore, the maximum value of the expression occurs at the vertex, which lies at [tex]\(x = \frac{-b}{2a} = \frac{-4}{2(-1)} = 2\)[/tex].
Substituting x = 2 into the expression, we get:
[tex]\[ -2^2 + 4(2) - 4 = -4 + 8 - 4 = 0 \][/tex]
Since the maximum value is 0, the expression is always non-positive.
The expression [tex]\(3(x+1)(x+7)-(2x+5)^2\)[/tex] is never positive for all real values of x, as proven by its maximum value of 0.
Please help i’m desperate
Answer:
2x + 2(x - 5) = 78
x + x - 5 = 39
2x = 44
x = 22
Rate of the slower cyclist = 17 mph
Rate of the faster cyclist = 22 mph