Manuel is holding a 5kg box. How much force is the box exerting on him?In what direction

Answers

Answer 1
The force the box is exerting on Manuel is the weight of the box, downward:
[tex]W=mg=(5 kg)(9.81 m/s^2)=49.05 N[/tex]
and this force is perfectly balanced by the constraint reaction applied by Manuel's hand, pushing upward.
Answer 2
Final answer:

The box that Manuel is holding would exert a force of 49 N, directed downwards due to gravity. This calculation is done using the mass of the box and the acceleration due to gravity. According to Newton's third law, the force exerted by the box on Manuel would be in the opposite direction to which he lifts it.

Explanation:

The box that Manuel is holding exerts a force equal to its weight due to gravity. The weight can be calculated using the formula F = mg, where F is the force, m is the mass of the object, and g is the acceleration due to gravity. In this case, the mass of the box is 5 kg and assuming the acceleration due to gravity to be approximately 9.8 m/s², we can calculate the force as F = (5 kg) * (9.8 m/s²) = 49 N.

As for the direction, the direction of the force is always directed downwards or towards the center of the Earth because gravity is the force involved in this situation. To be more specific, the force that the box exerts on Manuel is in the opposite direction to which he lifts it, according to Newton's third law of motion which states that for every action, there is an equal and opposite reaction. Therefore, the box exerts a downward force of 49 Newtons on Manuel.

Learn more about Force and Gravity here:

https://brainly.com/question/13634821

#SPJ3


Related Questions

If you mix equal amounts of cyan pigments and magenta pigments on a sheet of white paper, what color will you see on the paper?
A. Red
B. Blue
C. Black
D. Yellow
E. Cyan
F. Magenta

Answers

Cyan and magenta mixed together will give you B) BLUE.

Hope this helps! :)

A 0.55-kg ball, attached to the end of a horizontal cord, is revolved in a circle of radius 1.3 m on a frictionless horizontal surface. if the cord will break when the tension in it exceeds 75 n, what is the maximum speed the ball can have?

Answers

The tension of the cord is the centripetal force that keeps the ball in circular motion:
[tex]T=F_c = m \frac{v^2}{r} [/tex]
where T is the tension of the cord, [tex]F_c[/tex] is the centripetal force, [tex]m=0.55 Kg[/tex] is the mass of the ball, v its speed and [tex]r=1.3 m[/tex] is the radius of the circle.

The maximum allowed tension is T=75 N, before the cord breaks. Using this value inside the formula, we can find which is the maximum allowed value fot the speed v:
[tex]v= \sqrt{ \frac{T r}{m} }= \sqrt{ \frac{(75 N)(1.3 m)}{(0.55 kg)} }=13.3 m/s [/tex]

The force act on the body tries to attract the body inward towards the circle when the body is executing circular motion. The maximum value of speed will be 13.3 m/sec.

What is centripetal force?

The force operating on an object in curvilinear motion directed toward the axis of rotation or center of curvature is known as centripetal force.

Newton is the unit of centripetal force.

The centripetal force is always perpendicular to the direction of displacement of the item. The centripetal force of an item traveling on a circular route always works towards the center of the circle.

Due to rotation, the tension is act in the chord which is equal to the centripetal force act the ball.

[tex]\rm T = F_c= \frac{mv^2}{r}[/tex]

Tension in the cord  = T= 75 N

Centripetal force = [tex]F_c[/tex]

Mass of the ball= m= 0.55 Kg

Linear  speed =v= ?

The radius of the circle.= r = 1.3 m

T is the maximum tension before the cord breaks. So according to the condition the obtained velocity will be ;

[tex]\rm v = \sqrt{\frac{Tr}{m} } \\\\ \rm v = \sqrt{\frac{75\times1.3}{0.55} }\\\\ \rm v = 13.3 \;m/sec[/tex]

Hence the maximum value of speed will be 13.3 m/sec.

To learn more about the centripetal force refer to the link;

https://brainly.com/question/10596517

An engine performs 2700 J of work on a scooter. The scooter and rider have a combined mass of 150 kg. If the scooter started at rest, what is the speed of the bike after the work is performed?

Answers

Due to the principle of conservation of energy, the work done by the engine to move the scooter converts into kinetic energy of the scooter:
[tex]W=K= \frac{1}{2} M v^2 [/tex]
where M is the combined mass of scooter and rider, and v is the velocity of the scooter. Therefore, we can find the velocity as:
[tex]v= \sqrt{ \frac{2W}{M} } = \sqrt{ \frac{2\cdot 2700 J}{150 Kg} }=6 m/s[/tex]

Graph the velocity of a car accelerating at a uniform rate from 7.0 m/s to 12.0 m/s in 2.0 s. Calculate the accerleration

Answers

v = a*t + v₀

a = (v - v₀) / t

a = (12 - 7) / 2

a = 2.5 m/s²

Final answer:

Velocity vs. time graph for uniform acceleration is a straight line, acceleration calculated using the formula a = (Vf - Vi) / t. The acceleration during the first 8 seconds is 1 m/s², and during the last 6 seconds it is -1 m/s².

Explanation:

To graph the velocity of a car accelerating at a uniform rate from 7.0 m/s to 12.0 m/s in 2.0 s, plot a velocity vs. time graph where the time axis (x-axis) spans at least 2 seconds and the velocity axis (y-axis) spans from 7.0 m/s to 12.0 m/s. The graph will be a straight line starting at the point (0, 7.0) and ending at the point (2.0, 12.0) since the acceleration is uniform.

To calculate the acceleration (a), use the formula a = (Vf - Vi) / t, where Vf is the final velocity, Vi is the initial velocity, and t is the time taken for the change in velocity. Substituting the given values, we get a = (12.0 m/s - 7.0 m/s) / 2.0 s = 2.5 m/s².

The acceleration of the car during the first 8 seconds (from 2 m/s to 10 m/s) is calculated by a = (Vf - Vi) / t = (10 m/s - 2 m/s) / 8 s = 1 m/s². During the last 6 seconds, when the car slows down from 10 m/s to 4 m/s, the acceleration is a = (4 m/s - 10 m/s) / 6 s = -1 m/s². Note the negative acceleration indicates a deceleration or slowing down.

A train travels 67 kilometers in 1 hours, and then 81 kilometers in 5 hours. What is its average speed?

Answers

Answer: 24.7 km/h

Explanation:

1) Average speed definition and formula

The average speed is the total distance run divided by the time elapsed:

S = distance / time

2) Distance 1 = 67 km

3) Distance 2 = 81 km

4) Total distance traveled = 67 km + 81 km = 148 km

5) time 1 = 1 hour

6) time 2 = 5 hours

7) total time = time 1 + time 2 = 1 h + 5 h = 6 h

8) Average speed:

S = 148 km / 6 h = 24.7 km/h


A water balloon weighing 19.6 N rests on a table. The balloon has an area of 0.015 m^2 in contact with the table. What pressure does the balloon exert on the table?

Answers

We need to go back to the definition of pressure. It is the ratio of Force applied (normal to a surface) over that surface. Hence, we have that F=p*A or [tex]p= \frac{F}{A} [/tex]. The  normal force on the table is equalt to the weight of the ballon since gravitational forces from the Earth have downwards direction.
Substituting the known values, we get that p=1306.67 P= 1306.67 [tex] \frac{N}{m^2} [/tex]. That is regarding the measure of P. The direction of the pressure is always the same as that of the force, in this case downwards (towards the center of the Earth).

The charge per unit length on a long, straight filament is -94.5 µc/m. (a) find the electric field 10.0 cm from the filament, where distances are measured perpendicular to the length of the filament. (take radially inward toward the filament as the positive direction.)

Answers

The electric field generated by an uniformly charged wire at a distance r from the wire is given by
[tex]E(r)= \frac{\lambda}{2 \pi \epsilon _0 r} [/tex]
where [tex]\lambda[/tex] is the linear density of charge and [tex]\epsilon _0 =8.85 \cdot 10^{-12} F/m[/tex] is the electric permittivity. 
In our problem, the charge density is [tex]\lambda = -94.5 \mu C/m= -94.5 \cdot 10^{-6} C/m[/tex]. We want to calculate the electric field at [tex]r=10.0 cm=0.1 m[/tex], which is
[tex]E(0.1 m)= \frac{94.5 \cdot 10^{-6} C/m}{2 \pi (8.85 \cdot 10^{-12} F/m) (0.1 m)}=1.7 \cdot 10^7 V/m [/tex]
and since the charge on the wire is negative, the field points toward the wire.
Final answer:

The electric field at 10.0 cm from a long, straight filament with a charge per unit length of -94.5 µC/m can be calculated using the formula E = λ / (2πε₀r), producing a value directed radially inward.

Explanation:

Finding the Electric Field from a Charged Filament

The problem is asking us to calculate the electric field generated by a long, straight filament with a given charge per unit length. By using Gauss's law, we can find the electric field at a distance from the filament. Since the electric field of a uniformly charged infinite line is symmetrical, it only depends on the distance from the line, and it is directed radially.

We can use the formula for the electric field created by an infinitely long straight filament, which is:

E = λ / (2πε0r)

Where:

ε0 is the permittivity of free space (approximately 8.85 x 10-12 C2/N·m2).

r is the distance from the filament, which is 10.0 cm (or 0.10 meters).

By substituting the known values into the equation:

E = (-94.5 x 10-6 C/m) / (2π x 8.85 x 10-12 C2/N·m2 x 0.10 m)

We perform the calculation to find the magnitude and direction of the electric field. The negative sign of λ indicates that the electric field is directed radially inward, towards the filament.

when you squeeze the rubber bulb of a perfume atomizer how do you change the air pressure at the top of the tube

Answers

You push air and perfume out of the tube, creating a small vaccum that pulls more perfume into the tube

During one year, eight moose in a population died and two moose were born. Three moose immigrated from another population and five emigrated to find mates.

What was the population growth during this year?

Answers

The population of moose would be for this year is -8

-8 hope it helps i just took the test

A 0.200 kg block of a substance requires 3.59 kJ of heat to raise its temperature by 20.0 K. What is the specific heat of the substance? A. 2,020 J/(kg * K) B. 383 J/(kg*K) C. 130 J/(kg * K) D. 897 J/(kg*K)

Answers

Answer is D. The formula is Q=c*m*delta T. To raise m kg of substance with specific heat c by T kelvin, we need Q J of heat. Rearrange the equation, c=Q/(m*delta T). Plug in our numbers, Q=3.59kJ=3590J, m=0.200, T=20.0, c=3590/(0.200*20.0)=897 J(kg*K).

A bag of sports equipment has a mass of 10.0 kilograms and a weight of

Answers

A bag of sports equipment that has a mass of 10.0 kilograms and a weight of: 98 N 

The weight of the bag of sports equipment is 98N

From the question,

We are to determine the weight of a bag of sports equipment that has a mass of 10.0 kg

The weight of an object with a given mass can be determined by using the formula

W = mg

Where

W is the weight

m is the mass

and g is the acceleration due to gravity (g = 9.8 m/s²)

From the given information,

m = 10.0 kg

∴ Weight of the bag of sports equipment,

W = 10.0 × 9.8

W = 98 N

Hence, the weight of the bag of sports equipment is 98N

Learn more here: https://brainly.com/question/20898566

A ball is thrown at a 60.0° angle above the horizontal across level ground. it is thrown from a height of 2.00 m above the ground with a speed of 23.7 m/s and experiences no appreciable air resistance. the time the ball remains in the air before striking the ground is closest to

Answers

The time the ball remains in the air before striking the ground is closest to 4.20 seconds.

To find the time the ball remains in the air before striking the ground, we can use the equations of motion. Since the ball is thrown at an angle above the horizontal, we'll need to analyze both the horizontal and vertical components of its motion separately.

Given:

- Initial velocity [tex](\(v_0\))[/tex] = 23.7 m/s

- Launch angle[tex](\(\theta\))[/tex] = 60.0°

- Initial height (h) = 2.00 m

First, we'll find the horizontal and vertical components of the initial velocity:

Horizontal component: [tex]\(v_{0x} = v_0 \cdot \cos(\theta)\)[/tex]

Vertical component: [tex]\(v_{0y} = v_0 \cdot \sin(\theta)\)[/tex]

[tex]\[v_{0x} = 23.7 \, \text{m/s} \cdot \cos(60.0^\circ)\]\\v_{0x} \approx 23.7 \, \text{m/s} \cdot \frac{1}{2}\]\\v_{0x} \approx 11.85 \, \text{m/s}\]\\v_{0y} = 23.7 \, \text{m/s} \cdot \sin(60.0^\circ)\]\\v_{0y} \approx 23.7 \, \text{m/s} \cdot \frac{\sqrt{3}}{2}\]\\v_{0y} \approx 20.57 \, \text{m/s}\][/tex]

Now, let's find the time it takes for the ball to reach the maximum height using the vertical motion equation:

[tex]\[v_y = v_{0y} - g \cdot t\][/tex]

At the maximum height, the vertical velocity[tex](\(v_y\))[/tex] becomes zero. So:

[tex]\[0 = v_{0y} - g \cdot t_{\text{max}}\][/tex]

Solving for [tex]\(t_{\text{max}}\):[/tex]

[tex]\[t_{\text{max}} = \frac{v_{0y}}{g}\]\\t_{\text{max}} = \frac{20.57 \, \text{m/s}}{9.8 \, \text{m/s}^2}\]\\t_{\text{max}} \approx 2.10 \, \text{s}\][/tex]

Now, let's find the total time the ball is in the air. We know that the time to reach maximum height and the time to fall from maximum height to the ground are equal due to symmetry (neglecting air resistance). Therefore, the total time in the air is twice the time to reach maximum height:

Total time in the air [tex]\( = 2 \times t_{\text{max}}\)[/tex]

[tex]\[ \text{Total time in the air} \approx 2 \times 2.10 \, \text{s} \]\\ \text{Total time in the air} \approx 4.20 \, \text{s} \][/tex]

So, the time the ball remains in the air before striking the ground is closest to 4.20 seconds.

HURRY The compressed spring of a dart gun has potential energy of 50 J. If the spring constant is 200 N/m, what is the displacement of the spring?
A. 0.5 m
B. 0.2 m
C. 0.7 m
D. 0.4 m

Answers

Spring potential energy:
E = 0.5 * k * x²

k spring constant
x spring compression

x = √(2 * E / k) = 0.7


Answer: its C on edge 2023. =0.7

Explanation: He's right just putting it in a quicker format.

What happens to light when it changes speed?
A)It reflects
B)It polarizes
C)It refracts.

Answers

Hey there!

When light changes speed, it REFRACTS.
Your answer is going to be option C.

Hope this helps you.
Have a great day!

Answer:

The correct answer is C) Refracts

If the above two waveforms were sound waves, we would hear the ___________ wave louder. If the above two waveforms were light waves, we would see the ________ wave dimmer.

Answers

To compute the net effect of two waves, we use the superposition principle, and we can call the resultant wave "superposed wave".
We can rewrite the sentence as follows:
"If the above two waveforms were sound waves, we would hear the superposed wave louder. If the above two waveforms were light waves, we would see the superposed wave dimmer."

Answer:

the answer is green, red

Almost all of the electricity that people use is produced by

Answers

Almost all the electricity used by people is produced by the 3 forms of power plants, namely fossil, hydro, and nuclear. Fossil fuel power plants burn carbon fuels such coal, oil or gas to generate steam that drives large turbines to produce electricity. Hydro power plants generate electricity by storing water in big reservoirs behind large dams. Water from the dams flows through turbines to generate electricity. Nuclear power plants use the heat produced by nuclear fission to generate steam that drives turbines, like in fossil fuel plants.

One mole of ideal gas is slowly compressed to one-third of its original volume. in this compression, the work done on the gas has magnitude 672 j . for the gas, cp=7r/2.

Answers

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - https://brainly.com/question/1581851#readmore

How many electrons are in an electrically neutral atom of boron? A) 3 B) 5 C) 6 D) 8

Answers

B. five electrons

If you want an explanation, here it is.

The atomic number gives the number of protons. Protons which have a positive charge are balanced by an equal number of electrons in a neutral atom. Boron number 5 has five protons and therefore as a neutral atom also has five electrons.

Answer:

B. five electrons

Explanation:

A Geiger counter is like an electroscope that discharges whenever ions formed by a radioactive particle produce a conducting path. A typical Geiger counter consists of a thin conducting wire of radius 0.002 cm stretched along the axis of a conducting cylinder of radius 2.0 cm. The wire and the cylinder carry equal and opposites charges of 8.0 x 10-10 C all along their length of 10.0 cm. What is the magnitude of the electric field at the surface of the wire

Answers

The magnitude of the electric field at the surface of the wire in the Geiger counter can be found using the charge per unit length and the formula E = (1/(2πε0)) * (λ/r). Substituting the given values into the formula will yield the electric field at the wire's surface.

The student asked about calculating the magnitude of the electric field at the surface of the wire in a Geiger counter. To solve this, we will employ the formula for the electric field (E) generated by an infinitely long charged wire, which is given by E = (1/(2πε0)) * (λ/r), where λ is the charge per unit length and r is the radial distance from the wire. In this case, the charge per unit length λ is the total charge divided by the length of the wire, and r is the radius of the wire.

Given: Charge (Q) = 8.0 x 10-10 C, Length (L) = 10.0 cm = 0.1 m, and Wire radius (a) = 0.002 cm = 0.00002 m.

First, calculate the charge per unit length: λ = Q/L = (8.0 x 10-10 C) / (0.1 m) = 8.0 x 10-9 C/m.

Next, calculate the electric field using the radius of the wire (a) as radial distance (r): E = (1/(2πε0)) * (λ/a).

Using the value for the vacuum permittivity ε0 (approximately 8.854 x 10-12 C2/N·m2), the electric field on the surface of the wire is computed to be:

E = (1/(2π(8.854 x 10-12))) * (8.0 x 10-9 / 0.00002) N/C.

Simplifying this expression gives us the electric field at the surface of the wire.

Using the given values, the magnitude of the electric field at the surface of the wire (r = 0.002 cm or 0.00002 m) and L = 10 cm or 0.1 m is calculated as follows:

Convert the radius to meters: r = 0.002 cm = 0.00002 m.

Plugging in the values: E = (8.0 x 10-10 C) / (2π * 8.854 x 10-12 C2/Nm2 * 0.00002 m * 0.1 m).

Calculate the electric field: E = 2.87 x 106 N/C.

The magnitude of the electric field at the surface of the wire in the Geiger counter is therefore 2.87 x 106 Newtons per Coulomb (N/C).

The magnitude of the electric field at the surface of the wire is approximately [tex]\( 7.19 \times 10^{6} \, \text{N/C} \)[/tex].

The magnitude of the electric field at the surface of the wire is given by the formula:

[tex]\[ E = \frac{\sigma}{\varepsilon_0} \][/tex]

where [tex]\( \sigma \)[/tex] is the surface charge density of the wire, and [tex]\( \varepsilon_0 \)[/tex]is the vacuum permittivity [tex](\( 8.85 \times 10^{-12} \, \text{C}^2/\text{N} \cdot \text{m}^2 \)).[/tex]

The surface charge density [tex]\( \sigma \)[/tex] can be calculated by dividing the total charge [tex]\( Q \)[/tex] by the surface area [tex]\( A \)[/tex] of the wire. The surface area of a cylinder is given by [tex]\( A = 2\pi r h \)[/tex], where [tex]\( r \)[/tex] is the radius and [tex]\( h \)[/tex] is the height (or length in this case) of the cylinder.

Given:

- Radius of the wire, [tex]\( r = 0.002 \, \text{cm} = 2 \times 10^{-5} \, \text{m} \) (since 1 cm = 0.01 m)[/tex]

- Length of the wire, [tex]\( h = 10.0 \, \text{cm} = 0.1 \, \text{m} \)[/tex]

- Total charge on the wire, [tex]\( Q = 8.0 \times 10^{-10} \, \text{C} \)[/tex]

First, we convert the radius from centimeters to meters for consistency in units:

[tex]\[ r = 0.002 \, \text{cm} \times \frac{1 \, \text{m}}{100 \, \text{cm}} = 2 \times 10^{-5} \, \text{m} \][/tex]

Now, we calculate the surface area of the wire:

[tex]\[ A = 2\pi r h = 2\pi (2 \times 10^{-5} \, \text{m})(0.1 \, \text{m}) \][/tex]

[tex]\[ A = 4\pi \times 10^{-6} \, \text{m}^2 \][/tex]

Next, we calculate the surface charge density [tex]\( \sigma \)[/tex]:

[tex]\[ \sigma = \frac{Q}{A} = \frac{8.0 \times 10^{-10} \, \text{C}}{4\pi \times 10^{-6} \, \text{m}^2} \][/tex]

[tex]\[ \sigma = \frac{8.0 \times 10^{-10} \, \text{C}}{4\pi \times 10^{-6} \, \text{m}^2} \approx \frac{8.0 \times 10^{-10}}{12.56637 \times 10^{-6} \, \text{m}^2} \][/tex]

[tex]\[ \sigma \approx 6.3662 \times 10^{-5} \, \text{C/m}^2 \][/tex]

Finally, we calculate the magnitude of the electric field at the surface of the wire:

[tex]\[ E = \frac{\sigma}{\varepsilon_0} = \frac{6.3662 \times 10^{-5} \, \text{C/m}^2}{8.85 \times 10^{-12} \, \text{C}^2/\text{N} \cdot \text{m}^2} \][/tex]

[tex]\[ E \approx 7.19 \times 10^{6} \, \text{N/C} \][/tex]

Therefore, the magnitude of the electric field at the surface of the wire is approximately [tex]\( 7.19 \times 10^{6} \, \text{N/C} \)[/tex].

What is a property of a transparent object? A. Almost all of the light rays that reach it are scattered. B. Almost all of the light rays that reach it are absorbed. C. Almost all of the light rays that reach it are reflected. D. Almost all of the light rays that reach it pass through it.

Answers

Transparent means almost all the light passes through it, so D.
The awnser to the question youre asking is D

Referring to the map of the temperature field in the room, where was the warmest field found?

Answers

Final answer:

The warmest field on a temperature map is indicated by warmer colors such as red or orange. On maps like those from the WMAP spacecraft, red represents higher temperatures. In thermographic maps of buildings, warmer areas show where heat transfer is most severe.

Explanation:

The warmest field on a map showing temperature variations can typically be found in regions marked with a warmer color, such as red or orange, indicating higher temperatures. In the context of the map used by the WMAP spacecraft to show fluctuations in the cosmic microwave background, red represents areas of higher temperature and higher density. Similarly, thermographic maps of buildings, like Figure 1.32, use color to indicate variations in temperature, with warmer areas potentially signifying regions where heat transfer is most severe, such as through windows.

It's important to carefully analyze the colors and legends provided on the map to determine the precise locations of the warmest fields. When maps show global temperature changes, such as Figure 24.9.5, the land areas and the Arctic are noted for having experienced the greatest increases in temperature relative to mid-20th-century baseline values.

how did the world form

Answers

Many people believe in the big bang theory but i believe God created the heavens and the earth with his own hands.
After the big bang 4.6 billion years ago, rocky materials came together. They were extremely hot. Over time they cooled down. soon after another Earth sized rock collided with the earth, Breaking off a large chunk. This chunk became what we know today as the moon.

Hope I helped!
~ Zoe

A rock of mass m is thrown horizontally off a building from a height h. the speed of the rock as it leaves the thrower's hand at the edge of the building is v0, as shown. m h v0 m what is the kinetic energy of the rock just before it hits the ground? 1. kf = 1 2 m v2 0 2. kf = 1 2 m v2 0 − m g h 3. kf = 1 2 m v2 0 + m g h 4. kf = m g h − 1 2 m v2 0 5. kf = m g h

Answers

The correct answer is 3) [tex]K_f = \frac{1}{2}mv_0^2 + mgh [/tex].

In fact, the total energy of the rock when it leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
[tex]E=U_i+K_i=mgh + \frac{1}{2}mv_0^2 [/tex]
As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy: 
[tex]E=K_f[/tex]
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
[tex]K_f = mgh + \frac{1}{2}mv_0^2 [/tex]


The kinetic energy of the rock just before hitting the ground is:

[tex]K_f=mgh+\frac{1}{2}mv_o^2[/tex]

Given information:

A rock of mass m is thrown horizontally off a building from a height h

As, the total energy of rock at the time of leaving the thrower's hand is the sum of gravitational potential energy and the initial kinetic energy.

[tex]E=U_i+K_i\\E=mgh+(1/2)mv_0^2[/tex]

As, the height from the ground decreases, the potential energy before hitting the ground is zero and the total final energy is just kinetic energy:

[tex]E=K_f[/tex]

As, the law of conservation of energy states the total final energy must be equal to the initial energy.

Hence, the final kinetic energy will be

[tex]K_f=mgh+\frac{1}{2}mv_o^2[/tex]

For more information visit:

https://brainly.com/question/17858145?referrer=searchResults


Myth: An organism's kingdom only describes physical characteristics.
Fact:
Evidence:

Answers

FACT: An organism's kingdom does not only describe physical characteristics. 

Organisms are classified into the different kingdoms based on physical appearance, their function, how they reproduce and how they obtain their food. 

EVIDENCE:
Kingdom Plantae: They obtain their food through photosynthesis
                              Reproduce asexually.
Kingdom Animalia : They obtain their food through hunting or consuming                                        other organisms.        
                              Reproduce sexually.

The kingdom of an organism  does not only describe physical characteristics. It is evident by that plant and animal kingdom are classified on the basis of photosynthetic ability.

Kingdom:

In classification kingdom is the highest in the hierarchy. A kingdom includes the organism of similar classes.

For Example: plant and animal kingdom

Plant Kingdom:

It includes the multicellular organisms who have cell wall and produce glucose using Photosynthesis. Such as Bryophytes, Pteridophytes, and gymnosperms.

Animal Kingdom:

This includes the the organisms with cell membrane only. They rely o others for their nutrition. Such as mammals and fishes

Therefore, the fact is that the organism's kingdom does not only describes physical characteristics.

To know more about Kingdom,

https://brainly.com/question/23288059

the record for a ski jump is 180 m set in 1989. Assume the jumper comes off the end of the ski jump horizontally and falls 90 m vertically before contacting the ground . what was the initial horizontal speed of the jumper?

Answers

Let's write the equations of motion on both x- (horizontal) and y- (vertical) axis. On the x-axis, it's a uniform motion with constant velocity vx. On the y-axis, it is a uniformly accelerated motion with initial height h=90 m and acceleration of [tex]g=9.81 m/s^2[/tex] pointing down (so with a negative sign):
[tex]S_x(t)=v_x t[/tex]
[tex]S_y(t)=h- \frac{1}{2} gt^2[/tex]

First, let's find the time at which the jumper reaches the ground. This happens when Sy(t)=0:
[tex]0=h- \frac{1}{2} g t^2[/tex]
and so 
[tex]t= \sqrt{ \frac{2h}{g} }= \sqrt{ \frac{2\cdot 90m}{9.81 m/s^2} }=4.28 s [/tex]

Then, we can find the horizontal speed. In fact, we know that at the time t=4.28 s, when the jumper reached the ground, he covered exactly 180 m, so Sx=180 m. Using this into the law of motion in x, we find
[tex]v_x= \frac{S_x}{t} = \frac{180 m}{4.28 s} =42 m/s[/tex]

Why is it important to know the direction of the force applied to a moving object and the direction in which the object is moving when determining the work done on the object?

A. Only the component of the force perpendicular to the motion is used to calculate the work.

B. If the force acts in the same direction as the motion, then no work is done.

C. When there is an angle between the two directions, the cosine of the angle must be considered.

D. A force at a right angle to the motion requires the use of the sine of the angle.

Answers

C is correct.  The work-force relation is given by W=F·d, where F is force vector, and d is the displacement vector.  The dot is the dot product, which is a measure of how parallel the two vectors are.  It can be restated as the product of two vector magnitudes times the cosine of the angle between them.  Therefore work is a scalar, not a vector, since the dot product returns a scalar.  
[tex]W=Fdcos(\theta)[/tex]

Answer:

C. When there is an angle between the two directions, the cosine of the angle must be considered.

Explanation:

I can confirm answer is C.

While parachuting, a 66.0-kg person experiences a downward acceleration of 2.60 m/s2. 1) what is the downward force on the parachute from the person? (express your answer to three significant figures?

Answers

Final answer:

The downward force on the parachute from the 66.0 kg person experiencing a downward acceleration of 2.60 m/s2 is 171.6 newtons, calculated using Newton's second law of motion (F = ma).

Explanation:

The question asks for the downward force on the parachute from a person with a mass of 66.0 kg experiencing a downward acceleration of 2.60 m/s2. To find this force, we use Newton's second law of motion, which states that force (F) equals mass (m) times acceleration (a), or F = ma.

To calculate the force, we multiply the person's mass (66.0 kg) by the given acceleration (2.60 m/s2):

F = 66.0 kg × 2.60 m/s2
 = 171.6 N

The downward force exerted on the parachute by the person is therefore 171.6 newtons, expressed to three significant figures.

A box is initially sliding across a frictionless floor toward a spring which is attached to a wall. the box hits the end of the spring and compresses it, eventually coming to rest for an instant before bouncing back the way it came. the work done by the spring on the box as the spring compresses is:

Answers

The elastic potential energy of a spring is given by
[tex]U= \frac{1}{2}kx^2 [/tex]
where k is the spring's constant and x is the displacement with respect to the relaxed position of the spring.

The work done by the spring is the negative of the potential energy difference between the final and initial condition of the spring:
[tex]W=-\Delta U = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2 [/tex]

In our problem, initially the spring is uncompressed, so [tex]x_i=0[/tex]. Therefore, the work done by the spring when it is compressed until [tex]x_f[/tex] is
[tex]W=- \frac{1}{2}kx_f^2 [/tex]
And this value is actually negative, because the box is responsible for the spring's compression, so the work is done by the box.

A bolt is dropped from a bridge under construction, falling 80 m to the valley below the bridge. (a) how much time does it take to pass through the last 17 % of its fall? what is its speed (b) when it begins that last 17 % of its fall and (c) just before it reaches the ground?

Answers

im sorry i looked at this for a good 3 minutes and cant figure it out

Three people are pushing a 500 kg of box in the same direction. applied forces are 30 n, 20 n, and 10 n respectively. if the acceleration of the box is 0.02 m/s2, what is the magnitude of a force created by friction?

Answers

The total force applied by the three people is:
[tex]F=30 N+20 N+10 N=60 N[/tex]
This force is pushing toward the direction of the motion, while the  frictional force [tex]F_f[/tex] points in the opposite direction.
We can write Newton's second law applied to the block: the resultant of the two forces must be equal to the product between the block's mass and its acceleration
[tex]F-F_f = ma[/tex]
We know the mass of the block, m=500 kg, and the acceleration, [tex]a=0.02 m/s^2[/tex], so we can find the friction:
[tex]F_f = F-ma=60 N - (500 kg)(0.02 m/s^2)=50 N[/tex]
Other Questions
1. HEIGHTYou estimate that your friend is 50 inches tall. The actual height of your friend is 54 inches. Find the percent error. 2. Original price: ? Discount: 75% sale price: $74.75(Please EXPLAIN)ThAnK yOu!! Read the excerpt from the Declaration of Independence. We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty, and the pursuit of Happiness. The use of the phrase certain unalienable rights refers to rights that The best rule to follow in applying operant conditioning to your own life is to _____. Why did Great Britain establish a penal colony in Australia? what sort of people took advantage of the homestead act __________ is a style of vase painting that made use of bold, simple, linear designs. Please HelpNo, no, my dear lady; I stick to my tea and bread and butter. It is much more wholesome in the long runand a little more economical, too. What is Peter implying when he says these lines? A)He hints that Mrs. Stockmann is not a very good cook. B)His remark suggests that he has very little money for food. C)He is hinting that he is annoyed at not being invited to dinner. D)His comment suggests that the Stockmanns spend too much on food. When you were young, you had a dream about falling down into a ravine. years later you are mistakenly convinced that as a child you fell into a ravine. this is best explained by _________? How has television impacted the field of Forensic Science? Who were the 5 major victors of World War 1? If an occupation is projected to grow by 13% over the next 10 years, how would you rate the job outlook? A) Average B) Steady C) Strong D) Weak Abigail has a puppy. she loves to hold the puppy in her lap and pet it. she visits her grandma's house. her grandma has bird. the bird does not like to be held or it will bite. abigail at first tries to grab the bird to hold it and it nips her finger. she learns that she must just pet the bird when it is in the cage. what cognitive process did abigail need to use? Who were Ronald Reagan and Franklin d Roosevelt? What viewpoint did they share about the presidential term of office in a command economy, the central government alone decide the production and consumption of goods and services Which in-text citation is formatted correctly in MLA style? a)The Cyclops insists that they care not a whistle for your thundering Zeus (Homer 186). b)The Cyclops insists that they care not a whistle for your thundering Zeus (Homer 186). c)The Cyclops insists that they care not a whistle for your thundering Zeus, Homer (186). d)The Cyclops insists that they care not a whistle for your thundering Zeus (Homer 186). By 3 months infants do not engage in visual scanning. an infant's coordinated reaching and grabbing of an object is common. the ability to crawl has emerged. infants pay attention to facial expressions and smile more at smiling faces. Which statement describes the interactionist theory of religion answer asap which equation could have been used to create this function table? A. y = x + 5 B. y = 5x C. y = x + 4 D. y = 4x Chemistry helps firefighters _____. How do I convert 12 ounces into grams. Please help