Methanol and oxygen react to form carbon dioxide and water, like this: 2CH3OH (l) + 3O2 (g) → 2CO2 (g) + 4H2O (g) At a certain temperature, a chemist finds that a 9.3L reaction vessel containing a mixture of methanol, oxygen, carbon dioxide, and water at equilibrium has the following composition:compound CH3OH O2 CO2 H2Oamount 1.47g 1.56g 2.28g 3.33gCalculate the value of the equilibrium constant Kc for this reaction. Round your answer to 2 significant digits.

Answers

Answer 1

Answer:

The value of the equilibrium constant Kc for this reaction is 3.34*10^-5

Explanation:

Step 1: Data given

Volume of the reaction vessel = 9.3 L

Mass of CH3OH at equilibrium = 1.47 grams

Mass of O2 at equilibrium = 1.56 grams

Mass of CO2 at equilibrium = 2.28 grams

Mass of H2O at equilibrium = 3.33 grams

Molar mass CH3OH = 32.04 g/mol

Molar mass of O2 = 32.0 g/mol

Molar mass of CO2 = 44.01 g/mol

Molar mass of H2O = 18.02 g/mol

Step 2: The balanced equation

2CH3OH (l) + 3O2 (g) → 2CO2 (g) + 4H2O (g)

Step 3: Calulate moles

Moles = mass / molar mass

Moles CH3OH = 1.47 grams / 32.04 g/mol

Moles CH3OH = 0.0459 moles

Moles O2 = 1.56 grams / 32.0 g/mol

Moles O2 = 0.0489 moles

Moles CO2 = 2.28 grams / 44.01 g/mol

Moles CO2 = 0.0518 moles

Moles H2O = 3.33 grams / 18.02 g/mol

Moles H2O = 0.185 moles

Step 4: Calculate molarity

Molarity = moles / volume

[CH3OH] = 0.0459 moles / 9.3 L

[CH3OH] = 0.00494 M

[O2] = 0.0489 moles / 9.3 L

[O2] = 0.00526 M

[CO2] = 0.0518 moles / 9.3 L

[CO2] = 0.00557 M

[H2O] = 0.185 moles / 9.3 L

[H2O] = 0.0199 M

Step 5: Calculate Kc

Since liquids and solids do not affect the equilibrium, CH3OH will not take part

Kc = [CO2]²[H2O]^4 / [O2]³

Kc = (0.00557² * 0.0199^4) / 0.00526³

Kc = 3.34*10^-5

The value of the equilibrium constant Kc for this reaction is 3.34*10^-5

Answer 2

The value of the equilibrium constant [tex]\( K_c \)[/tex] for this reaction is approximately 1.4.

To calculate the equilibrium constant [tex]\( K_c \)[/tex], we need to determine the molar concentrations of each species involved in the reaction at equilibrium. The balanced chemical equation is:

[tex]\[ 2CH_3OH (l) + 3O_2 (g) \rightleftharpoons 2CO_2 (g) + 4H_2O (g) \][/tex]

Given the masses of the compounds and the volume of the reaction vessel, we can calculate the molar concentrations as follows:

1. Calculate the moles of each compound:

[tex]- For \( CH_3OH \): \( n_{CH_3OH} = \frac{1.47 \text{ g}}{32.04 \text{ g/mol}} \)\\ - For \( O_2 \): \( n_{O_2} = \frac{1.56 \text{ g}}{32.00 \text{ g/mol}} \)\\ - For \( CO_2 \): \( n_{CO_2} = \frac{2.28 \text{ g}}{44.01 \text{ g/mol}} \)\\ - For \( H_2O \): \( n_{H_2O} = \frac{3.33 \text{ g}}{18.015 \text{ g/mol}} \)[/tex]

2. Calculate the molar concentrations (using the volume of the reaction vessel, 9.3 L):

[tex]- For \( CH_3OH \): \( [CH_3OH] = \frac{n_{CH_3OH}}{9.3 \text{ L}} \)\\ - For \( O_2 \): \( [O_2] = \frac{n_{O_2}}{9.3 \text{ L}} \)\\ - For \( CO_2 \): \( [CO_2] = \frac{n_{CO_2}}{9.3 \text{ L}} \)\\ - For \( H_2O \): \( [H_2O] = \frac{n_{H_2O}}{9.3 \text{ L}} \)[/tex]

3. Write the expression for [tex]\( K_c \)[/tex] and substitute the concentrations:

[tex]- \( K_c = \frac{[CO_2]^2 [H_2O]^4}{[CH_3OH]^2 [O_2]^3} \)[/tex]

4. Substitute the calculated molar concentrations into the expression for [tex]\( K_c \)[/tex] and solve.

5. Round the result to two significant digits.

After performing these calculations, we find that [tex]\( K_c \)[/tex] is approximately 1.4 when rounded to two significant digits. This value indicates the position of equilibrium in this reaction mixture, with higher values of [tex]\( K_c \)[/tex]corresponding to a greater extent of the reaction proceeding to the right (towards the products).


Related Questions

uestion 174 Which sequence of reactions is expected to produce the product below as the final, and major, organic product? I 1. HC≡CH, NaNH2; 2. (CH3)2CHCH2Br 3. Aqueous H2SO4, HgSO4 II 1. CH3C≡CH, NaNH2; 2. (CH3)2CHBr; 3. Disisamylborane; 4. H2O2, NaOH III 1. (CH3)2CHBr, NaNH2; 2. CH3C≡CH; 3. O3; 4. H2O IV 1. CH3C≡CH, NaNH2: 2. (CH3)2CHCH2Br; 3. BH3·THF; 4. H2O2, NaOH V 1. (CH3)2CHCH2Br, NaNH2; 2. HC≡CH; 3. 9-BBN; 4. H2O2, NaOH I II III IV V

Answers

Complete Question

The complete question is shown on the first uploaded image

               

Answer:

The correction option is  is  [tex]I[/tex]

Explanation:

  The mechanism of the reaction is show on the second uploaded image

   

Huan wants to enter the science fair at his school. He has a list of ideas for his project. Which questions could be
answered through scientific investigation? Check all that apply.
Does pressure have an effect on the volume of a gas?
Which physicist was the smartest?
Is the information on the periodic table difficult to understand?
Which brand of soap is the best for cleaning grease off dishes?
Which laboratory experiment is the most fun to perform?

Answers

Correct answer:

•Does pressure have an effect on the volume of a gas?

•Which brand of soap is the best for cleaning grease off dishes?

The questions that can be answered by science must be empirical, that is they must be answerable by experiments.

The question that can be answered by science is; Which brand of soap is the best for cleaning grease off dishes?

This question can be answered by using various brands of soap to clean the same type of dish with the same type of grease and comparing the results. The answer to this question is pure empirical.

The other questions listed can not be answered by experiment. Their answer may vary from person to person therefore they are not scientific questions.

Learn more: https://brainly.com/question/20955213

The equipment used for aviation communications emits high‑frequency radiowave energy with a wavelength of 0.250 km. What is the energy of exactly one photon of this radiowave radiation?

Answers

Explanation:

Given that,

The wavelength of high‑frequency radio wave, [tex]\lambda=0.25\ km=250\ m[/tex]

We need to find the energy of exactly one photon of this radio wave radiation. It is given by :

[tex]E=\dfrac{nhc}{\lambda}[/tex]

Here, n = 1

[tex]E=\dfrac{6.63\times 10^{-34}\times 3\times 10^8}{250}\\\\E=7.95\times 10^{-28}\ J[/tex]

So, the energy of exactly one photon of this radio wave radiation is [tex]7.95\times 10^{-28}\ J[/tex].

The energy of exactly one photon of this radio wave radiation is [tex]7.95 \times 10^{-28}J[/tex].

Given that,

The equipment used for aviation communications emits high‑frequency radio wave energy with a wavelength of 0.250 km i.e. = 250 m.

Based on the above information, the calculation is as follows:

We know that

[tex]E = nhc \div \lambda\\\\= (6.63 \times 10^{-34} \times 3 \times 10^8) \div 250[/tex]

= [tex]7.95 \times 10^{-28}J[/tex]

Therefore we can conclude that the energy of exactly one photon of this radio wave radiation is [tex]7.95 \times 10^{-28}J[/tex].

Learn more: brainly.com/question/23334479

A voltaic cell is constructed in which the following cell reaction occurs. The half-cell compartments are connected by a salt bridge. F2(g) + 2I-(aq) 2F-(aq) + I2(s)

The anode reaction is: + +
The cathode reaction is: + +
In the external circuit, electrons migrate the F-|F2 electrode the I-|I2 electrode. In the salt bridge, anions migrate the F-|F2 compartment the I-|I2 compartment.

Answers

Answer:

See explanation below

Explanation:

The anode reaction is :

2I^-(aq) -------> I2(g) +2e

Cathode reaction

F2(g) + 2e------> 2F^-(aq)

In the external circuit, electrons migrate from the I-|I2 electrode (anode) to the F-|F2 electrode (cathode)

In the salt bridge, anions migrate from the F-|F2

Final answer:

A voltaic cell is a type of cell in which a spontaneous redox reaction generates an electric current. This current is generated by the migration of electrons from the anode to the cathode in the external circuit, and the migration of anions in the salt bridge maintains electrical neutrality.

Explanation:

A voltaic cell is a type of electrochemical cell where a spontaneous redox reaction generates an electric current. In this particular voltaic cell, the anode reaction is 2I-(aq) -> I2(s) + 2e-, where iodide ions are oxidized to solid iodine (losing electrons). The cathode reaction is F2(g) + 2e- -> 2F-(aq), where gaseous fluorine is reduced to fluoride ions (gaining electrons).

In the external circuit, electrons migrate from the anode (I-|I2 electrode) to the cathode (F-|F2 electrode). This migration of electrons generates the electric current. Lastly, in the salt bridge, anions migrate from the anode compartment (I-|I2) to the cathode compartment (F-|F2), allowing the cell to maintain electrical neutrality throughout the redox reaction.

Learn more about Voltaic Cell here:

https://brainly.com/question/29186551

#SPJ11

Measurements show that the enthalpy of a mixture of gaseous reactants increases by 215. kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that -155. kJ of work is done on the mixture during the reaction.Calculate the change in energy of the gas mixture during the reaction. Round your answer to 2 significant digits.Is the reaction exothermic or endothermic?

Answers

Answer: The change in energy of the gas mixture during the reaction is 60 kJ. The reaction is endothermic.

Explanation:

According to first law of thermodynamics:

[tex]\Delta E=q+w[/tex]

[tex]\Delta E[/tex]=Change in internal energy

q = heat absorbed or released

w = work done or by the system

w = work done on the system

w = -155 kJ

q = +215kJ   {Heat absorbed by the system is positive}

[tex]\Delta E=+215+(-155)kJ=60kJ[/tex]

As the heat is absorbed and enthalpy increases, the reaction is endothermic.

A) Al3 (aq) is a stronger oxidizing agent than I2(s), and I-(aq) is a stronger reducing agent than Al(s).B) I2(s) is a stronger oxidizing agent than Al3 (aq), and Al(s) is a stronger reducing agent than I-(aq).C) Al(s) is a stronger oxidizing agent than I-(aq), and Al3 (aq) is a stronger reducing agent than I2(s).D) I-(aq) is a stronger oxidizing agent than Al(s), and I2(s) is a stronger reducing agent than Al3 (aq).

Answers

Answer:

B) I2(s) is a stronger oxidizing agent than Al3 (aq), and Al(s) is a stronger reducing agent than I-(aq).

Explanation:

An oxidizing agent accepts electrons in a redox reaction and become reduced while a reducing agent looses electrons and become oxidized.

Hence in a redox reaction, oxidizing agents are reduced while reducing agents are oxidized.

Looking at I2 and Al3+, I2 is a better oxidizing agent since it has a reduction potential of +0.54V compared to -1.66V for Al3+.

Given the statements above, the converse must be true, that is; All is a better reducing agent compared to I-

Rock candy is formed when excess sugar is dissolved in hot water followed by crystallization. A student wants to make two batches of rock candy. He finds an unopened box of "cane sugar" in the pantry. He starts preparing batch A by dissolving sugar in of hot water (). He keeps adding sugar until no more sugar dissolves in the hot water. He cools the solution to room temperature. He prepares batch B by dissolving sugar in of water at room temperature until no more sugar is dissolved. He lets the solution sit at room temperature.It is likely that less rock candy will be formed in batch A. It is likely that no rock candy will be formed in either batch. I need more information to predict which batch is more likely to form rock candy.

Answers

Final answer:

Rock candy is formed through a chemical process known as crystallization which requires a supersaturated sugar solution. In the scenario, batch A prepared with hot water is more likely to form rock candy as it can dissolve more sugar creating a supersaturated solution. Batch B prepared at room temperature may not form as much rock candy due to lesser sugar dissolution.

Explanation:

The question relates to the chemical process of crystallization, particularly in the formation of rock candy. When making rock candy, a supersaturated solution of sugar and water is required. This condition is achieved when as much sugar as possible is dissolved in hot water. Once cooled, the oversaturated solution starts to crystallize and forms rock candy. So in the given scenario, batch A is more likely to produce rock candy because it involves the preparation of a supersaturated solution through dissolving sugar in hot water. Batch B, prepared at room temperature, may not dissolve as much sugar as batch A, and thus, less or no rock candy might be formed.

Learn more about Crystallization here:

https://brainly.com/question/32130991

#SPJ3

Batch A, which dissolved sugar in hot water that was then cooled, is more likely to form rock candy as the cooling process can lead to the crystallization of sugar from a supersaturated solution.

The process of making rock candy involves dissolving sugar in water to create a saturated solution from which sugar crystals can form upon cooling or evaporation of the solvent. The solubility of sugar increases with temperature, which means hot water can dissolve more sugar than room temperature water. Therefore, for batch A, dissolving sugar in hot water likely supersaturates the solution, and as it cools to room temperature, excess sugar will crystallize out.

Batch B, on the other hand, dissolves sugar at room temperature, potentially creating a saturated solution, but without the temperature change, it is less likely to form a supersaturated environment and thus may yield less crystallization compared to batch A. In summary, batch A is more likely to form rock candy due to the temperature-dependent solubility of sugar, and the cooling process allows crystals to form from the supersaturated solution.

119. In analytical chemistry, bases used for titrations must often be standardized; that is, their concentration must be precisely determined. Standardization of sodium hydroxide solutions can be accomplished by titrating potassium hydrogen phthalate (KHC8H4O4), also known as KHP, with the NaOH solution to be standardized. a. Write an equation for the reaction between NaOH and KHP. b. The titration of 0.5527 g of KHP required 25.87 mL of an NaOH solution to reach the equivalence point. What is the concentration of the NaOH solution

Answers

Answer:

0.1046M NaOH solution

Explanation:

a. KHP is a salt used as primary standard because allows direct standarization of bases solutions. The reaction of KHP with NaOH is:

KHP + NaOH → H₂O + KP⁻ + Na⁺

As you can see, KHP has 1 acid proton that reacts with NaOH.

Molar mass of KHP is 204.22g/mol; 0.5527g of KHP contains:

0.5527g KHP × (1mol / 204.22g) = 2.706x10⁻³moles of KHP. As 1 mole of KHP reacts per mole of NaOH, at equivalence point you must add 2.706x10⁻³moles of NaOH

As you spent 25.87mL of the solution, molarity of the solution is:

2.706x10⁻³moles of NaOH / 0.02587L = 0.1046M NaOH solution

Answer:

NaOH + KHC8H4O4 → NaKC8H4O4 + H2O

Concentration NaOH = 0.105 M

Explanation:

Step 1: Data given

Mass of KHP = 0.5527 grams

Molar mass KHP = 204.22 g/mol

Volume of NaOH = 25.87 mL

Step 2: The balanced equation

NaOH + KHC8H4O4 → NaKC8H4O4 + H2O

Step 3: Calculate moles KHP

Moles KHP = mass KHP / molar mass KHP

Moles KHP = 0.5527 grams / 204.22 g/mol

Moles KHP = 0.002706 moles

Step 4: Calculate moles NaOH

For 1 mol NaOH we need 1 mol KHP to react

For 0.002706 moles KHP we need 0.002706 moles NaOH

Step 5: Calculate concentration NaOH

Concentration = moles / volume

Concentration NaOH = 0.002706 moles / 0.02587 L

Concentration NaOH = 0.105 M

The equation represents the decomposition of a generic diatomic element in its standard state. 12X2(g)⟶X(g) Assume that the standard molar Gibbs energy of formation of X(g) is 5.61 kJ·mol−1 at 2000. K and −52.80 kJ·mol−1 at 3000. K. Determine the value of K (the thermodynamic equilibrium constant) at each temperature. K at 2000. K= K at 3000. K= Assuming that ΔH∘rxn is independent of temperature, determine the value of ΔH∘rxn from this data. ΔH∘rxn=

Answers

Answer:

The equilibrium constant at 2000 K is 0.7139

The equilibrium constant at 3000 K is 8.306

ΔH = 122.2 kJ/mol

Explanation:

Step 1: Data given

the standard molar Gibbs energy of formation of X(g) is 5.61 kJ/mol at 2000 K

the standard molar Gibbs energy of formation of X(g) is -52.80 kJ/mol at 3000 K

Step 2: The equation

1/2X2(g)⟶X(g)

Step 3: Determine K at 2000 K

ΔG = -RT ln K

⇒R = 8.314 J/mol *K

⇒T = 2000 K

⇒K is the equilibrium constant

5610 J/mol = -8.314 J/molK * 2000 * ln K

ln K = -0.337

K = e^-0.337

K = 0.7139

The equilibrium constant at 2000 K is 0.7139

Step 4: Determine K at 3000 K

ΔG = -RT ln K

⇒R = 8.314 J/mol *K

⇒T = 3000 K

⇒K is the equilibrium constant

-52800 J/mol = -8.314 J/molK * 3000 * ln K

ln K = 2.117

K = e^2.117

K = 8.306

The equilibrium constant at 3000 K is 8.306

Step 5: Determine the value of ΔH∘rxn

ln K2/K1 = -ΔH/r * (1/T2 - 1/T1)

ln 8.306 /0.713 = -ΔH/8.314 * (1/3000 - 1/2000)

2.455 = -ΔH/8.314 * (3.33*10^-4 - 0.0005)

2.455 = -ΔH/8.314 * (-1.67*10^-4)

-14700= -ΔH/8.314

-ΔH = -122200 J/mol

ΔH = 122.2 kJ/mol

When The constant at 2000 K is 0.7139

Then The constant at 3000 K is 8.306

ΔH = 122.2 kJ/mol

What is Equilibrium?

Step 1: Data is given

When the quality molar Gibbs effectiveness of the formation of X(g) is 5.61 kJ/mol at 2000 K

When the quality molar Gibbs effectiveness of the formation of X(g) is -52.80 kJ/mol at 3000 K

Step 2: The equation is:

[tex]1/2X2(g)⟶X(g)[/tex]

Step 3: Then Determine K at 2000 K

ΔG = -RT ln K

[tex]⇒R = 8.314 J/mol *K[/tex]

⇒[tex]T = 2000 K[/tex]

⇒ at that time K is that the constant

Then 5610 J/mol = [tex]-8.314 J/molK * 2000 * ln K[/tex]

ln K is = [tex]-0.337[/tex]

K is =[tex]e^-0.337[/tex]

K is = [tex]0.7139[/tex]

When The constant at 2000 K is 0.7139

Step 4: Then Determine K at 3000 K

ΔG = -RT ln K

⇒[tex]R = 8.314 J/mol *K[/tex]

⇒[tex]T = 3000 K[/tex]

⇒K is that the constant

[tex]-52800 J/mol = -8.314 J/mol K * 3000 * ln K[/tex]

ln [tex]K = 2.117[/tex]

K = e^2.117

K = 8.306

The constant at 3000 K is 8.306

Step 5: at the moment Determine the worth of ΔH∘rxn

ln K2/K1 = -ΔH/r * (1/T2 - 1/T1)

ln 8.306 /0.713 = -Δ[tex]H/8.314 * (1/3000 - 1/2000)[/tex]

2.455 = -ΔH/8.314 * (3.33*10^-4 - 0.0005)

2.455 = -ΔH/8.314 * [tex](-1.67*10^-4)[/tex]

-14700= -ΔH/8.314

-ΔH = [tex]-122200 J/mol[/tex]

Then ΔH = [tex]122.2 kJ/mol[/tex]

Find more information about Equilibrium here:

https://brainly.com/question/26251269

There are three competing factors at play here: 1. The effective nuclear charge 2. The size of the atom and the force of attraction according to Coulomb's law 3. A pair of electrons in an orbital The first ionization energy is the energy required to completely remove the first electron from the atom. The higher in energy an electron is to start with, the less additinal energy will be required to remove it, which translates to a lower ionization energy. By the same token, an electron arrangement which is lower in energy will require more energy to remove an electron.

Answers

Answer:

These three factors are required for ionization potential or ionization energy.

Explanation:

Ionization potential refers to the amount of energy which is required for the removal of outermost electron of the atom. If the atom size is big so the outermost electron is far from the nucleus and low energy is required for its removal due to lower force of attraction between nucleus and outermost electron. If the nuclear charge is higher, so the electron is tightly held by the nucleus and require more energy for its removal. Nuclear charge means number of protons present in the nucleus.

Which of the following statements is true? a. At equilibrium BOTH the rate of the forward reaction equals that of the reverse reaction AND the rate constant for the forward reaction equals that of the reverse. b. The equilibrium state is dynamic even though there is no change in concentrations. c. The equilibrium constant for a particular reaction is constant under all conditions. d. Starting with different initial concentrations will yield different individual equilibrium concentrations and a different relationship of equilibrium concentrations. e. None of these is true.

Answers

Answer:

a) True

Explanation:

a) From the definition of the equilibrium. When a reversible reaction is carried out in a closed vessel, a stage is reached when the forward and the backward reactions proceed with the same speed. This stage is known as chemical equilibrium.

At 5000 K and 1.000 atm, 83.00% of the oxygen molecules in a sample have dissociated to atomic oxygen. At what pressure will 95.0% of the molecules dissociate at this temperature

Answers

Answer:

At [tex]P_{total} = 0.240\ atm[/tex]; 95.0% of the molecules will dissociate at this temperature

Explanation:

The chemical  reaction of this dissociation is:

[tex]O_2 \leftrightarrow 2O_g[/tex]

The ICE table is as follows:

                        [tex]O_2 \ \ \ \ \ \ \ \leftrightarrow \ \ \ \ \ \ \ \ 2O_g[/tex]

Initial               100                        0

Change            -83                      +166

Equilibrium          17                      166

The mole fractions of each  constituent is now calculated as:

[tex]Mole \ fraction \ of \ O(X_o) = \frac{166}{183}[/tex] = 0.9071

[tex]Mole \ fraction \ of \ O_2(X_o_2_}}) = \frac{17}{183}[/tex] = 0.0929

Given that the total pressure [tex]P_{total}[/tex] = 1.000 atm ; the partial pressure of each gas is calculated by using Raoult's Law.

[tex]Partial \ Pressure \ of \ O (P_o) = X_oP_{total}\\\\ = 0.9071 \ atm[/tex]

[tex]Partial \ Pressure \ of \ O_2 (P_o_2) = X_oP_{total}\\\\ = 0.0929 \ atm[/tex]

Now; we proceed to determine the equilibrium constant [tex]K_c[/tex]; which is illustrated as:

[tex]K_c = \frac{Po^2}{Po_2} \\ \\ K_c = \frac{(0.9072)^2}{0.0929} \\ \\ =8.86 \ atm[/tex]

Let assume that the partial pressure of [tex]O_2[/tex] be x ;&

the change in pressure of  [tex]O_2[/tex] be y ; then

we can write that the following as the changes in concentration of species :

                          [tex]O_2 \ \ \ \ \ \ \ \leftrightarrow \ \ \ \ \ \ \ \ 2O_g[/tex]

Initial                    x                         0

Change              -y                          +2 y

Equilibrium         x - y                    2 y

From above; we can rewrite our equilibrium constant as:

[tex]K_c = \frac{(2y)^2}{x-y} \\ \\ 8.86 = \frac{(2y)^2}{x-y} ----- equation (1)[/tex]

From the question; we are told that provided that 95% of the molecules dissociate at this temperature. Therefore, we have:

[tex]\frac{y}{x}*100 = 95[/tex]%   -------- equation (2)

Solving and equating equation 1 and 2 ;

x = 0.123 atm

y = 0.117 atm

Thus, the pressure required can be calculated as :

[tex]P_{total} = (x-y) +2y \\ \\ P_{total} = (0.123- 0.117)+ 2(0.123) \\ \\ \\ P_{total} = 0.240 \ atm[/tex]

Hydrogen peroxide can act as either an oxidizing agent or a reducing agent depending on the species present in solution. Write the balanced half-reaction equations for each situation. Write the balanced half-reaction equation for when H2O2(aq) acts as an oxidizing agent in an acidic solution. Phases are optional. half-reaction equation: Write the balanced half-reaction equation for when H2O2(aq) acts as a reducing agent in an acidic solution. Phases are optional. half-reaction equation: A disproportionation reaction is one in which a single species oxidizes and reduces itself. Write the complete balanced equation for the disproportionation reaction of H2O2(aq) . Phases are optional. disproportionation reaction:

Answers

Answer:

1) H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O

2) H₂O₂ → 2H⁺ + 2e⁻  O₂

3) 2H₂O₂ → 2H₂O + O₂

Explanation:

Half-reaction equation for when H₂O₂(aq) acts as an oxidizing agent in an acidic solution (this means H₂O₂ is reduced):

H₂O₂ + 2H⁺ + 2e⁻ → 2H₂O

It is a reduction because the oxidation number of O changes from -1 to -2.

Half-reaction equation for when H₂O₂(aq) acts as a reducing agent in an acidic solution (this means H₂O₂ is oxidized):

H₂O₂ → 2H⁺ + 2e⁻  O₂

It is an oxidation because the oxidation number of O changes from -1 to 0.

Disproportionation reaction of H₂O₂(aq):

2H₂O₂ → 2H₂O + O₂

Final answer:

Hydrogen peroxide can act as both an oxidizing and a reducing agent in an acidic solution. It becomes oxidized when acting as a reducing agent and gets reduced when it acts as an oxidizing agent. In a disproportionation reaction, it can both oxidize and reduce itself.

Explanation:

Hydrogen peroxide (H2O2) can indeed act as either an oxidizing or reducing agent depending on the species present in solution. When

H2O2

acts as an oxidizing agent in an acidic solution, the balanced half-reaction is:

H2O2 + 2H+ + 2e- → 2H2O

This reaction shows H2O2 being reduced, thus it is acting as an oxidizer because it causes the oxidation of other substances by accepting electrons. In contrast, when

H2O2 acts as a reducing agent in an acidic solution, the balanced half-reaction is:

H2O2 → O2 + 2H+ + 2e-

In this case, H2O2 is being oxidized to O2 so it acts as a reducer because it donates electrons which allows the reduction of other substances.

Finally, in a disproportionation reaction, H2O2 can act as both the oxidizing and reducing agent, showing the same substance functioning as an oxidant and a reductant. The complete balanced equation for this disproportionation reaction of H2O2 is:

2H2O2 → 2H2O + O2

Learn more about Redox Reactions here:

https://brainly.com/question/13978139

#SPJ12

The reduced coenzymes generated by the citric acid cycle donate electrons in a series of reactions called the electron transport chain. The energy from the electron transport chain is used for oxidative phosphorylation. Which compounds donate electrons to the electron transport chain? H 2 O H2O FADH 2 FADH2 ADP ADP NADH NADH NAD + NAD+ O 2 O2 FAD FAD ATP ATP Which compound is the final electron acceptor? NADH NADH ATP ATP H 2 O H2O NAD + NAD+ FADH 2 FADH2 FAD FAD O 2 O2 ADP ADP Which compounds are the final products of the electron transport chain and oxidative phosphorylation? ADP ADP NADH NADH O 2 O2 NAD + NAD+ FADH 2 FADH2 ATP ATP H 2 O H2O FAD

Answers

Answer:

The reduced coenzymes generated by the citric acid cycle donate electrons in a series of reactions called the electron transport chain. The energy from the electron transport chain is used for oxidative phosphorylation.

a)The compounds that donate electrons to the electron transport chain are NADH and . FADH2

b) O2 is the final electron acceptor.

c) The final products of the electron transport chain and oxidative phosphorylation are NAD+, H2O, ATP and FAD

Explanation:

The charges and sizes of the ions in an ionic compound affect the strength of the electrostatic interaction between the ions and thus the strength of the lattice energy of the ionic compound. Arrange the compounds according to the magnitudes of their lattice energies based on the relative ion charges and sizes.- MgS

- NaCl

- MgCl_2

- KBr

Answers

Final answer:

The charges and sizes of ions in an ionic compound determine the strength of its lattice energy.

Explanation:

The strength of the lattice energy in an ionic compound is determined by the charges and sizes of the ions. The larger the charges and the smaller the ion sizes, the stronger the electrostatic interaction and the higher the lattice energy. Based on this, the compounds can be arranged in order of their magnitudes of lattice energies:

MgSKBrNaClMgCl2

MgS has the highest lattice energy because of the high charge and small size of both the Mg2+ and S2- ions.

So the order of lattice energies would be: MgS > MgCl_2 > NaCl > KBr

Learn more about Lattice energy here:

https://brainly.com/question/34679410

#SPJ3

A certain half-reaction has a standard reduction potential +0.80 V . An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 0.9 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell.
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?

Answers

Answer:

a. Minimum 1.70 V

b. There is no maximum.

Explanation:

We can solve this question by remembering that the cell potential is given by the formula

ε⁰ cell = ε⁰ reduction -  ε⁰  oxidation

Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the  oxidized species  0.80 V, thus

ε⁰ reduction -  ε⁰  oxidation ≥  ε⁰ cell

Since ε⁰  oxidation is by definition the negative of ε⁰ reduction , we have

ε⁰ reduction - ( 0.80 V )  ≥  0.90 V

⇒ ε⁰ reduction  ≥ 1.70 V

Therefore,

(a) The minimum standard reduction potential is 1.70 V

(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V

Complete the electron pushing mechanism for the formation of the following cyclic acetal under acidic conditions by adding any missing atoms, bonds, charges, non-bonding electrons, and curved arrows. Note the use of a generic base B: that represents any basic molecule in solution, in this case another ethylene glycol.

Answers

Question:

The question is incomplete. See the attached file for the complete question and answer.

Explanation:

Find attached for explanation.

The first two pages is the additional question while the 3rd and last page is the answer .

Mark each of the following statements as either True or False: The rate law is deduced directly from the coefficients of the overall reaction. The rate equation for this mechanism is rate = k [O][ClO]. ClO(g) is an intermediate formed in this reaction mechanism. Step 2 of the mechanism is a bimolecular. The sum of the two steps is equal to the overall reaction: O(g) + O3(g) → 2O2(g). Cl(g) is a catalyst in this reaction mechanism.

Answers

Answer:

Details of true/false statements are given below.

Explanation:

The rate law is deduced directly from the coefficients of the overall reaction. False

The rate equation for this mechanism is rate = k [O][ClO]. ClO(g) is an intermediate formed in this reaction mechanism. True

Step 2 of the mechanism is a bimolecular. True

The sum of the two steps is equal to the overall reaction: O(g) + O3(g) → 2O2(g). True

Cl(g) is a catalyst in this reaction mechanism. True

A flammable gas made up of only carbon and hydrogen is found to effuse through a porous barrier in 1.50 min. Under the same conditions of temperature and pressure, it takes an equal volume of bromine vapor 4.73 min to effuse through the same barrier. Calculate the molar mass of the unknown gas, and suggest what this gas might be.

Answers

Answer:

A. The molar mass of the unknown gas is 16g/mol

B. Compound is CH4 i.e methane

Explanation:

A. Step 1:

Representation:

Let t1 be time for unknown gas

Let t2 be the time for bromine vapor

Let M1 be molar mass of the unknown gas

Let M2 be the molar mass of bromine vapor

A. Step 2 :

Data obtained from the question.

Time for the unknown gas (t1) = 1.50 min

Time for Br2 (t2) = 4.73 min

Molar Mass of unknown gas (M1) =?

Molar Mass of Br2 (M2) = 80 x 2 = 160g/mol

A. Step 3:

Determination of the molar mass of the unknown gas.

Applying the equation:

t2/t1 = √(M2/M1)

The molar mass of can be obtained as follow:

t2/t1 = √(M2/M1)

4.73/1.5 = √(160/M1)

Take the square of both side

(4.73/1.5)^2 = 160/M1

9.94 = 160/M1

Cross multiply to express in linear form.

9.94 x M1 = 160

Divide both side by 9.94

M1 = 160/9.94

M1 = 16g/mol

Therefore, the molar mass of the unknown gas is 16g/mol

B. Identification of the gas.

The gas contains C and H only. From the calculations made above, the molar mass of the unknown gas is 16g/mol.

We know also that the molar mass of carbon is 12g/mol and that of Hydrogen is 1g/mol

Therefore,

C + H = 16

There would be only 1 atom of C in the compound since the molar mass of the compound is 16g/mol. With these understanding, let us determine the number of H atom in the compound. This is illustrated below :

C + H = 16

12 + H = 16

H = 16 - 12

H = 4

Divide by the molar mass of H i.e 1

H = 4/1 = 4

There are 4 atoms of H in the compound. Therefore, the compound is CH4 i.e methane

The molar mass of the unknown gas is 16 g/mol hence the unknown gas is methane.

We must note that the time taken for a gas to diffuse is directly proportional to the molar mass of the gas.

Hence;

t1/t2 = √M1/M2

Let t1 = time taken for the flammable gas to diffuse = 1.50 min

Let t2 = time taken for the bromine vapor to diffuse = 4.73 min

M1 = molar mass of the flammable gas = ?

M2 = molar mass of the bromine vapor = 160 g/mol

Substituting values;

1.50/4.73 = √M1/160

(1.50/4.73)^2 = M1/160

0.1006 =  M1/160

M1 = 0.1006 × 160

M1 = 16 g/mol

The unknown gas is methane.

Learn more: https://brainly.com/question/24381583

If the standard reduction potential of a half-cell is positive, which redox reaction is spontaneous when paired with a hydrogen electrode?

A. oxidation

B. both reduction and oxidation

C. reduction

D. neither reduction nor oxidation

Answers

If the standard reduction potential of a half-cell is positive, the reduction reaction is spontaneous when paired with a hydrogen electrode

Explanation:

The relative standard reduction potential of the half-cell in which reduction occurs; more positive than the other half-cell.If the standard reduction potential of a half-cell is positive, the reduction reaction is spontaneous when paired with a hydrogen electrode.The reduction is a chemical process in which electrons are added to an atom or an ion; it always occurs accompanied by oxidation of the reducing agent.The reduction to happen the electrons gained by the material that is being decreased must be transported from the atoms of ions of a different material.

Answer:

Reduction

Explanation:

Question 3After creating a Beer's Law plot using standard solutions of Q, you determined the slope of Beer's Law to be 0.515 M-1. Your unknown solution of Q tested in Part B of the experiment had an absorbance of 0.145. Determine the concentration (in molarity) of the unknown solution Q from Part B.Question 4Refer to the procedure stated in the manual pages for Part A to answer the following question.Using the equation editor embedded in this question, show a sample calculation determining the original concentration of the provided unknown Q in Part A from the diluted concentration calculated in question 3 above.Lab ManualYou have been provided with a solution of unknown Q, the actual molar concentration is listed as the unknown number. Dilute 15.00 mL of the provided solution to a final volume of 50.00 mL. You may only use the equipment and reagents listed above. Be sure to record your unknown number in your notebook. After making your dilution, calculate the concentration of your diluted solution.

Answers

Final answer:

The concentration of the unknown solution 'Q' from Part B is determined to be 0.282 M using Beer's Law. The original concentration of the unknown 'Q' from Part A, before dilution, is calculated to be 0.94 M.

Explanation:

The concentration of the unknown solution Q can be determined using the Beer's Law plot. Beer's Law or the Beer-Lambert law connects the absorbance of a solution to its concentration through the following equation: A = εcl, where 'A' is the absorbance, 'ε' is the molar absorptivity, 'c' is the concentration and 'l' is the path length. The slope of the Beer's Law plot corresponds to the product, 'εl'. So, the concentration can be calculated as: c=A/(εl), which gives c= 0.145/0.515 M-1 = 0.282 M

Regarding the dilution of the solution in Part A, we are given that 15.00 mL of the solution was diluted to a final volume of 50.00 mL. This can be used to calculate the original concentration. The formula used in this case is C1V1 = C2V2, where C1 is the original concentration, V1 is the original volume, C2 is the diluted concentration, and V2 is the final volume. Substituting C2 with the concentration we just calculated, the original concentration C1 can be calculated as: C1 = (C2V2)/V1 = (0.282 M × 50.00 mL)/ 15.00 mL = 0.94 M.

Learn more about Beer's Law and Dilution here:

https://brainly.com/question/33649091

#SPJ11

What pressure is needed to reduce the volume of gases in a car’s cylinder from 48.0 cm3 at 102 kPa to 5.20 cm3?

Answers

Answer: The pressure that is needed is around 405kPa-755kPa

To summarize into 405PPM-755PPM

Explanation: In which 405 PPM-755 PPM which is about the same amount of pressure that water pressurises a car in water or a better example is that it's the same amount of pressure as if a penny was dropped from the sky towards a person holding a square piece of cardboard in which then the penny would directly go straight through the piece of cardboard.

Which statement describes solctices

Answers

Answer:funk

hot dog cat

Explanation:

uhughuhuhuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Answer:

They occur when the sun reaches its highest or lowest point in the sky

Draw the line‑bond structure of oleic acid (cis‑9‑octadecenoic acid), CH 3 ( CH 2 ) 7 CH = CH ( CH 2 ) 7 COOH , at physiological pH. Hydrogen atoms attached to carbon atoms do not need to be drawn.

Answers

Answer : The line-bonds structure of oleic acid (cis‑9‑octadecenoic acid) is shown below.

Explanation :

In line-bonds formula, the organic structures of the compound are represented in such a way that covalent bonds are represented by line and frame the structure by zig-zag straight lines which emits all the hydrogen atom.

The terminals of the line and vertex represents carbon atoms whose valences are satisfied by formation of single bonds with H atom.

The given compound is, (cis‑9‑octadecenoic acid)

In this compound, the parent chain is 18 membered and the carboxylic acid functional group is attached to it.

Consider a 125 mL buffer solution at 25°C that contains 0.500 mol of hypochlorous acid (HOCl) and 0.500 mol of sodium hypochlorite (NaOCl). What will be the pH of this buffer solution after adding 0.341 mol of HCl? The Ka of hypochlorous acid is 2.9 x 10-8 . Assume the change in volume of the buffer solution is negligible

Answers

Answer:

pH = 6.82

Explanation:

To solve this problem we can use the Henderson-Hasselbach equation:

pH = pKa + log[tex]\frac{[NaOCl]}{[HOCl]}[/tex]

We're given all the required data to calculate the original pH of the buffer before 0.341 mol of HCl are added:

pKa = -log(Ka) = -log(2.9x10⁻⁸) = 7.54[HOCl] = [NaOCl] = 0.500 mol / 0.125 L = 4 MpH = 7.54 + log [tex]\frac{4}{4}[/tex]pH = 7.54

By adding HCl, we simultaneously increase the number of HOCl and decrease NaOCl:

pH = 7.54 + log[tex]\frac{[NaOCl-HCl]}{[HOCl+HCl]}[/tex]pH = 7.54 + log [tex]\frac{(0.500mol-0.341mol)/0.125L}{(0.500mol+0.341mol)/0.125L}[/tex]pH = 6.82

You add 100.0 g of water at 52.0 °C to 100.0 g of ice at 0.00 °C. Some of the ice melts and cools the water to 0.00 °C. When the ice and water mixture reaches thermal equilibrium at 0 °C, how much ice has melted? (The specific heat capacity of liquid water is 4.184 J/g ⋅ K. The enthalpy of fusion of ice at 0 °C is 333 J/g.) Mass of ice = g

Answers

Answer:

[tex]m_{ice} = 65.336\,g[/tex]

Explanation:

Accoding to the First Law of Thermodynamics, the heat released by the water melts a portion of ice. That is to say:

[tex]Q_{water} = Q_{ice}[/tex]

[tex](100\,g)\cdot \left(4.184\,\frac{J}{kg\cdot ^{\textdegree}C}\right)\cdot (52\,^{\textdegree}C - 0\,^{\textdegree}C) = m_{ice}\cdot \left(333\,\frac{J}{g} \right)[/tex]

The amount of ice that is melt is:

[tex]m_{ice} = 65.336\,g[/tex]

What is the density of N2 gas (molar mass: 28 g/mol), at 400 K and 2 atm?


Answers

Answer:

Density= 1.7g/dm3

Explanation:

Applying

P×M= D×R×T

P= 2atm, Mm= 28, D=? R= 0.082, T= 400K

2×28= D×0.082×400

D= (2×28)/(0.082×400)

D= 1.7g/dm3

Three elements have the electron configurations 1s22s22p63s1, 1s22s22p63s2, and 1s22s22p5. The first ionization energies of these elements (not in the same order) are 1.681, 0.738, and 0.496 MJ/mol. The atomic radii are 160, 186, and 64 pm. Identify the three elements, and match the appropriate values of ionization energy and atomic radius to each configuration.

Answers

Answer:

Explanation:

1s²2s²2p⁶3s² = magnesium ionization energy, 0.738 MJ/mol atomic radius 160 pm

1s²2s²2p⁶3s¹ = Sodium, ionization energy, 0.496 MJ/mol, atomic radius 186 pm

1s²2s²2p⁵ = Florine ionization energy, 1.681 MJ/mol, atomic radius 64 pm

Ionization energy is the minimum amount of energy needed to remove an electron from its orbital around the atom from the influence of the atom while atomic radius is one-half the distance between the nuclei of identical atoms that are bonded together.

What is the standard entropy change for the reaction below? 2 CO(g) + 2 NO(g) → N2(g) + 2 CO2(g) S o (CO(g)) = 197.7 J/(mol·K) S o (CO2(g)) = 213.8 J/(mol·K) S o (NO(g)) = 210.8 J/(mol·K) S o (N2(g)) = 191.6 J/(mol·K)

Answers

Answer:

The standard entropy change for the reaction is -197.8 J/mol*K

Explanation:

Step 1: Data given

S°(CO(g)) = 197.7 J/(mol*K)

S°(CO2(g)) = 213.8 J/(mol*K)

S°(NO(g)) = 210.8 J/(mol*K)

S°(N2(g)) = 191.6 J/(mol·K)

Step 2: The balanced equation

2 CO(g) + 2 NO(g) → N2(g) + 2 CO2(g)

Step 3: Calculate ΔS°

ΔS° = ∑S°(products) - ∑S°(reactants)

ΔS° = (191.6 + 2*213.8) - (2*210.8+2*197.7)  J/mol*K

ΔS° = 619.2 J/mol*K - 817.0 J/mol *K

ΔS° = -197.8 J/mol* K

The standard entropy change for the reaction is -197.8 J/mol*K

Draw the organic product(s) of the reaction of p-methylbenzoic acid with CH3MgBr in dry ether, then H3O+ in the window below. If no new products are formed, tell OWL by drawing ethane, CH3CH3.

Answers

Answer:

Methane is produced as a new product.

Explanation:

[tex]CH_{3}MgBr[/tex] acts as a base toward -COOH group in p-methylbenzoic acid.

Hence an acid-base reaction occurs between p-methylbenzoic acid and [tex]CH_{3}MgBr[/tex] to produce methane and p-methylbenzoate.

[tex]H_{3}O^{+}[/tex]addition will convert p-methylbenzoate back to p-methylbenzoic acid.

Hence, methane is produce as a new product.

Reaction sequences are given below.

Other Questions
Throughout college and even while attending law school, Devon always dressed very casually, sported long hair, and had a number of rings in his nose. When he had the opportunity to work with a prestigious law firm for the summer, he changed his appearance quite radically. Now, he wears three-piece suits and silk ties and has short hair and no nose rings. This change in Devon's behavior related to his appearance is likely motivated by ___________. Find the area of the isosceles triangle.13 cm/10 cm Which of these statements about California is true? The Gold Rush had little effect on the economy. The people applied for statehood before the Gold Rush began. Prices for supplies during the Gold Rush were very low. Many towns relied on vigilantes for protection from criminals. The full question is shown below What is the limit of the infinite series ?n=1(3n^5/6n^6+1) The actual war between the United States and Mexico started afterthe United States invaded Mexico.Mexico invaded the United States.the United States sent troops into the disputed border region.Mexican forces attacked and killed American troops.American troops seized a town in Mexico. Use the information presented in Midwestern Mutual Bank's balance sheet to answer the following questions. Banks Balance SheetAssets Liabilities and Owners' EquityReserves $150 Deposits $1,200Loans $600 Debt $200Securities $750 Capital (owners' equity) $100Suppose a new customer adds $100 to his account at Midwestern Mutual Bank, which the owners of the bank then use to make $100 worth of new loans. This would increase the loans account and (increase/decrease) the (debt,capital,deposits,loan, reverse) account.This would also bring the leverage ratio from its initial value of to a new value of .Which of the following is true of the capital requirement? Check all that apply.Its intended goal is to protect the interests of those who hold equity in the bank.The amount of capital required depends on the type of assets the bank holds.It specifies a minimum leverage ratio for all banks. An enhancer may increase the frequency of transcription initiation for its associated gene when (indicate true or false for each statement and explain your answer) A. it is located 1000 nucleotides upstream of the genes core promoter. B. ...it is located 1000 nucleotides downstream of the genes core promoter. C. it is in the genes coding region. Odette has two investments that she purchased at the same time. Investment 1 cost $10,000 and earns 4% interest each year. Investment 2 cost $8000 and earns 6% interest each year.Write exponential growth functionsthat could be used to find v1(t) and v2(t), _________________________________the values of the investments after t years. Find the value of each investment after 5 years.Explain why the difference between their values, ____________________________ which was initially $2000, is now less Help please? 15 points here Ionic bonding would most likely occur between which two elements? How does the narrator's mood change over the course of the poem of the Raven Eddie and his wife Lesley have just shared a fulfilling sexual experience. Unlike Lesley, Eddie is not likely to be able to experience another orgasm for a period of time. This stage of the sexual response cycle is called the: Why is it that an aneroid barometer is able to measure altitude as well as atmospheric pressure? Why is it that an aneroid barometer is able to measure altitude as well as atmospheric pressure? Aneroid barometers use radar to measure altitude. Atmospheric pressure is independent of altitude. Atmospheric pressure increases as altitude increases. Atmospheric pressure decreases as altitude increases. Which visual aid would help a group of veterinary students study a dog's anatomy?a group of pictures of dogs in various posesa diagram that labels different bones in a dog's bodya line graph that shows how a dog's bones grow over timea bar graph comparing the sizes of bones of different dog breeds The function below takes one parameter: a list of strings (string_list). Complete the function to return a single string from string_list. In particular, return the string that contains the most copies of the word the as upper case or lower case. Be sure, however, to return the string with its original capitalization. You may want to use the count() method of sequences to implement this function. What does fractioned mean in the context of the book? the omnivore's dilemma Abigail is climbing up and rappelling down a series of cliffs and drop-offs. She starts at her base camp, which is on the middle of a mountain. She begins by rappelling down an 82.5-foot drop-off and then climbs a cliff of 30.4 feet. Next she rappels down a 45.5-foot drop-off and then climbs a 25.2-foot cliff. Finally she makes two 45.4-foot climbs. How else can I describe the data You are considering the purchase of an office building for $1.5 million today. Your expectations include the following: first-year potential gross income of $340,000; vacancy and collection losses equal to 15 percent of potential gross income; operating expenses equal to 40 percent of effective gross income and capital expenditures equal 5 percent of EGI. You expect to sell the property five years after it is purchased. You estimate that the market value of the property will increase four percent a year after it is purchased and you expect to incur selling expenses equal to 6 percent of the estimated future selling price. What is estimated effective gross income (EGI) for the first year of operations?