Nitrogen is not a vital component of life on Earth.

a. True

b. False

Answers

Answer 1

Answer:

true

Explanation:

Nitrogen is essential to life on Earth. It is a component of all proteins, and it can be found in all living systems. Nitrogen compounds are present in organic materials, foods, fertilizers, explosives and poisons. Nitrogen is crucial to life, but in excess it can also be harmful to the environment.


Related Questions

Which chemical equation represents a precipitation reaction?

Answers

Answer:

See the answer below, please.

Explanation:

A precipitation reaction is defined as one that yields an insoluble compound (precipitate) as a product by mixing two different solutions. An example:

NaCl + AgN03 -> Agcl (precipitate) + NaN03

Answer:

K2CO3 + PbCl2 → 2KCl + PbCO3

Explanation:

This is correct because a percipitant solution is one that has an insoluble compound in it and PbCO3 is insoluble since the Pb is not amonium or an alkaline metal. The compound PbCO3 is unsoluable and 2KCl is soluable.  

SOLUBILITY RULES:

1.) Hydroxides (OH−), carbonates (CO32−), and phosphates (PO43−) are insoluble, except for compounds containing group 1 alkali metals and ammonium (NH4+).

2.) Chlorides (Cl−), bromides (Br−), and iodides (I−) are soluble, except for compounds containing silver (Ag+), mercury(I) (Hg22+), and lead (Pb2+).

can someone please please explain how to write the formula for a compound containing a polyatomic ion. If you could include examples that would be great too!

Answers

Answer:

Explanation:

Polyatomic ions are ions which consist of more than one atom. For example, nitrate ion, NO3-, contains one nitrogen atom and three oxygen atoms. The atoms in a polyatomic ion are usually covalently bonded to one another, and therefore stay together as a single, charged unit.

Final answer:

To write the formula for a compound with a polyatomic ion, consider that the compound should be electrically neutral. Balance the charges from different ions, treating polyatomic ions as discrete units. For instance, calcium phosphate (Ca3(PO4)2) illustrates this with three calcium ions and two phosphate ions.

Explanation:

When writing the formula for a compound containing a polyatomic ion, you must consider that the compound has to be electrically neutral overall. This often involves balancing the number of positive and negative charges coming from different ions. The polyatomic ions are usually treated as discrete units in the formula.

For example, consider calcium phosphate, which has the formula Ca3(PO4)2. Here, there are three calcium ions (Ca²+), and two phosphate groups (PO4³-). Each PO4³- group comprises one phosphorus atom and four oxygen atoms. The overall compound is electrically neutral because the positive charges from the three calcium ions balance out the negative charges from the two phosphate ions.

Another example can be seen in the ionic compound sodium oxalate, which has the formula Na₂C₂O₄. Here, the polyatomic ion is C₂O₄²-, and the compound has two sodium ions (Na⁺) for each oxalate ion. The formula of this compound is not empirical because it represents the number of atoms in the discrete unit of the oxalate ion.

Learn more about Polyatomic Ion here:

https://brainly.com/question/25055220

#SPJ3

Find both the volume percent of a solution that has 10.0 g of ethanol (D = 0.7893 g/mL) and 90.0 g of water (D = 0.9987 g/mL). Assume volumes are additive.

Answers

Answer:

Volume percent of a solution that has 10.0 g of ethanol= 12.37%

Volume percent of a solution that has 90.0 g of water = 87.69%

Explanation:

Volume Percent:

The volume percent helps us  to indicate the concentration of the solution when the volume of the solute and volume of the solution is given by

[tex]Volume Percent=\frac{\text{Volume of the Solute}}{\text{Volume of Solution}}\times100%[/tex]

With respect to density 1mL of ethanol

=> 0.7893g or 10g of methanol contains

=> [tex]\frac{1}{0.7893}\times10[/tex]

=> 12.67mL

And for water = [tex]\frac{1}{0.9987} \times 90.0[/tex]

=> 90.12mL

Now total volume = 90.12+ 12.67 = 102.79mL

%(v/v) for water = [tex]\frac{90.12}{102.79}\times 100[/tex]

 = 87.69%

%(v/v) for ethanol = [tex]\frac{12.67}{102.79}\times 100[/tex]

 = 12.37%

Final answer:

The volume percent of ethanol in the solution is 12.3%, and the volume percent of water is 87.7%. This is calculated by determining the volume of each substance using their respective densities and the mass provided and then finding the percentage of each substance's volume in the total solution volume.

Explanation:

To find the volume percent of a solution that has 10.0 g of ethanol with a density (D) of 0.7893 g/mL, and 90.0 g of water with a density (D) of 0.9987 g/mL, we first calculate the volumes of each component. For ethanol, divide 10.0 g by 0.7893 g/mL to get the volume in milliliters. For water, divide 90.0 g by 0.9987 g/mL to get the volume in milliliters.

To calculate the volume of ethanol: 10.0 g / 0.7893 g/mL = 12.7 mL
To calculate the volume of water: 90.0 g / 0.9987 g/mL = 90.2 mL
Assuming volumes are additive: Total volume of the solution = 12.7 mL (ethanol) + 90.2 mL (water) = 102.9 mL

Now, we can find the volume percent of ethanol: (volume of ethanol / total volume of solution) × 100% = (12.7 mL / 102.9 mL) × 100% = 12.3%

The volume percent of water is similarly calculated: (volume of water / total volume of solution) × 100% = (90.2 mL / 102.9 mL) × 100% = 87.7%

Learn more about Volume Percent here:

https://brainly.com/question/15461083

#SPJ3

KAYLA BURNED A CANDLE IN A CLOSED SYSTEM WHERE MATTER CANNOT ENTER OR ESCAPE. GIVEN THIS SITUATION, WHAT SHOULD EQUAL THE MASS OF THE ORIGINAL CANDLE

Answers

Answer:same

Explanation:

Calculate the amount of CuSO4•5H2O required to make 25 mL of a 0.45 M solution of CuSO4.

Answers

Answer:

Mass = 1.76 g

Explanation:

Given data:

Volume of solution = 25 mL

Molarity = 0.45 M

Amount of CuSO₄.5H₂O = ?

Solution:

Molarity = number of moles / volume in litter

Number of moles = Molarity × Volume in L

Number of moles = 0.45 M  × 0.025 L

Number of moles = 0.011 mol

Mass of f CuSO₄.5H₂O:

Mass = Number of moles ×  molar mass

Mass = 0.011 mol × 159.6 g/mol

Mass = 1.76 g

How many grams of chlorine gas are needed to make 117 grams of sodium chloride? Given the reaction: 2Na + Cl2 → 2NaCl

Answers

Answer:

71 grams of chlorine gas.

Explanation:

2Na + Cl2 = 2NaCl.

From the molar masses:

2(23+35.45) g of NaCl are made from  2*35.45 g Cl2 gas.

So  117 g are made from  (2*35.45  * 117)  / 2(23+35.45)

= 71 g.

Final answer:

To make 117 grams of sodium chloride, you would need 121 grams of chlorine gas.

Explanation:

To calculate the amount of chlorine gas needed to make 117 grams of sodium chloride, we need to use stoichiometry.

Step 1: Convert the mass of sodium chloride to moles using the molar mass of NaCl which is 58.4 g/mol.

Step 2: Use the balanced equation to determine the mole ratio between chlorine gas and sodium chloride. From the equation 2Na + Cl2 -> 2NaCl, we can see that 1 mole of Cl2 reacts with 2 moles of NaCl.

Step 3: Convert moles of Cl2 to grams using the molar mass of Cl2 which is 70.9 g/mol.

Therefore, to make 117 grams of sodium chloride, we need (117 g NaCl) * (1 mol NaCl / 58.4 g NaCl) * (1 mol Cl2 / 2 mol NaCl) * (70.9 g Cl2 / 1 mol Cl2) = 121 grams of chlorine gas.

Learn more about stoichiometry here:

https://brainly.com/question/30218216

#SPJ3

What's C2H6O2 in empirical formula?

Answers

The empirical formula for [tex]C_2H_6O_2[/tex] is [tex]CH_3O[/tex], obtained by finding the simplest whole-number ratio of the elements after dividing the number of atoms in the molecular formula by the greatest common divisor.

To determine the empirical formula of [tex]C_2H_6O_2[/tex], we need to find the simplest whole-number ratio of the atoms of each element in the compound. We can start by noting that the number of carbon (C), hydrogen (H), and oxygen (O) atoms as represented in the molecular formula [tex]C_2H_6O_2[/tex].

Looking at the subscripts of the elements, we can divide each by the greatest common divisor of the subscripts, which is 2. Doing this, we get:

Carbon: 2 / 2 = 1

Hydrogen: 6 / 2 = 3

Oxygen: 2 / 2 = 1

Therefore, the empirical formula is [tex]CH_3O[/tex]. To clarify, this is the simplest form of a formula representing the chemical composition.

As a check, if we consider the molecular formula of a very different compound, glucose, which is [tex]C_6H_{12}O_6[/tex], the empirical formula is [tex]CH_2O[/tex], because it is the simplest whole-number ratio, which in glucose's case is 1:2:1 for carbon, hydrogen, and oxygen atoms, respectively.

Cathode rays are composed of_____.

a. protons

b. electrons

c. neutrons

Answers

Answer:

negatively-charged particles.(ELECTRON) B

Explanation:

Electrons are the negatively charged particles of atom. Together, all of the electrons of an atom create a negative charge that balances the positive charge of the protons in the atomic nucleus

It’s electron B because it’s electric charged

Draw Lewis structures for each of the following.
1. nitrogen trifluoride, NF3
2. hydrogen sulfide, H2S
3. fluorine, F2
4. carbon monoxide, CO
5. sulfur dioxide, SO2
6. oxygen, O2
7. sulfur difluoride, SF2
8. boron trihydride, BHz
9. chloroform, CHCl3
10. carbon disulfide, CS2
11. beryllium chloride, BeCl2
12. hydrogen cyanide, HCN
13. acetylene, C2H2
14. silicon dioxide, SiO2
15. hydrogen peroxide, H2O2
16. sulfate, SO2-
17. methanol, CH3OH
18. nitrate, NO3
19. chlorite, CIO,
20. formic acid, CH2O

Answers

Answer:

Structures Attached

Explanation:

1. Total Number of e⁻  in NF₃

Number of e in Nitrogen = 5

Number of e in Flourine = 7

Total Number of e⁻ in NF₃ = 5 + 7(3)

Total Number of e⁻ in NF₃ = 5 + 21

Total Number of e⁻ in NF₃ = 26

2. Total Number of e⁻  in H₂S

Number of e in Hydrogen = 1

Number of e in sulphur = 6

Total Number of e⁻ in H₂S = 1(2) + 6

Total Number of e⁻ in H₂S = 2 + 6

Total Number of e⁻ in H₂S = 8

3. Total Number of e⁻  in F₂

Number of e in Flourine = 7

Total Number of e⁻ in F₂ = 7(2)

Total Number of e⁻ in F₂ = 14

4. Total Number of e⁻  in CO

Number of e in carbon = 4

Number of e in oxygen = 6

Total Number of e⁻ in CO = 4 + 6

Total Number of e⁻ in CO = 10

5. Total Number of e⁻  in SO₂

Number of e in Sulphur = 6

Number of e in oxygen = 6

Total Number of e⁻ in SO₂ = 6 + 6(2)

Total Number of e⁻ in SO₂ = 6 + 12

Total Number of e⁻ in SO₂ = 18

6. Total Number of e⁻  in O₂

Number of e in Oxygen = 6

Total Number of e⁻ in O₂ = 6(2)

Total Number of e⁻ in O₂ = 12

7. Total Number of e⁻  in SF₂

Number of e in Sulphur = 6

Number of e in Flourine = 7

Total Number of e⁻ in SF₂ = 6 + 7(2)

Total Number of e⁻ in SF₂ = 6 + 14

Total Number of e⁻ in SF₂ = 20

8. Total Number of e⁻  in BH₃

Number of e in Boron = 3

Number of e in Hydrogen = 1

Total Number of e⁻ in BH₃ = 3 + 1(3)

Total Number of e⁻ in BH₃ = 3 + 3

Total Number of e⁻ in BH₃ = 6

9. Total Number of e⁻  in CHCl₃

Number of e in Carbon = 4

Number of e in Hydrogen = 1

Number of e in chlorine = 7

Total Number of e⁻ in CHCl₃ = 4 + 1+ 7(3)

Total Number of e⁻ in CHCl₃ = 4 + 1 + 21

Total Number of e⁻ in CHCl₃ = 26

10. Total Number of e⁻  in CS₂

Number of e in Carbon = 4

Number of e in Sulphur = 6

Total Number of e⁻ in CS₂ = 4 + 6(2)

Total Number of e⁻ in CS₂ = 4 + 12

Total Number of e⁻ in CS₂ = 16

11. Total Number of e⁻  in BeCl₂

Number of e in Beryllium = 2

Number of e in Chlorine = 7

Total Number of e⁻ in BeCl₂ = 2 + 7(2)

Total Number of e⁻ in BeCl₂ = 2 + 14

Total Number of e⁻ in BeCl₂ = 16

12. Total Number of e⁻  in HCN

Number of e⁻ in Hydrogen = 1

Number of e⁻ in Carbon = 4

Number of e⁻ in Nitrogen = 5

Total Number of e⁻ in HCN = 1 + 4 + 5

Total Number of e⁻ in HCN = 10

13. Total Number of e⁻  in C₂H₂

Number of e⁻ in Carbon = 4

Number of e⁻ in Hydrogen = 1

Total Number of e⁻ in C₂H₂ = 4(2) + 1(2)

Total Number of e⁻ in C₂H₂ = 8 + 2

Total Number of e⁻ in C₂H₂ = 10

14. Total Number of e⁻  in SiO₂

Number of e⁻ in Silicon = 4

Number of e⁻ in Oxygen = 6

Total Number of e⁻ in SiO₂ = 4 + 6(2)

Total Number of e⁻ in SiO₂ = 4 + 12

Total Number of e⁻ in SiO₂ = 16

15. Total Number of e⁻  in H₂O₂

Number of e⁻ in Hydrogen = 1

Number of e⁻ in Oxygen = 6

Total Number of e⁻ in H₂O₂ = 1(2) + 6(2)

Total Number of e⁻ in H₂O₂ = 2 + 12

Total Number of e⁻ in H₂O₂ = 14

16. Total Number of e⁻  in SO₂⁻

Number of e in Sulphur = 6

Number of e in Oxygen = 6

Total Number of e⁻ in SO₂⁻ = 6 + 6(2)

Total Number of e⁻ in SO₂⁻ = 6 + 12

Total Number of e⁻ in SO₂⁻ = 18

17. Total Number of e⁻  in CH₃OH

Number of e⁻ in Carbon = 4

Number of e⁻ in Hydrogen = 1

Number of e⁻ in Oxygen = 6

Total Number of e⁻ in CH₃OH = 4 + 1(3) + 6 + 1

Total Number of e⁻ in CH₃OH = 4 + 3 + 6 + 1

Total Number of e⁻ in CH₃OH = 14

18. Total Number of e⁻  in NO₃

Number of e⁻ in Nitrogen = 5

Number of e⁻ in Oxygen = 6

Total Number of e⁻ in NO₃ = 5 + 6(3)

Total Number of e⁻ in NO₃ = 5 + 18

Total Number of e⁻ in NO₃ = 23

19. Total Number of e⁻  in ClO

Number of e⁻ in Chlorine = 7

Number of e⁻ in Oxygen = 6

Total Number of e⁻ in ClO = 7 + 6

Total Number of e⁻ in ClO = 7 + 6

Total Number of e⁻ in ClO = 13

20. Total Number of e⁻  in CH₂O

Number of e⁻ in Carbon = 4

Number of e⁻ in Hydrogen = 1

Number of e⁻ in Oxygen = 6

Total Number of e⁻ in CH₂O = 4 + 1(2) + 6

Total Number of e⁻ in CH₂O = 4 + 2 + 6

Total Number of e⁻ in CH₂O = 12

Final answer:

Lewis structures for different molecules are provided, including nitrogen trifluoride, hydrogen sulfide, fluorine, carbon monoxide, sulfur dioxide, oxygen, sulfur difluoride, boron trihydride, chloroform, carbon disulfide, beryllium chloride, hydrogen cyanide, acetylene, silicon dioxide, hydrogen peroxide, sulfate, methanol, nitrate, chlorite, and formic acid.

Explanation:Nitrogen trifluoride, NF3: Nitrogen (N) is the central atom and it forms single bonds with three fluorine (F) atoms. Each fluorine atom has a lone pair of electrons.Hydrogen sulfide, H2S: Hydrogen (H) is the central atom and it forms single bonds with two sulfur (S) atoms. Each sulfur atom has a lone pair of electrons.Fluorine, F2: Fluorine (F) forms a single bond with another fluorine atom.Carbon monoxide, CO: Carbon (C) is the central atom and it forms a triple bond with oxygen (O).Sulfur dioxide, SO2: Sulfur (S) is the central atom and it forms a double bond with one oxygen (O) atom and a single bond with another oxygen atom. The oxygen atom with the double bond has two lone pairs of electrons.Oxygen, O2: Oxygen (O) forms a double bond with another oxygen atom.Sulfur difluoride, SF2: Sulfur (S) is the central atom and it forms a single bond with two fluorine (F) atoms. The sulfur atom has two lone pairs of electrons.Boron trihydride, BH3: Boron (B) is the central atom and it forms three single bonds with hydrogen (H) atoms.Chloroform, CHCl3: Carbon (C) is the central atom and it forms a single bond with three hydrogen (H) atoms and a single bond with chlorine (Cl) atom. The chlorine atom has three lone pairs of electrons.Carbon disulfide, CS2: Carbon (C) is the central atom and it forms double bonds with two sulfur (S) atoms.Beryllium chloride, BeCl2: Beryllium (Be) is the central atom and it forms two single bonds with chlorine (Cl) atoms.Hydrogen cyanide, HCN: Carbon (C) is the central atom and it forms a triple bond with nitrogen (N). The nitrogen atom has a lone pair of electrons.Acetylene, C2H2: Carbon (C) is the central atom and it forms triple bonds with another carbon atom. Each carbon atom forms single bonds with two hydrogen (H) atoms.Silicon dioxide, SiO2: Silicon (Si) is the central atom and it forms a double bond with one oxygen (O) atom and a single bond with another oxygen atom. The oxygen atom with the double bond has two lone pairs of electrons.Hydrogen peroxide, H2O2: Oxygen (O) is the central atom and it forms single bonds with two hydrogen (H) atoms. Each oxygen atom has two lone pairs of electrons.Sulfate, SO2-: Sulfur (S) is the central atom and it forms a double bond with one oxygen (O) atom and two single bonds with other oxygen atoms. The oxygen atoms with single bonds have a lone pair of electrons.Methanol, CH3OH: Carbon (C) is the central atom and it forms single bonds with three hydrogen (H) atoms, a single bond with oxygen (O) atom, and also has a lone pair of electrons. The oxygen atom has two lone pairs of electrons.Nitrate, NO3-: Nitrogen (N) is the central atom and it forms a double bond with one oxygen (O) atom and two single bonds with other oxygen atoms. The oxygen atoms with single bonds have a lone pair of electrons.Chlorite, CIO-: Chlorine (Cl) is the central atom and it forms a single bond with oxygen (O) atom and has two lone pairs of electrons. The oxygen atom has two lone pairs of electrons.Formic acid, CH2O: Carbon (C) is the central atom and it forms single bonds with two hydrogen (H) atoms, a single bond with oxygen (O) atom, and also has a lone pair of electrons. The oxygen atom has two lone pairs of electrons.

Learn more about Lewis structures here:

https://brainly.com/question/34631490

#SPJ6

determine the number of cobalt atoms in a 117.86 g sample of cobalt

Answers

Answer:

12.04 × 10²³ atoms

Explanation:

Given data:

Mass of cobalt = 117.86 g

Number of atoms = ?

Solution:

The given problem will solve by using Avogadro number.

It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.

The number 6.022 × 10²³ is called Avogadro number.

For example,

Number of moles of cobalt = 117.86 g/ 58.9 g/mol

Number of moles of cobalt = 2 mol

one moles of cobalt =  6.022 × 10²³ atoms of cobalt

2 moles × 6.022 × 10²³ atoms / 1 mol

12.04 × 10²³ atoms

Which of the following is true of gas?
A gas is not compressed because of the low intermolecular forces.
a gas does not easily mix with other gases becasye of the high density of substances as gases.
gas particles have high intermolecular forces, leading to the ability to flow easily. gas particles spread out to fill a container, leading to a low density of gas

Answers

Answer:

Gases mix easily because of their high kinetic energy and low inter-molecular forces.

Explanation:

Answer:

Gases mix easily because of their high kinetic energy and low inter-molecular forces.

Explanation:

Oxalic acid reacts with sodium hydroxide according to the following equation:
H2C2O4 + 2 NaOH → Na2C20. + 2 H20
A 25.00 mL sample of the H2C2O solution required 19.62 mL of 0.341 M NaOH for
neutralization. Calculate the molarity of the acid.​

Answers

Answer:

Concentration = 0.14 M

Explanation:

Given data:

Volume of base = 19.62 mL

Molarity of base = 0.341 M

Volume of acid = 25.00 mL

Molarity of acids = ?

Solution:

Number of moles of base = Molarity × volume in litter

Number of moles = 0.341 mol/L × 0.02 L

Number of moles =  0.007 mol

Concentration of acid:

Concentration = 1/2 (0.007 mol) / 25 mL × 10⁻³ L/mL

Concentration = 0.0035 mol / 25 × 10⁻³ L

Concentration = 1.4  × 10⁻¹ M

Concentration = 0.14 M

Vhat is the molarity of an Nal solution that contains 7.0 g of Nal in 23.0 mL of solution?

Answers

Answer:

Molarity = 5.22 M

Explanation:

Given data:

Mass of sodium chloride = 7.0 g

Volume of solution = 23.0 mL ( 23.0/1000 = 0.023 L)

Molarity = ?

Solution;

Number of moles of NaCl = 7.0 g/ 58.4 g/mol

Number of moles of NaCl = 0.12 mol

Molarity = moles of solute / volume in litter

Molarity = 0.12 mol /  0.023 L

Molarity = 5.22 M

Bob mixed 5 mg of sodium hydroxide pellets in 100 mL of water. Describe how the rate of the solution changes when he adds 1 mg more of sodium hydroxide pellets.

Answers

Answer:

As Bob add more solute to dissolves, the rate of solution will be decreases

Explanation:

At certain temperature the maximum amount of solute dissolve in the specific amount of solution or solvent.

There are many factors that affect solubility of the solute in solvent. Nature of the solute also affects the rate of solubility.

Temperature also affects the rate of solubility. Solubility increase when the temperature increases.

Pressure: Change in pressure have no effect on the rate of solubility

The rate of solution:  is a measure that how fast a substance dissolves in solvent.

Amount of solute already dissolved affect the rate of solution. If a solvent have little amount of solute in the solution it dissolve quickly. But when you have more solute in the solution the process was slower.

1 g of lead dissolves in 100 g of water at room temperature.  Similarly 5 mg of sodium hydroxide pellet dissolve in 100ml of water at room temperature.

So if Bob add 1 mg more of NaOH in the same 100ml of water the rate of the solubility decreases.

As there are some factors that decrease the solubility rate of NaOH pellet as follow:

• large size of the solute dissolve slowly as the solubility process take on      the surface of the solute particles, powders dissolve fast.

• less amount of solvent with ratio to solute

• saturated solution

So due to all above reasons the rate of the solubility decreases upon adding a little more amount of NaOH pellet.

Answer:

a

Explanation:

:)

How could soil and a mouse interact in an ecosystem?

Answers

Answer:

Explanation:

It could make burrows and homes in the dirt. It could hide food and itself in the soil. The Soil will grow food.

In an ecosystem , a mouse would make burrows in soil and soil would provide nutrients to the mouse.

What is an ecosystem?

Ecosystem is defined as a system which consists of all living organisms and the physical components with which the living beings interact. The abiotic and biotic components are linked to each other through nutrient cycles and flow of energy.

Energy enters the system through the process of photosynthesis .Animals play an important role in transfer of energy as they feed on each other.As a result of this transfer of matter and energy takes place through the system .Living organisms also influence the quantity of biomass present.By decomposition of dead plants and animals by microbes nutrients are released back in to the soil.

Learn more about ecosystem,here:

https://brainly.com/question/13979184

#SPJ2

Please help would really appreciate it! Thank you so much! ❤️ Have a wonderful day!

Answers

Answer:

option b : O₉S₁₀

Explanation:

There are some points to name a covalent compound, according to that

number of atoms numbered as

**mono for one, di - for two tri for three and so on.

the name of the atom as

**carbon as carbide, sulfur as sulfide, oxygen as oxide, foulrine as flouro etc.

So,

Formula of Nonoxide decasulfide

Now Naming of the Chemical compound

Following are the explanations of  terms

Prefix nono is used for number ''9'' denoting to the number of atomOxide used for oxygendeca is use for number ''10'' denoting to the number of atomSulfide is used for Sulfur in a compound

So keeping the above points in mind

The right answer is

Option b : O₉S₁₀

Explain why ionic compounds are electrically neutral

Answers

Answer:

Ionic compounds are electrically neutral because the positive ions and the negative ions in the compound cancel each other.

Explanation:

Ion- It is an atom or a molecule that has an equal number of protons (subatomic particles with positive electric charge) and electrons (subatomic particles with negative electric charge).

Positive ion- This is also called a "cation." It consists of more protons than electrons.

Negative ion- This is also called an "anion." It consists of more electrons than protons.

Ionic compounds are electrically neutral because they consist of anions and cations. This neutralizes the compounds. A common example of ionic compound is the NaCl (Sodium Chloride). The Na (Sodium) atom loses an electron in order to become Na+ while the Cl (Chlorine) atom gains an electron in order to become Cl-. This interaction balances them together.  

Final answer:

Ionic compounds are electrically neutral overall because the total number of positive charges of the cations equals the total number of negative charges of the anions. This allows ionic compounds to maintain overall neutrality despite the presence of positive and negative ions.

Explanation:

In every ionic compound, the total number of positive charges of the cations equals the total number of negative charges of the anions. Thus, ionic compounds are electrically neutral overall, even though they contain positive and negative ions. We can use this observation to help us write the formula of an ionic compound. The formula of an ionic compound must have a ratio of ions such that the numbers of positive and negative charges are equal.

if 115 G of a substance reacts with 84 grams of another substance what will be the mass of the products after the reaction​

Answers

Answer:

199 g

Explanation:

Law of conservation of mass:

According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.

Explanation:

This law was given by french chemist  Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.

For example:

In given reaction there are two reactant one with a mass of 115 g and other with the mass of 84 g thus the resultant product must have a mass of 199 g.

Chemical equation:

A + B → AB

115 g + 84 g = 199 g

119 g = 199 g

Final answer:

The mass of the products after the reaction between 115 grams and 84 grams of two substances, according to the Law of Conservation of Mass, will be 199 grams, assuming no material is lost during the reaction.

Explanation:

If 115 grams of a substance reacts with 84 grams of another substance, according to the Law of Conservation of Mass, the mass of the products after the reaction will be the sum of the masses of the reactants. This is because in a chemical reaction, matter is neither created nor destroyed, so the total mass of the reactants must equal the total mass of the products.

In this case, adding the masses of the reactants gives us:

115 g + 84 g = 199 g

Therefore, the mass of the products after the reaction will be 199 grams. However, this assumes a perfectly efficient reaction with no losses to factors such as gas escaping the reaction vessel or side reactions. In a practical setting, a slight discrepancy might be observed due to such factors.

u are given a 30.0g sample of radioactive uranium that has a half-life of 12 hours. How much uranium will be left after 2 days? 1Choice 1 3.75g 2Choice 2 15.0g 3Choice 3 60.0g 4Choice 4 1.88g

Answers

Answer:

1.88 g

Explanation:

We are given;

Mass of a radioactive sample of Uranium as 30.0 g Half life of Uranium sample is 12 hoursTime is 2 days

We are required to determine the amount of uranium left after 2 days

We are going to use the formula;

N = N₀ × 0.5^n

Where, N is the remaining mass, N₀ is the original mass and n is the number of half lives.

n = (2 × 24) ÷ 12 hours

  = 4

Therefore;

Remaining mass, N = 30.0 g × 0.5^4

                                = 1.875 g

                                = 1.88 g

Therefore, the mass of the remaining sample after decay is 1.88 g

How many milliliters of a 0.285 M HCl solution are needed to neutralize 249 mL of a 0.0443 M Ba(OH)2 solution?

Answers

Answer:

[tex]\large \boxed{\text{77.4 mL}}[/tex]

Explanation:

                Ba(OH)₂ + 2HCl ⟶ BaCl₂ + H₂O

    V/mL:     249

c/mol·L⁻¹:  0.0443     0.285

1. Calculate the moles of Ba(OH)₂

[tex]\text{Moles of Ba(OH)$_{2}$} = \text{0.249 L Ba(OH)}_{2} \times \dfrac{\text{0.0443 mol Ba(OH)}_{2}}{\text{1 L Ba(OH)$_{2}$}} = \text{0.011 03 mol Ba(OH)}_{2}[/tex]

2. Calculate the moles of HCl

The molar ratio is 2 mol HCl:1 mol Ba(OH)₂

[tex]\text{Moles of HCl} = \text{0.011 03 mol Ba(OH)}_{2} \times \dfrac{\text{2 mol HCl}}{\text{1  mol Ba(OH)}_{2}} = \text{0.022 06 mol HCl}[/tex]

3. Calculate the volume of HCl

[tex]V_{\text{HCl}} = \text{0.022 06 mol HCl} \times \dfrac{\text{1 L HCl}}{\text{0.285 mol HCl}} = \text{0.0774 L HCl} = \textbf{77.4 mL HCl}\\\\\text{You must add $\large \boxed{\textbf{77.4 mL}}$ of HCl.}[/tex]

what is molar mass of a gas if 0.0494g of the gas occupies a vol of 0.153 L at temperature of 26C and a pressure of 0.998 atm?

Answers

Answer:

[tex]\large \boxed{\text{7.94 g/mol}}[/tex]

Explanation:

We can use the Ideal Gas Law to solve this problem

pV = nRT

Data:

p = 0.998 atm

V = 0.153 L

T = 26 °C

m = 0.0494 g

1.  Convert temperature to kelvins

T = (26 + 273.15) K =  299.15 K

2. Calculate the number of moles

[tex]\text{0.998 atm} \times\text{0.153 L} = n \times \text{0.082 06 L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1}\times \text{299.15 K}\\\\0.1527 = n \times \text{24.55 mol}^{-1}\\\\n = \dfrac{0.1527}{\text{24.55 mol}^{-1}} = 6.220 \times 10^{-3} \text{ mol}[/tex]

3. Calculate the molar mass

[tex]\text{Molar mass} = \dfrac{\text{mass}}{\text{moles}}\\\\M = \dfrac{m}{n}\\\\M = \dfrac{\text{0.0494 g}}{6.220 \times 10^{-3} \text{ mol}}\\\\M = \textbf{7.94 g/mol}\\\text{The molar mass of the gas is } \large \boxed{\textbf{7.94 g/mol}}[/tex]

How can general properties influence element location on a periodic table?

Answers

Answer:

The elements in the periodic table are arranged in order of increasing atomic number.

Explanation:

The elements are arranged based on their atomic numbers in a periodic table, not based on their atomic masses.  

• The chemical elements in the periodic table are demonstrated in order of their atomic number.  

• In the modern periodic table, the arrangement of elements is done based on their atomic number, not their relative atomic masses.  

• In the periodic table, the horizontal rows, known as periods, show the arrangement of elements in order of increasing atomic number.  

Thus, based on atomic numbers, elements are arranged in a periodic table.

To know more about:

https://brainly.com/question/18738292

Condensation will most likely occur in a given volume
of air when the air is
A) saturated and contains no condensation nuclei
B) saturated and contains condensation nuclei
C) unsaturated and contains no condensation nuclei
D) unsaturated and contains condensation nuclei

Answers

Final answer:

Condensation is most likely to occur when air is saturated and contains condensation nuclei, as the saturation represents the maximum capacity for water vapor and the nuclei act as a base for the water vapor to condense into droplets.

Explanation:

Condensation can most likely occur in a given volume of air when the air is saturated and contains condensation nuclei. The saturation of air refers to its maximum capacity to hold water vapor. After reaching its saturation point, air cannot dissolve more water vapor, and any further addition of water vapor will lead to condensation. On the other hand, condensation nuclei are tiny particles that water vapor latches onto to form water droplets, facilitating the process of condensation. Therefore, air that is not only saturated with water vapor but also contains condensation nuclei has the strongest propensity for condensation to occur.

Learn more about Condensation here:

https://brainly.com/question/34705758

#SPJ12

How many decigrams are in 4.6 decagrams?

0.0046 decigrams
0.046 decigrams
460 decigrams
4,600 decigrams

Answers

Answer:

[tex]\large \boxed{\text{460 dg}}[/tex]

Explanation:

1. Convert decagrams to grams

[tex]\text{Mass} =  \text{4.6 dag} \times\dfrac{\text{10 g}}{\text{1 dag}} = \text{46 g}[/tex]

2. Convert grams to decigrams

\[tex]\text{Mass} =  \text{46 g} \times\dfrac{\text{10 g}}{\text{1 dg}} = \text{460 dg}\\\\\large \boxed{\textbf{4.6 dag = 460 dg}}[/tex]

How many moles are there in 8.50 X 10^24 molecules of sodium sulfate, Na2SO3?

(Molecules to Moles)

A.) 51.2 moles

B.) 5.12x10^48 moles

C.)14.1 moles

D.)1.40 Moles

Answers

Answer:

C) 14.1 moles

Explanation:

1 mole = 6.02 *10^ 23

8.50 * 10^24 molecules *(1 mole/6.02*10^23 molecules) ≈ 14.1 moles

The number of moles there are in 8.50 X [tex]10^{24}[/tex] molecules of sodium sulfate is 14.1 moles (option C).

How to calculate number of moles?

The number of moles in a molecule of a substance can be calculated by dividing the number of molecules by Avogadro's number as follows:

no of moles = no of molecules ÷ 6.02 × [tex]10^{23}[/tex] molecules

According to this question, there are in 8.50 X [tex]10^{24}[/tex] molecules of sodium sulfate in a substance. The number of moles in this substance can be calculated as follows:

no of moles = 8.50 X [tex]10^{24}[/tex] ÷ 6.02 × [tex]10^{23}[/tex]

no of moles = 14.1 moles

Learn more about moles at: https://brainly.com/question/34302357

#SPJ3

Jason has five equally massed lead fishing weights, each weighing 250 grams. What is the total mass of the five leaf fishing weights

Answers

Answer:

Total mass of 5 lead fishing weights= 1250 grams

Explanation:

Given:

Mass of a lead fishing weight =250 grams

To find total mass of 5 such fishing weights

We can apply unitary method to find total mass of 5 fishing weights.

If mass of 1 lead fishing weight = 250 grams

∴ Total mass of 5 lead fishing weights = [tex]250\times 5 =1250\ grams[/tex]

For each of the following balanced chemical equations, calculate how many moles of product(s) would be produced if 0.500 mole of the first reactant were to react completely.
A) CO29(g) + 4h2(g) = CH4 (g) + 2H2O(l)
B) BaCl2 (aq) + 2AgANO3 (aq) = 2AgCl (s) + Ba(NO3)2 (aq)
c) C3H8 (g) + 5O2 (g) = 4H2O (l) + 3CO2(g)
d) 3H2SO4 (aq) + 2Fe (s) = Fe2(SO4)3 (aq) + 3H2 (g)

Answers

Answer:

A) 1.5 moles  B) 1.5 moles  C) 3.5 moles  D) 2/3 moles

Explanation:

A) 1 mole of CO₂ gives 1 mole of CH₄ and 2 moles of H₂O, i.e, 3 moles of products. So 0.5 moles of CO₂ gives 3 x 0.5 = 1.5 moles of products.

B) 1 mole of BaCl₂ gives 2 moles of AgCl and 1 mole of Ba(NO₃)₂, i.e, 3 moles of products. So 0.5 moles of BaCl₂ gives 3 x 0.5 = 1.5 moles of products.

C) 1 mole of C₃H₈ gives 4 moles of H₂O and 3 moles of CO₂, i.e, 7 moles of products. So 0.5 moles of C₃H₈ gives 7 x 0.5 = 3.5 moles of products.

D) 3 moles of H₂SO₄ gives 1 mole of Fe₂(SO₄)₃ and 3 moles of H₂, i.e, 4 moles of products. So 0.5 moles of H₂SO₄ gives 4/3 x 0.5 = 2/3 moles of products.

Final answer:

To calculate the number of moles of product produced when a given amount of reactant is completely reacted, use the stoichiometric coefficients of the balanced chemical equation.

Explanation:

To calculate the number of moles of product produced when a given amount of reactant is completely reacted, we need to use the stoichiometric coefficients of the balanced chemical equation. Each coefficient represents the ratio of moles between reactants and products.

For example, in the first equation, CO2 (g) + 4H2 (g) → CH4 (g) + 2H2O (l), the coefficient of CO2 is 1 and the coefficient of CH4 is also 1. This means that for every 1 mole of CO2 that reacts, 1 mole of CH4 is produced.

Therefore, if 0.500 mole of CO2 were to react completely, 0.500 mole of CH4 would be produced.

Learn more about Moles of product produced here:

https://brainly.com/question/22393942

#SPJ3

how many moles are in 75.02 grams of strontium​

Answers

Answer:

1 grams Strontium Fluoride to mol = 0.00796 mol

10 grams Strontium Fluoride to mol = 0.07961 mol

50 grams Strontium Fluoride to mol = 0.39804 mol

100 grams Strontium Fluoride to mol = 0.79607 mol

200 grams Strontium Fluoride to mol = 1.59214 mol

500 grams Strontium Fluoride to mol = 3.98036 mol

1000 grams Strontium Fluoride to mol = 7.96072 mol

- Hopefully this helps a bit :)

Which are examples of physical weathering? Check all that apply.
grinding away of rock surface
top layers flaking off due to release of pressure
water dissolving soft rock
rust forming due to oxidation
temperature changes from hot to cold
animals digging burrows to make homes
water freezing, expanding and thawing repeatedly
acid rain weathering a statue
tree roots growing in the cracks of rock

Answers

Final answer:

Physical weathering refers to the process of breaking down rocks without changing their chemical composition. Examples include grinding away of rock, flaking due to pressure release, and water freezing and thawing.

Explanation:

Physical weathering refers to the process of breaking down rocks into smaller pieces without changing their chemical composition. Examples of physical weathering include the grinding away of a rock surface, the top layers of rock flaking off due to the release of pressure, and the freezing and thawing of water, which causes it to expand and contract and break the rock apart.

Other examples include tree roots growing in the cracks of rocks and animals digging burrows. On the other hand, rust forming due to oxidation and acid rain weathering a statue are examples of chemical weathering.

Final answer:

Physical weathering includes processes like abrasion, exfoliation, temperature fluctuations, freeze-thaw cycles, animal activities, and root wedging, all of which disintegrate rock mechanically.

Explanation:

The examples of physical weathering are those processes that result in the breakdown of rock without altering its chemical composition. Here are the examples that correctly apply to the concepts of physical weathering:

Grinding away of rock surface due to abrasionTop layers flaking off due to release of pressure (exfoliation)Temperature changes from hot to cold causing expansion and contractionWater freezing, expanding, and thawing repeatedly in cracks (freeze-thaw weathering)Animals digging burrows to make homes (biomechanical weathering)Tree roots growing in the cracks of rock (root wedging)

On the other hand, the following are not examples of physical weathering because they involve chemical changes to the rock: water dissolving soft rock, rust forming due to oxidation, and acid rain weathering a statue.

The procedure for an experiment is _____.
A. the variable that you will change
B. a set of safety rules that you need to follow in the lab
C. what you're going to do and how you're going to do it
D. research you've done about the topic you're investigating

Answers

Answer:

the correct answer would be c.

Answer:  The correct answer is: C. what you're going to do and how you're going to do it

Explanation:  A good experiment should follow a design with a few logical steps. An experiment must be carried out methodically in order to perform valid and reliable measurements. Experimenting is a procedure to check one or several hypotheses about a specific topic.

Other Questions
A bakery collects data on sales. Each sales record includes the date of the sale and some metadata about the items that were part of the sale. The data includes: the names of the items sold, the types of items sold, the number of each item sold, and the price of each item sold. Which of the following CANNOT be determined from the bakery's data set?A. The total income from sales the bakery received in the past month. B. Which customer most frequently purchases bread. C. The item bought in the highest quantity in the past week. D. Days when certain items sell the most. The children in Gavin's class are asked to name the children they like the most and the children they like the least. Many of Gavin's classmates list him as one of the children they like the least, and few list him as one of the children they like the most. Gavin would be classified as _____. The current and the potential difference in an inductor are in phase. B. The current lags the potential difference by /2 in an inductor C. The current leads the potential difference by /2 in an inductor. D. none of the above using elimination method, simultaneously solve this equation: 2y+3x=7 and 4x+3y=15 2. Which do you attain when you are full-grown emotionally?A) emotional maturityB)emotional intimacyC)midlife crisisD)emotional peak Explain the term molecular clock and describe the types of measurements and comparisons that can be made with this type of clock. Be sure to answer this question in paragraph form using complete sentences. 15 POINTS! What was Hoover's reaction to the Bonus Army? he met with them and sympathized with their needs he sent the first lady to meet with them he head them removed by federal troops he granted them their bonuses as per their request The saltation of sand involves ________. a. spherical grains rolling along the surface of dunes b. grains traveling short distances (approximately 1 m) in the air c. grains traveling long distances (approximately 1-100 km) in the air by strong winds d. the mixing of mineral sand and salt to form a weakly cemented soil Lets say the reaction H2SO4 + 2KOH -> K2SO4 + 2H2O, is known to proceed by a 20.85% yield via a particular procedure. How many grams of KOH must be reacted with an excess of H2SO4, in order to collect 67.5g of H2O? Please Help!! whoever answers first gets brainlyiest A soccer ball sits unmoving on a field. Which statement best explains why it remains at rest on the ground? The normal force is less than the gravitational force. The normal force is equal to the gravitational force. The normal force is greater than the gravitational force. The normal force and gravitational force act in the same direction. A cylindrical barrel is completely full of water and sealed at the top except for a narrow tube extending vertically through the lid. The barrel has a diameter of 80.0 cm, while the tube has a diameter of 1.10 cm. You can cause the lid to pop off by pouring a relatively small amount of water into the tube. To what height do you need to add water to the tube to get the lid to pop off the barrel? The lid pops off when the vector sum of the force of the atmosphere pushing down on the top of the lid and the force of the water pushing up on the bottom of the lid is 390 N up. Also, use g = 9.8 m/s2. What is the height of water in the tube in cm? Osmin had a gross pay of 624.86 last week. She earns 12.85 per hour plus a 3% commission on all sales. She knows she worked 40hrs last week but can't remember her total sales. What were her total sales ? While traveling in Mexico, Ken overheard a shopkeeper say, "Encuentra la camisa verde y drsela a ese chico." Although the woman's speech sounded like a fast jumble of sounds, his one year of high school Spanish enabled him to pick out the words "verde" and "chico"for "green" and "boy." Which term best describes Ken's experience at the shop? A CPU manufacturer is interested in studying the relationship between clock speed and the operating temperature that results at that clock speed for a particular CPU model. Let x be the clock speed in MHz and let Y be the temperature in ^{\circ}C . The following data was collected:i xi yi1 350 31.42 360 35.63 370 41.84 380 51.05 390 56.86 400 62.87 410 67.4a) Find the equation of the regression line.b) Estimate the temperature for clock speed x = 430 MHz.c) Find the 95% confidence interval for \beta .d) Compute the coefficient of determination R^{2} ?. Is this a high quality fit? What percent is represented by the shaded area? An occupational therapist plans a task-oriented activity group for adolescent girls recently diagnosed with anorexia nervosa. Which is the best activity for the therapist to include in the initial session of this group? Sermons such as "Sinners in the Hands of an Angry God" were written largely in response toa. the religious oppression some colonists had faced in Europe.b. the rejection of religion in favor of rationalism by some colonists.c. the growing desire among some colonists for independence from England.d. the poverty faced by some colonists as a result of oppressive taxes levied by England. At 700 K, Kp for the following equilibrium is (5.6 x 10-3) 2HgO(s)--> 2Hg(l) + O2(g) Suppose 51.2 g of mercury(II) oxide is placed in a sealed 3.00-L vessel at 700 K. What is the partial pressure of oxygen gas at equilibrium? (R = 0.0821 Lxatm/(Kxmol)) A) 0.075 atm B) 0.0056 atm C) 4.5 atm D) 19 atm E) 2.3 atm Which challenges does this passage describe? Check all that apply.Criminal activity is on the rise.Economic inequality remains an issue.Some children dont have access to education.Trade relations with the US have become difficult.Mexico's manufacturing industry cannot compete with other nations. Which substance is the limiting reactant when 2.0 g of sulfur reacts with 3.0 g of oxygen and 4.0 g of sodium hydroxide according to the following chemical equation: [tex]2S(s) + 3O_2(g) + 4NaOH(aq) \rightarrow 2Na_2SO_4(aq) + 2H_2O(l)[/tex]a. O(g)b. NaOH(aq)c. S(s)d. None of these substances is the limiting reactant.