on a day when the speed of sound in air is 340 m/s a bat emits a shriek whose echo returns to it 0.0250 seconds later. How far away is the mosquito that reflects back the shriek?

Answers

Answer 1

Answer:

The distance of the mosquito from the bat is 4.25 m.

Explanation:

Given that,

Speed of sound in air v= 340 m/s

Time t = 0.0250 second

Let d be the distance of the mosquito from the bat.

The distance traveled by the sound when the echo heard is 2d.

We need to calculate the distance

Using formula of  distance

[tex]v = \dfrac{2d}{t}[/tex]

Put the value into the formula

[tex]v = \dfrac{2d}{25\times10^{-3}}[/tex]

[tex]d =\dfrac{25\times10^{-3}\times340}{2}[/tex]

[tex]d=4.25\ m[/tex]

Hence, The distance of the mosquito from the bat is 4.25 m.

Answer 2
Final answer:

Utilizing the echo time of 0.0250 seconds and the sound speed of 340 m/s, the distance to the mosquito is calculated as 4.25 meters away from the bat.

Explanation:

Calculating the Distance to the Mosquito using Echo Time

To determine the distance to the mosquito that reflects the bat's shriek, we need to use the speed of sound in air and the echo time. Since the shriek's echo returns in 0.0250 seconds and the speed of sound is given as 340 m/s, we can calculate the total distance traveled by the sound (to the mosquito and back to the bat) with the equation:

Distance = Speed × Time

Here, the time is the round-trip time for the sound, so the distance to the mosquito is half the total distance:

Total Distance = 340 m/s × 0.0250 s = 8.5 m

Distance to the Mosquito = Total Distance / 2 = 8.5 m / 2 = 4.25 m

Therefore, the mosquito is 4.25 meters away from the bat.


Related Questions

On takeoff, the combined action of the engines and the wings of an airplane exert a force of 8.00 × 103 N on the plane upward at an angle of 65.0" above the horizontal. The plane rises with constant velocity in the vertical direction while continuing to accelerate in the horizontal direction. (3 marks) a. What is the weight of the plane? b. What is the horizontal acceleration of the plane? .

Answers

Answer:

a) 7250.5 N

b) 4.6 m/s²

Explanation:

a)

F = applied force = 8000 N

θ = angle with the horizontal = 65 deg

Consider the motion along the vertical direction :

[tex]F_{y}[/tex] = Applied force in vertical direction in upward direction = F Sinθ = 8000 Sin65 = 7250.5 N

[tex]F_{g}[/tex] = weight of the plane in vertical direction in downward direction = ?

[tex]a_{y}[/tex] = Acceleration in vertical direction = 0 m/s²

Taking the force in upward direction as positive and in downward direction as negative, the force equation along the vertical direction can be written as

[tex]F_{y}-F_{g} = m a_{y}[/tex]

[tex]7250.5 -F_{g} = m (0)[/tex]

[tex]F_{g}[/tex] = 7250.5 N

b)

m = mass of the plane

force of gravity is given as

[tex]F_{g} = mg [/tex]

[tex]7250.5 = m(9.8) [/tex]

m = 739.85 kg

Consider the motion along the horizontal direction

[tex]F_{x}[/tex] = Applied force in horizontal direction = F Cosθ = 8000 Cos65 = 3381 N

[tex]a_{x}[/tex] = Acceleration in horizontal direction

Acceleration in horizontal direction is given as

[tex]a_{x}=\frac{F_{x}}{m}[/tex]

[tex]a_{x}=\frac{3381}{739.85}[/tex]

[tex]a_{x}[/tex] = 4.6 m/s²

A rifle is aimed horizontally at a target 30m away. The bullet hits the target 2.9 cm below the aiming point. What is the bullet's speed ( in the unit of m/s) as it emerges from the rifle.

Answers

Answer:

Speed of bullet = 389.61 m/s.

Explanation:

Considering the vertical motion of bullet

Initial vertical speed = 0 m/s

Vertical displacement = 2.9 cm = 0.029 m

Vertical acceleration = 9.81 m/s²

Substituting in s = ut + 0.5at²

    0.029 = 0 x t + 0.5 x 9.81 x t²

    t = 0.077 s

So ball hits the target after 0.077 s.

Now considering the vertical motion of bullet

Time = 0.077 s

Horizontal displacement = 30 m

Horizontal acceleration = 0 m/s²

Substituting in s = ut + 0.5at²

    30 = u  x 0.077 + 0.5 x 0 x 0.077²

     u = 389.61 m/s

Speed of bullet = 389.61 m/s.

Answer:

390 m/s

Explanation:

Let the horizontal speed be u.

Horizontal distance , x = 30 m

Vertical distance, y = 2.9 cm

Let time taken be t.

Use second equation of motion in vertical direction

H = uy × t + 1/2 gt^2

0.029 = 0.5 × 9.8 × t^2

t = 0.077 s

Horizontal distance = horizontal velocity × time

30 = u × 0.077

u = 390 m/s

If the intensity of light that is incident on a piece of metal is increased, what else will be increased? Choose all that apply. number of electrons ejected stopping voltage cutoff frequency frequency KEmax work function wavelength

Answers

Answer:

explained

Explanation:

When the intensity of light is increased on a piece of metal only the number of electron ejected will increase because all other things independent of intensity of light.

Light below certain frequency will not cause any electron emission no matter how intense.

The intensity produces more electron but does not change the maximum kinetic energy of electrons.

Work function is independent of the intensity of light, because it is an intrinsic property of a material.

As a car increases velocity, does its kinetic energy or momentum increase faster? Explain.

Answers

Explanation:

The kinetic energy of an object is associated with its motion. Mathematically, it is given by :

[tex]E_k=\dfrac{1}{2}mv^2[/tex]........(1)

Where

m is the mass of the car

v is the velocity of the car

And the momentum of an object is equal to the product of mass and velocity i.e.

[tex]momentum(p)=mass(m)\times velocity(v)[/tex]..........(2)

From equation (1) and (2) it is clear that the kinetic energy and the momentum is directly proportional to the velocity of the object. As a car increases velocity, its kinetic energy or momentum increase faster.

A 2.7-kg cart is rolling along a frictionless, horizontal track towards a 1.1-kg cart that is held initially at rest. The carts are loaded with strong magnets that cause them to attract one another. Thus, the speed of each cart increases. At a certain instant before the carts collide, the first cart's velocity is +3.7 m/s, and the second cart's velocity is -1.6 m/s. (a) What is the total momentum of the system of the two carts at this instant? (b) What was the velocity of the first cart when the second cart was still at rest?

Answers

Answer:

Part a)

P = 8.23 kg m/s

Part b)

v = 3.05 m/s

Explanation:

Part a)

momentum of cart 1 is given as

[tex]P_1 = m_1v_1[/tex]

[tex]P_1 = (2.7)(3.7) = 9.99 kg m/s[/tex]

Momentum of cart 2 is given as

[tex]P_2 = m_2v_2[/tex]

[tex]P_2 = (1.1)(-1.6) = -1.76 kg m/s[/tex]

Now total momentum of both carts is given as

[tex]P = P_1 + P_2[/tex]

[tex]P = 8.23 kg m/s[/tex]

Part b)

Since two carts are moving towards each other due to mutual attraction force and there is no external force on two carts so here momentum is always conserved

so here we will have

[tex]P_i = P_f[/tex]

[tex](2.7 kg)v = 8.23[/tex]

[tex]v = 3.05 m/s[/tex]

A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 2.10 cm distant from the first, in a time Interval of 1.10 x 10-6 s. (a) Find the magnitude of the electric field N/C (b) Find the speed of the proton when it strikes the negatively charged plate m/s

Answers

Answer:

a)

365.3 N/C

b)

3.85 x 10⁴ m/s

Explanation:

q = magnitude of charge on proton = 1.6 x 10⁻¹⁹ C

m = mass of the proton = 1.67 x 10⁻²⁷ kg

d = distance between the plates = 2.10 cm = 0.021 m

t = time interval = 1.10 x 10⁻⁶ sec

E = magnitude of electric field

v₀ = initial velocity = 0 m/s

a = acceleration of the proton

Using the equation

d = v₀ t + (0.5) a t²

0.021 = (0) (1.10 x 10⁻⁶) + (0.5) a (1.10 x 10⁻⁶)²

a = 3.5 x 10¹⁰ m/s²

acceleration of the proton inside electric field is given as

[tex]a =\frac{qE}{m}[/tex]

[tex]3.5\times 10^{10} =\frac{(1.6\times 10^{-19})E}{1.67\times 10^{-27}}[/tex]

E = 365.3 N/C

b)

v = final speed of the proton

using the equation

v = v₀ + a t

v = 0 + (3.5 x 10¹⁰) (1.10 x 10⁻⁶)

v = 3.85 x 10⁴ m/s

A 2.0 kg hanging mass stretches a coiled spring by 0.15 m. The spring constant, k, is: (A) 0.075 N/m, (B) 2.9 N/m (C) 131 N/m, (D) 1,742 N/m, (E) none of the above.

Answers

Answer:

C

Explanation:

Givens

m = 2 kg

F = 2 * 9.81

F =  19.62 N

x = 0.15 m

Formula

F = k*x

Solution

19.62 = k*0.15

k = 19.62/0.15

k = 130.8 which rounded to the nearest given answer is C

A long wire carries a current toward the south in a magnetic field that is directed vertically upward. What is the direction of the magnetic force on the wire?

Answers

Final answer:

The magnetic force on a wire carrying current towards the south under a magnetic field directed vertically upwards will point towards the East. In order to determine this, use the right-hand rule.

Explanation:

The direction of the magnetic force on a current-carrying wire under a magnetic field can be deduced using the right-hand rule. In this case, with the current flowing towards the south and the magnetic field directed vertically upward, you would point your right thumb in the direction of the current (southwards) and curl your fingers in the direction of the magnetic field (upwards). The palm of your hand will then face toward the direction of the force. In this case, the force would be pointing toward the East.

The right-hand rule is a vital principle in the study of electromagnetism as it aids in identifying the direction of various quantities in magnetic fields.  The magnetic force on a current-carrying wire represents the phenomenon underlying the working of many electric motors.

Learn more about Magnetic Force here:

https://brainly.com/question/10353944

#SPJ5

Light with a wavelength of 488 nm is incident on a single slit with a width of 6.23 x 10^-4 m. If the screen is 2.7 m away, what is the distance to the first antinodal line?

Answers

Answer:

The distance to the first anti-nodal line is [tex]2.11\times10^{-3}\ m[/tex].

Explanation:

Given that,

Wavelength = 488 nm

Width [tex]d=6.23\times10^{-4}\ m[/tex]

Distance D =2.7 m

We need to calculate the distance to the first anti-nodal line

Using formula of the distance for first anti-nodal line

[tex]y_{n}=\dfrac{n\lambda D}{d}[/tex].....(I)

Where, n = number of fringe

d = width

D = distance from the screen

[tex]\lambda[/tex]=wavelength of light

Put the all value in the equation (I)

[tex]y_{n}=\dfrac{488\times10^{-9}\times2.7}{6.23\times10^{-4}}[/tex]

[tex]y_{n}=2.11\times10^{-3}\ m[/tex]

Hence, The distance to the first anti-nodal line is [tex]2.11\times10^{-3}\ m[/tex].

A 0.12-kg ball is moving at 6 m/s when it is hit by a bat, causing it to reverse direction and have a speed of 14 m/s. What is the change in the magnitude of the momentum of the ball? A. 0.39 kg*m/s B. 0.42 kg*m/s C. 1.3 kg*m/s D. 2.4 kg*m/s

Answers

Explanation:

0.05

momentum =Mv

then,

Mv=mv

v2=0.12*6/14

v2=0.05kgm/s

Final answer:

The change in the magnitude of the momentum of the ball is 2.4 kg·m/s.

Explanation:

To calculate the change in the magnitude of the momentum of the ball, we need to find the initial momentum and the final momentum of the ball. Momentum is calculated by multiplying the mass of an object by its velocity. Let's start by calculating the initial momentum:

Initial momentum = mass × initial velocity

Final momentum = mass × final velocity

Change in momentum = final momentum - initial momentum

Plugging in the given values:

Initial momentum = 0.12 kg × 6 m/s

Final momentum = 0.12 kg × (-14 m/s) (since the ball changes direction)

Change in momentum = (-1.68 kg·m/s) - (0.72 kg·m/s) = -2.4 kg·m/s.

The change in the magnitude of the momentum of the ball is 2.4 kg·m/s. However, since the question is asking for the magnitude, we take the absolute value of the change in momentum, which is 2.4 kg·m/s.

Learn more about momentum here:

https://brainly.com/question/30677308

#SPJ3

If a person is standing erect and flexes the trunk on the hip, the center of mass will move __________ and the line of gravity moves __________ within the base of support.

Answers

Answer:

anterior

anterior

Explanation:

In the given question is asked that

If a person is standing erect and flexes the trunk on the hip, the center of mass will move ___________ and the line of gravity moves___________ within the base of support.

The current answer to the blanks will be

anterior

anterior

hope this helps any further query can be asked in comment section.

A total of 600 C of charge passes through flashlight bulb in 0.500 hr. What is the average current? Give your answer in A.

Answers

The average current passing through a device is given by:

I = Q/Δt

I is the average current

Q is the amount of charge that has passed through the device

Δt is the amount of elapsed time

Given values:

Q = 600C

Δt = 0.500hr = 1800s

Plug in the values and solve for I:

I = 600/1800

I = 0.333A

The average current  flowing in the flashlight bulb is 0.333 A

The given parameters:

quantity of the charge, Q = 600 C

time of the current flow, t = 0.5 hour

To find:

the average current, I

The average current is calculated from quantity of charge that flows in the given time period:

Q = It

where:

I is the average current

Q is the quantity of the charge

t is the time period

From the equation above, make the average current the subject of the formula:

[tex]I = \frac{Q}{t} \\\\I = \frac{600 \ C}{0.5 \ hr \times 3600 \ s} \\\\I = \frac{600 \ C}{1800 \ s} \\\\I = 0.333 \ A[/tex]

Thus, the average current is 0.333 A

Learn more here: https://brainly.com/question/21654284

A heavy fuel oil has a specific gravity of 0.918. How much will 100 gallons(300 liters) of this oil weigh? INCLUDE UNITS!

Answers

Answer:

275.4 kg

Explanation:

specific gravity = 0.918

Density = 0.918 g/cm^3 = 918 kg/m^3

Volume = 100 gallons = 300 litres = 300 x 10^-3 m^3 = 0.3 m^3

Mass = volume x density = 0.3 x 918 = 275.4 kg

A jet airplane with a 75.0 m wingspan is flying at 255 m/s. What emf is induced between the wing tips in V if the vertical component of the Earth's magnetic field is 3.00 x 10^-5 T?

Answers

Answer:

The emf is 0.574 volt.

Explanation:

Given that,

Magnetic field [tex]B =3.00\times10^{-5}\ T[/tex]

Length = 75.0 m

Velocity = 255 m/s

We need to calculate the emf

Using formula of emf

[tex]\epsilon=Blv[/tex]

Where, v = velocity

l = length

B = magnetic field

Put the value into the formula

[tex]\epsilon= 3.00\times10^{-5}\times75.0\times255[/tex]

[tex]\epsilon=0.574\ volt[/tex]

Hence, The emf is 0.574 volt.

Final answer:

The emf induced between the wingtips of a jet airplane flying at 255 m/s with a 75.0 m wingspan in Earth's magnetic field of strength 3.00 x 10^-5 T is 0.57 V. This is calculated using the formula for motional emf: E = Blv.

Explanation:

To calculate the emf induced between the airplane wings due to Earth's magnetic field, we use the formula for motional emf: E = Blv, where B is the magnetic field strength, l is the length of the conductor moving through the field (in this case, the wingspan of the airplane), and v is the velocity of the conductor.

Substituting the given values into the formula we get:
E = (3.00 x 10^-5 T) * (75.0 m) * (255 m/s) = 0.57 V

This means that a 0.57 Volt emf is induced between the wingtips of the airplane due to the Earth's magnetic field. This is a direct application of Faraday's law of electromagnetic induction, which states that a changing magnetic field will induce an emf in a conductor.

Learn more about Motional EMF here:

https://brainly.com/question/32274064

#SPJ3

A quantity of a gas has an absolute pressure of 400 kPa and an absolute temperature of 110 degrees kelvin. When the temperature of the gas is raised to 235 degrees kelvin, what is the new pressure of the gas? (Assume that there's no change in volume.) A. 854.46 kPa B. 510 kPa C. 3.636 kPa D. 1.702 kPa

Answers

Answer:

A) 854.46 kPa

Explanation:

P₁ = initial pressure of the gas = 400 kPa

P₂ = final pressure of the gas = ?

T₁ = initial temperature of the gas = 110 K

T₂ = final temperature of the gas = 235 K

Using the equation

[tex]\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}[/tex]

Inserting the values

[tex]\frac{400}{110}=\frac{P_{2}}{235}[/tex]

P₂ = 854.46 kPa

A water trough is 8 m long and has a cross-section in the shape of an isosceles trapezoid that is 20 cm wide at the bottom, 80 cm wide at the top, and has height 60 cm. If the trough is being filled with water at the rate of 0.3 m3/min how fast is the water level rising when the water is 30 cm deep?

Answers

Answer:It is rising at a rate of [tex]7.5cm/min[/tex]

Explanation:

We have volume of trapezoid equals

[tex]V=Area\times Length\\\\V=\frac{1}{2}(a+b)h\times L[/tex]

Thus at any time 't' we have

[tex]V(t)=\frac{1}{2}(a(t)+b(t))h(t)\times L\\\\\therefore V(t)=\frac{1}{2}(20+b(t))\times h(t)\times L[/tex]

Differentiating both sides with respect to time we get

[tex]\frac{dV(t)}{dt}=\frac{1}{2}b'(t)h(t)L+\frac{1}{2}(20+b(t))\times h'(t)L[/tex]

Applying values we have

[tex]b(t)=20+h(t)\\b'(t)=h'(t)[/tex]

Thus we have

[tex]\frac{dV(t)}{dt}=\frac{1}{2}h'(t)h(t)L+\frac{1}{2}(20+20+h(t))\times h'(t)L\\\\2V'(t)=h'(t)L[h(t)+(40+h(t))]\\\\\therefore h'(t)=\frac{2V'(t)}{L(h(t)+(40+h(t)))}[/tex]

Applying values we get

[tex]h'(t)=0.075m/min=7.5cm/min[/tex]

What hanging mass will stretch a 3.0-m-long, 0.32 mm - diameter steel wire by 1.3 mm ? The Young's modulus of steel is 20×10^10 N/m^2.

Answers

Answer:

0.71 kg

Explanation:

L = length of the steel wire = 3.0 m

d = diameter of steel wire = 0.32 mm = 0.32 x 10⁻³ m

Area of cross-section of the steel wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.32 x 10⁻³)²

A = 8.04 x 10⁻⁸ m²

ΔL = change in length of the wire = 1.3 mm = 1.3 x 10⁻³ m

Y = Young's modulus of steel = 20 x 10¹⁰ Nm⁻²

m = mass hanging

F = weight of the mass hanging

Young's modulus of steel is given as

[tex]Y = \frac{FL}{A\Delta L}[/tex]

[tex]20\times 10^{10} = \frac{F(3)}{(8.04\times 10^{-8})(1.3\times 10^{-3})}[/tex]

F = 6.968 N

Weight of the hanging mass is given as

F = mg

6.968 = m (9.8)

m = 0.71 kg

A 1500-kg car traveling east with a speed of 25.0 m/s collides at an intersection with a 2500-kg van traveling north at a speed of 20.0 m/s. Find the direction and magnitude of the velocity of the wreckage after the collision, assuming that the vehicles undergo a perfectly inelastic collision (i.e. they stick together).

Answers

From conservation of linear momentum, the magnitude of the velocity of the wreckage after collision is 15.6 m/s while its direction is 53 degrees.

COLLISION

There are four types of collision

Elastic collisionPerfectly elastic collisionInelastic collisionPerfectly inelastic collision

In elastic collision, both momentum and energy are conserved. While in inelastic collision, only momentum is conserved.

From the given question, the following parameters are given.

[tex]m_{1}[/tex] = 1500kg[tex]v_{1}[/tex] = 25 m/s[tex]m_{2}[/tex] = 2500 kg[tex]v_{2}[/tex] = 20 m/s

Since the collision is inelastic, they will both move with a common velocity after collision.

Horizontal component

[tex]m_{1}[/tex][tex]v_{1}[/tex] = ([tex]m_{1}[/tex] + [tex]m_{2}[/tex] ) V

1500 x 25 = (1500 + 2500) V

37500 = 4000V

V = 37500 / 4000

V = 9.375 m/s

Vertical component

[tex]m_{2}[/tex][tex]v_{2}[/tex] = ([tex]m_{1}[/tex] + [tex]m_{2}[/tex])V

2500 x 20 = (1500 + 2500)V

50000 = 4000V

V = 50000 / 4000

V = 12.5 m/s

The net velocity will be the magnitude of the velocity of the wreckage after collision

V = [tex]\sqrt{9.4^{2} + 12.5^{2} }[/tex]

V = [tex]\sqrt{244.61}[/tex]

V = 15.6 m/s

The direction will be

Tan Ф = 12.5 / 9.4

Ф = [tex]Tan^{-1}[/tex](1.329)

Ф = 53 degrees.

Therefore,  the magnitude of the velocity of the wreckage after collision is 15.6 m/s while its direction is 53 degrees.

Learn more about collision here: https://brainly.com/question/7694106

Final answer:

The velocity of the wreckage after the collision is 32.015 m/s in the direction 38.66° north of east.

Explanation:

This problem is related to the conservation of linear momentum which states the total momentum of an isolated system remains constant if no external forces act on it. Momentum is a vector quantity having both magnitude and direction. The total initial and final momentum in both horizontal (x) and vertical (y) directions must be equal.

Initial momentum of the car is (1500 kg)*(25.0 m/s) = 37500 kg*m/s in the east direction whereas initial momentum of the van is (2500 kg)*(20.0 m/s) = 50000 kg*m/s in the north direction.

Since the collision is perfectly inelastic, the two vehicles stick together after the collision and move as one. Therefore, the final momentum is the vector sum of the individual momenta. We therefore calculate the magnitude of the resultant velocity using Pythagoras theorem, √[(25.0 m/s)² + (20.0 m/s)²] = 32.015 m/s.

To find the direction of the final velocity, we use the tangent of the angle which is equal to the vertical component divided by the horizontal component, which gives us an angle of 38.66° north of east.

Learn more about Inelastic Collision here:

https://brainly.com/question/24616147

#SPJ3

Motor oil, with a viscosity of 0.25 N ∙ s/m 2, is flowing through a tube that has a radius of 5.0 mm and is 25 cm long. The drop in pressure is 300 kPa. What is the volume of oil flowing through the tube per second?

Answers

Answer:

1.18 x 10^-3 m^3/s

Explanation:

η = 0.25 N s/m^2, radius, r = 5 mm = 0.005 m, l = 25 cm = 0.25 m

P = 300 kPa = 300,000 Pa, Volume of flow = ?

By use of Poiseuillie's equation

Volume of flow = π P r^4 / (8 η l)

Volume of flow = (3.14 x 300000 x 0.005^4) / (8 x 0.25 x 0.25)

Volume of flow = 1.18 x 10^-3 m^3/s

Final answer:

Using Poiseuille's Law for viscous flow, the volume of oil flowing through the tube per second is calculated to be 1.8 liters/sec.

Explanation:

The volume of oil flowing through the tube per second can be calculated using Poiseuille's Law, which is an equation for viscous flow. This Law states that the flow rate of fluid through a pipe (Q) is directly proportional to the fourth power of the radius (r) of the tube, the pressure difference (ΔP) and inversely proportional to the viscosity (η) of the fluid, and the length (L) of the tube.

Using Poiseuille's Law, we have:

Q = (π/8) * (ΔP/r^4L) * η

By substituting the provided values:

Q = (π/8) * (300,000 Pa/(0.005 m)^4 * 0.25 m) * 0.25 N ∙ s/m^2

This yields: Q = 0.0018 m^3/s, or 1.8 liters/sec.

Learn more about Viscous Flow here:

https://brainly.com/question/33590109

#SPJ3

By how much does a 64.3 kg mountain climber stretch her 0.910 cm diameter nylon rope when she hangs 32.2 m below a rock outcropping? (For nylon, Y = 1.35 â 10^9 Pa. Enter your answer in centimeters.)

Answers

Answer:

23 cm

Explanation:

m = 64.3 kg, diameter = 0.910 cm

radius, r = 0.455 cm = 4.55 x 10^-3 m

A = 3.14 x (4.55 x 10^-3)^2 = 6.5 x 10^-5 m^2

L = 32.2 m

Y = 1.35 x 10^9 Pa

Let the stretched length is l.

Use the formula for Young's modulus

Y = mg L / A l

l = m g L / A Y

l = (64.3 x 9.8 x 32.2) / (6.5 x 10^-5 x 1.35 x 10^9)

l = 0.23 m

l = 23 cm

Two slits are illuminated by a 602 nm light. The angle between the zeroth-order bright band at the center of the screen and the fourth-order bright band is 17.4 ◦ . If the screen is 138 cm from the double-slit, how far apart is this bright?

Answers

Answer:

y = 43.2 cm

Explanation:

As we know by the formula of diffraction we have

[tex]a sin\theta = N\lambda[/tex]

here we have

[tex]\theta = 17.4[/tex]

N = 4

[tex]\lambda = 602 nm[/tex]

now we have

[tex]a sin(17.4) = 4(602\times 10^{-9})[/tex]

[tex]a = 8.05 \times 10^{-6} m[/tex]

now the distance of screen is 138 cm

now we can say

[tex]\frac{y}{L} = tan\theta[/tex]

[tex]y = L tan(\theta)[/tex]

[tex]y = 138 tan(17.4) = 43.2 cm[/tex]

How much heat transfer is required to raise the temperature of a 0.750-kg aluminum pot containing 2.50 kg of water from 30.0ºC to the boiling point and then boil away 0.750 kg of water? (b) How long does this take if the rate of heat transfer is 500 W

Answers

Answer:

Part a)

[tex]Q = 2.47 \times 10^6[/tex]

Part b)

t = 4950.3 s

Explanation:

As we know that heat required to raise the temperature of container and water in it is given as

[tex]Q = m_1s_2\Delta T_1 + m_2s_2\Delta T_2[/tex]

here we know that

[tex]m_1 = 0.750[/tex]

[tex]s_1 = 900[/tex]

[tex]m_2 = 2.50 kg[/tex]

[tex]s_2 = 4186[/tex]

[tex]\Delta T_1 = \Delta T_2 = 100 - 30 = 70^oC[/tex]

now we have

[tex]Q_1 = 0.750(900)(70) + (2.5)(4186)(70) = 779800 J[/tex]

now heat require to boil the water

[tex]Q = mL[/tex]

here

m = 0.750 kg

[tex]L = 2.25 \times 10^6 J/kg[/tex]

now we have

[tex]Q_2 = 0.750(2.25 \times 10^6) = 1.7 \times 10^6 J[/tex]

Now total heat required is given as

[tex]Q = Q_1 + Q_2[/tex]

[tex]Q = 779800 + 1.7 \times 10^6 = 2.47 \times 10^6 J[/tex]

Part b)

Time taken to heat the water is given as

[tex]t = \frac{Q}{P}[/tex]

here we know that

power = 500 W

now we have

[tex]t = \frac{2.47 \times 10^6}{500} = 4950.3 s[/tex]

The acceleration of a particle is given by a = −ks2 , where a is in meters per second squared, k is a constant, and s is in meters. Determine the velocity of the particle as a function of its position s. Evaluate your expression for s = 5 m if k = 0.1 m−1 s−2 and the initial conditions at time t = 0 are s0 = 3 m and v0 = 10 m /s

Answers

Answer:

[tex]v = \sqrt{v_0^2 - \frac{2k}{3}(s^3 - s_0^3)}[/tex]

v = 9.67 m/s

Explanation:

As we know that acceleration is rate of change in velocity

so it is defined as

[tex]a = \frac{dv}{dt}[/tex]

[tex]a = v\frac{dv}{ds}[/tex]

here we know that

[tex]a = - ks^2 = v\frac{dv}{ds}[/tex]

now we have

[tex]vdv = - ks^2ds[/tex]

integrate both sides we have

[tex]\int vdv = -k \int s^2ds[/tex]

[tex]\frac{v^2}{2} - \frac{v_0^2}{2} = -k(\frac{s^3}{3} - \frac{s_0^3}{3})[/tex]

[tex]v^2 = v_0^2 - \frac{2k}{3}(s^3 - s_0^3)[/tex]

here we know that

[tex]v_0 = 10 m/s[/tex]

[tex]s_0 = 3 m[/tex]

[tex]v^2 = 10^2 - \frac{2(0.10)}{3}(5^3 - 3^3)[/tex]

[tex]v = 9.67 m/s[/tex]

If a 54 kg sprinter can accelerate from a standing start to a speed of 10 m/s in 3 s, what average power is generated?

Answers

Answer:

Power, P = 600 watts

Explanation:

It is given that,

Mass of sprinter, m = 54 kg

Speed, v = 10 m/s

Time taken, t = 3 s

We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.

[tex]P=\dfrac{W}{t}[/tex]

Work done is equal to the change in kinetic energy of the sprinter.

[tex]P=\dfrac{\dfrac{1}{2}mv^2}{t}[/tex]

[tex]P=\dfrac{\dfrac{1}{2}\times 54\ kg\times (10\ m/s)^2}{3\ s}[/tex]

P = 900 watts

So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.

Final answer:

The average power generated is 900 Watts, which is approximately 1.21 horsepower.

Explanation:

The question involves calculating the average power generated by a sprinter during acceleration. Power is defined as the work done per unit time. To find the power, we need to first calculate the work done, which, in the case of the sprinter, is the kinetic energy gained as they accelerate to the final speed.

In this case, we can calculate the kinetic energy (KE) of the sprinter using the formula KE = 0.5 × mass ×[tex]velocity^2[/tex]. The mass of the sprinter is given as 54 kg and the final velocity is 10 m/s. Thus, KE = 0.5 × 54 kg × [tex](10 m/s)^2[/tex] = 2700 Joules.

Now, the power can be found by dividing the work done by the time it takes to do that work. The sprinter takes 3 seconds to achieve this final velocity. So, the average power P is P = work/time = 2700 Joules / 3 s = 900 Watts.

Converting this power to horsepower (1 horsepower = 746 Watts), we get approximately P = 900 W × 1 hp/746 W = 1.21 horsepower.

An electron enters a magnetic field of 0.66 T with a velocity perpendicular to the direction of the field. At what frequency does the electron traverse a circular path? ( m el = 9.11 × 10-31 kg, e = 1.60 × 10-19 C)

Answers

Answer:

1.85 x 10^10 cycles per second

Explanation:

B = 0.66 T, theta = 90 degree, q = 1.6 x 10^-19 C,

The time period of electron is given by

T = 2 π m / B q

Frequency is teh reciprocal of time period.

f = 1 /T

f = B q / (2 π m)

f = (0.66 x 1.6 x 10^-19) / (2 x 3.14 x 9.1 x 10^-31)

f = 1.85 x 10^10 cycles per second

Water is boiled in a pan on a stove at sea level. During 10 min of boiling, it is observed that 200 g of water has evaporated. Then the rate of heat transfer to the water is 225.7 kJ/min 45.1 kJ/min 53.5 kJ/min 0.84 kJ/min 41.8 kJ/min

Answers

Answer:

Rate of heat is 45.1 kJ/min

Explanation:

Heat required to evaporate the water is given by

Q = mL

here we know that

[tex]L = 2.25 \times 10^6 J/kg[/tex]

now we have

[tex]Q = (0.200)(2.25 \times 10^6 J/kg)[/tex]

[tex]Q = 452.1 kJ[/tex]

now the power is defined as rate of energy

[tex]P = \frac{Q}{t}[/tex]

[tex]P = \frac{452.1 kJ}{10}[/tex]

[tex]P = 45.1 kJ/min[/tex]

A uniform rod of mass 2.55×10−2 kg and length 0.380 m rotates in a horizontal plane about a fixed axis through its center and perpendicular to the rod. Two small rings, each with mass 0.200 kg , are mounted so that they can slide along the rod. They are initially held by catches at positions a distance 4.80×10−2 m on each side from the center of the rod, and the system is rotating at an angular velocity 35.0 rev/min . Without otherwise changing the system, the catches are released, and the rings slide outward along the rod and fly off at the ends. What is the angular speed of the system at the instant when the rings reach the ends of the rod?

What is the angular speed of the rod after the rings leave it?

Answers

Answer:

[tex]\omega _{f}=0.3107rad/sec[/tex]

partb) [tex]\omega _{f}=14.93rad/sec[/tex]

Explanation:

Since the system is isolated it's angular momentum shall be conserved

[tex]L_{system}=I_{system}\omega \\\\I_{system}=I_{rod}+2\times m\times r^{2}\\\\I_{system}=\frac{1}{12}ml^{2}+2\times 0.2\times (4.8\times 10^{-2})^{2}\\\\I_{system}=1.22845\times 10^{-3}kgm^{2}\\\\L_{system}=1.22845\times 10^{-3}kgm^{2}\times 3.66rad/sec[/tex]

[tex]\L_{system}=4.496\times 10^{-3}kgm^{2}[/tex]

Now the final angular momentum of the system

[tex]L_{fianl}=I_{final}\omega \\\\I_{final}=I_{rod}+2\times m\times r_{f}^{2}\\\\I_{final}=\frac{1}{12}ml^{2}+2\times 0.2\times (0.19)^{2}\\\\I_{final}=0.01447kgm^{2}\\\\L_{final}=0.01447kgm^{2}\times \omega _{final}rad/sec[/tex]

Thus equating initial and final angular momentum we solve for final angular velocity of rod as

[tex]\omega _{f}=\frac{4.496\times 10^{-3}}{0.01447}\\\\\omega _{f}=0.3107rad/sec[/tex]

part b)

When the rings leave the system we again conserve the angular momentum just before the rings leave the system and the instant when they just leave

[tex]\therefore 0.01447=\frac{1}{12}ml^{2}w\\\\\therefore w=\frac{4.582\times 10^{-3}}{3.068\times10^{-4} }\\\\w_{final}=14.93rad/sec[/tex]

Answer:

A)[tex]\omega_{f}=2.92\frac{rev}{min}[/tex].

B)[tex]\omega_{f}=140\frac{rev}{min}[/tex].

Explanation:

A)

For this problem, we will use the conservation of angular momentum.

[tex]L_{0}=L_{f}\\[/tex].

In the beginning, we have that

[tex]L_{0}=I_{0}\omega_{0}\\[/tex]

where [tex]I_{0}[/tex] is the inertia moment of all the system at the starting position, this is the inertia moment of the rod plus the inertia moment of each ring ([tex]mr^{2}[/tex], with [tex]r[/tex] the distance from the ring to the fixed axis and, [tex]m[/tex] its mass) at the starting position and, [tex]\omega_{0}[/tex] is the initial angular velocity. So

[tex]L_{0}=(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}[/tex].

When the rings are at the ends of the rod the angular momentum becomes

[tex]L_{f}=(\frac{1}{12}Ml^{2}+2mr_{f}^{2})\omega_{f}[/tex],

where [tex]r_{f}[/tex] is the distance from the fixed axis to the end of the rod (the final position of the rings).

Using conservation of angular momentum we get

[tex](\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}=(\frac{1}{12}Ml^{2}+2mr_{f}^{2})\omega_{f}[/tex].

thus

[tex]\omega_{f}=\frac{(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}}{(\frac{1}{12}Ml^{2}+2mr_{f}^{2})}[/tex]

computing this last expresion we get

[tex]\omega_{f}=\frac{(\frac{1}{12}(2.55*10^{-2})(0.380)^{2}+2(0.200)(4.80*10^{-2})^{2})(35.0)}{(\frac{1}{12}(2.55*10^{-2})(0.380)^2+2(0.200)(0.19)^{2})}[/tex]

[tex]\omega_{f}=2.92\frac{rev}{min}[/tex].

B)

Again we use the conservation of angular momentum. The initial angular momentum if the same as before. The final angular momentum will be

[tex]L_{f}=(\frac{1}{12}Ml^{2})\omega_{f}[/tex],

this time we will not take into account the inertia moment of the rings because they are no longer part of the system (they leave the rod).

[tex](\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}=(\frac{1}{12}Ml^{2})\omega_{f}[/tex].

thus

[tex]\omega_{f}=\frac{(\frac{1}{12}Ml^{2}+2mr_{0}^{2})\omega_{0}}{(\frac{1}{12}Ml^{2})}[/tex]

computing this last expresion we get

[tex]\omega_{f}=\frac{(\frac{1}{12}(2.55*10^{-2})(0.380)^{2}+2(0.200)(4.80*10^{-2})^{2})(35.0)}{(\frac{1}{12}(2.55*10^{-2})(0.380)^2})[/tex]

[tex]\omega_{f}=140\frac{rev}{min}[/tex].

A car is traveling at a speed of 70 mph, a long a straight road, when the driver slams on the brakes and the car m and the car a,=- 2.00 accelerates at comes to a complete stop. How much time passes between the time when the brakes were applied and the instant the car comes to a complete stop and how far did the car travel in that time? (1609 meters 1 mile, 3600 seconds 1 hour) a.) 7.28 s and 422.10 m. b.) 15.64 s and 244.70 m. c.) 12.32 s and 428.73 m. d.) 14.53 s and 210.98 m. e.) None of the above.

Answers

Answer:

Option B is the correct answer.

Explanation:

Speed of car = 70mph [tex]=70\times \frac{1609}{3600}=31.28m/s[/tex]

Deceleration of car = 2 m/s²

We have equation of motion

          v = u + at

          0 = 31.28 - 2 t

           t = 15.64 seconds.

We also have

          [tex]s=ut+\frac{1}{2}at^2=31.28\times 15.64-\frac{1}{2}\times 2\times 15.64^2=244.70m[/tex]

Option B is the correct answer.

Calculate the mass of a 0.9 m^3 block of a material having a density of 12500 kg/m^3.

Answers

Answer: The mass of the object will be 11250 kg.

Explanation:

Density is defined as the mass contained per unit volume.

[tex]Density=\frac{mass}{Volume}[/tex]

Given :

Density of the object= [tex]12500kg/m^3[/tex]

Mass of object = ?

Volume of the object = [tex]0.9m^3[/tex]

Putting in the values we get:

[tex]12500kg/m^3=\frac{mass}{0.9m^3}[/tex]

[tex]12500kg/m^3=\frac{mass}{0.9m^3}[/tex]

[tex]mass=11250kg[/tex]

Thus the mass of the object is 11250 kg.

Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface. When she lands on Noveria, a distant planet in our galaxy, she weighs 356 N. What is the acceleration of gravity on Noveria in m/s2? Round to one decimal place. (hint: first find her mass!)

Answers

Answer:

Acceleration of gravity on Noveria = 4.4 m/s²

Explanation:

Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface.

We have weight, W = mg

Acceleration due to gravity, g = 9.81m/s²    

799 = m x 9.81

Mass of Shepard, m = 81.45 kg            

She lands on Noveria, a distant planet in our galaxy, she weighs 356 N.

We have weight, W = mg'

                 356 = 81.45 xg'

Acceleration of gravity on Noveria, g' = 4.4 m/s²

Other Questions
Consider the system of differential equations dxdt=4ydydt=4x. Convert this system to a second order differential equation in y by differentiating the second equation with respect to t and substituting for x from the first equation. Solve the equation you obtained for y as a function of t; hence find x as a function of t. If we also require x(0)=4 and y(0)=5, what are x and y? information on a animal grooming career? Write down the equation called the modified Raoult's law Two cars approach an extremely icy four-way perpendicular intersection. Car A travels northward at 10 m/s and car B is traveling eastward. They collide and stick together, traveling at 41.5 north of east. What was the initial velocity of car B (in m/s)? (Enter the magnitude. Assume the masses of the cars are equal.) In genetic engineering, genes are isolated and inserted into other DNA, producing recombinant DNA. To do this, both the source and the vector DNA are first cut into fragments by ____________ . Identify the person who said the following: "Impressed by...the misery and disorder which pervaded society, and fatigued with jostling against artificial fools, Rousseau became enamored of solitude.... Raised on a false hypothesis his arguments in favour of a state of nature are plausible but unsound." 7. All nutrients must be obtained from thefood we eat.a. Trueb. False Which of the following is an accurate description of manorialism?A. Manorialism allowed peasants to gain wealthB. Manorialism is a political system in which the power of lords was limited to protect peasant rightsC. Manorialism forced peasants to provide their own landD. Manorialism offered peasants land and military protection in exchange for loyalty to a lord Which is not a risk factor for a sexually transmitted infection? It can build immunity. It can be spread to others. It may be incurable. It can be fatal. A cylinder has a radius of 6 inches and is 15 inches tall. What is the approximate volume of the cylinder? Express the answer in terms of pi. Which major NIMS Component describes systems and methods that help to ensure that incident personnel and other decision makers have the means and information they need to make and communicate decisions? The altitude of the hypotenuse of a right triangle divides the hypotenuse into segments of lengths 77 and 7. what is the length of the altitude? Figure ABCD is a parallelogram.What is the value of n? Rank the SN2 reaction rate of the following species, from fastest to slowest.CH3CH2OHCH3CH2ICH3CH2Cl You can pin applications to which two areas? A. Start screenControl PanelC. TaskbarD. Title bar consider the reaction between sulfite and a metal anion, X2-, to form the metal, X, and thiosulfate: 2 X2-(aq) + 2 SO32- + 3 H2O(l) 2 X(s) + S2O32- (aq) + 6 OH- for which Eocell = 0.63. Given that the Eored for sulfite is -0.57 V, calculate Eored for X. Enter your answer to 2 decimal places What is the length of the leg.s of the triangle below 5.The letters A, L, G, E, B, R, A are on 7 tiles in a bag, one letter on each tile. If you select tiles randomly fromthe bag and place them in a row from left to right, what is the probability the tiles will spell out ALGEBRA?(Lesson 19.2) (1 point) GeometryThe picture below shows the question and answer choices for the questions. If two planes are perpendicular to the same line, thenA. they are perpendicular to each otherB. not enough informationC. they form a straight lineD. they are parallel