ONE HALF OF AN ANNUALLY SALARY OF $35,700. IS APPROXIMATELY

Answers

Answer 1

Answer: Approximately $18,000

Step-by-step explanation:

Since you are approximating, the 7 indicates the need to round the original number up to 36,000. Then divide by 2 since you want half, thus getting $18,000.


Related Questions

Students are collecting canned goods for a local food pantry. Last year 12 students were able to distribute 1000 flyers in nine hours. This year there are 15 students handing out the same number of flyers. How long should it take them?

Answers

Answer:

7.2 h

Step-by-step explanation:

The time required is inversely proportional to the number of students.

t = k/n or  

tn = k

Let t1  and n1 represent last year

and t2 and n2 represent this year. Then

t1n1 = t2n2

Data:

t1  = 9 h; n1 = 12 students

t2 = ?;    n2 = 15 students

Calculation:

9 × 12 = t2 × 15

   108 = 15t2

     t2 = 108/15 = 7.2 h

It will take the students 7.2 h to distribute the flyers.

Be sure to answer all parts. Express the following numbers in scientific notation. Make sure you use the correct number of significant figures. (a) 0.000000027 × 10 (b) 356 × 10 (c) 47,764 × 10 (d) 0.096 × 10

Answers

Final answer:

The student's numbers have been converted to scientific notation with the correct number of significant figures: 2.7 × 10^-8 for 0.000000027 × 10, 3.56 × 10^2 for 356 × 10, 4.7764 × 10^5 for 47,764 × 10, and 9.6 × 10^-2 for 0.096 × 10.

Explanation:

To express numbers in scientific notation, you need to write them in the form of a single digit from 1 up to 9 (but not 10), followed by a decimal point and the rest of the significant figures, and then multiplied by 10 raised to the power of the number of places the decimal point has moved.

Here are the conversions for the numbers provided:

(a) 0.000000027 × 10 is written in scientific notation as 2.7 × 10-8.

(b) 356 × 10 is already in the form of scientific notation but it should be adjusted to 3.56 × 102.

(c) 47,764 × 10 can be written as 4.7764 × 105 using significant figures.

(d) 0.096 × 10 should be written as 9.6 × 10-2.

6. Raw Data: 3,5,7,4,3, 8, 6, 6,9, 6,7,8,9,3, 3, 9 There are 16 data items Find: a) Mean b) Median c) Midrange d) Mode 7. Find the standard deviation of the data in question 6

Answers

Answer:

6.a. Mean= 6

b. Median=6

c Midrange=6

d.Mode=4

7.Standard deviation=2.2079

Step-by-step explanation:

Given data

3,3,3,3,4,5,6,6,6,7,7,8,8,9,9,9

Total data items,n=16

Sum o data items=96

a. Mean=[tex]\frac{sum\;of\;data\;items}{total\;data\;items}[/tex]

Mean=[tex]\frac{96}{16}[/tex]

Mean=6

b.If total number of items are even then

Median=[tex]\frac{\frac{n}{2}^{th}\;observation+\left(\frac{n}{2}+1\right)^{th}}{2}[/tex]

Median=[tex]\frac{\frac{16}{2}^{th} observation+\left(\frac{16}{2}+1\right)^{th} observation}{2}[/tex]

Median=[tex]\frac{8^{th} observation+9^{th} observation}{2}[/tex]

Median= [tex]\frac{6+6}{2}[/tex]

Median= [tex]\frac{12}{2}[/tex]

Median=6

c. Midrange=[tex]\frac{lower\;value+highest\;value}{2}[/tex]

Lower data item=3

Highest data item=9

Midrange= [tex]\frac{3+9}{2}[/tex]

Midrange= 6

d.Mode : It is defines as  a number that appear most often in a set of numbers.

Mode=3

7. Mean[tex]\bar x=6[/tex]

[tex]\mid x-\bar x\mid[/tex]                       [tex]{\mid x-\bar x\mid}^2[/tex]

3                                           9    

3                                           9

3                                           9

3                                           9

2                                           4

1                                            1

0                                           0

0                                           0

0                                           0

1                                            1

1                                            1

2                                           4

2                                           4

3                                           9

3                                           9

3                                           9

[tex]\sum{\mid x-\bar x\mid}^2=78[/tex]

n=16

Standard deviation=[tex]\sqrt{\frac{\sum{\mid x-\bar x}^2}{n}}[/tex]

Standard devaition=[tex]\sqrt{\frac{78}{16}}[/tex]

Standard deviation=[tex]\sqrt{4.875}[/tex]

Standard deviation of data =2.2079

Suppose a basketball player has made 282 out of 393 free throws. If the player makes the next 2 free throws, I will pay you $6. Otherwise you pay me $8.Step 1 of 2 :Find the expected value of the proposition. Round your answer to two decimal places. Losses must be expressed as negative values.

Answers

Answer:

-$ 0.79

Step-by-step explanation:

Since, the player has made 282 out of 393 free throws,

So, the probability of a free throw = [tex]\frac{282}{393}[/tex],

Thus, the probability of 2 free throws = [tex]\frac{282}{393}\times \frac{282}{393}=\frac{8836}{17161}[/tex]

And, the probability of not getting 2 free throws = [tex]1-\frac{8836}{17161}=\frac{8325}{17161}[/tex]

Given, the price of winning ( getting 2 free throws ) is $6 while the price of losing ( not getting 2 free throws ) is - $ 8 ( ∵ there is a loss of $ 8 ),

Hence, the expected value of the proposition = probability of winning × winning value + probability of losing × losing value

[tex]= \frac{8836}{17161}\times 6 + \frac{8325}{17161}\times -8[/tex]

[tex]=\frac{53016}{17161}-\frac{66600}{17161}[/tex]

[tex]=-\frac{13584}{17161}[/tex]

[tex]=-\$ 0.79156226327[/tex]

[tex]\approx -\$ 0.79[/tex]

The Vertex of a parabola is at (8-1), and it's why intercept is negative 17, which function represents the parabola

Answers

Answer:

The function is equal to [tex]y=-(1/4)(x-8)^{2}-1[/tex]

Step-by-step explanation:

we know that

The equation of a vertical parabola in vertex form is equal to

[tex]y=a(x-h)^{2}+k[/tex]

where

a is a coefficient

(h,k) is the vertex

In this problem we have

(h,k)=(8,-1)

substitute

[tex]y=a(x-8)^{2}-1[/tex]

Find the value of a

Remember that we have the y-intercept

The y-intercept is the point (0,-17)

substitute

x=0,y=-17

[tex]-17=a(0-8)^{2}-1[/tex]

[tex]-17=64a-1[/tex]

[tex]64a=-17+1[/tex]

[tex]64a=-16[/tex]

[tex]a=-16/64[/tex]

[tex]a=-1/4[/tex]

therefore

The function is equal to

[tex]y=-(1/4)(x-8)^{2}-1[/tex]

see the attached figure to better understand the problem

The altitude (i.e., height) of a triangle is increasing at a rate of 1.5 cm/minute while the area of the triangle is increasing at a rate of 4.5 square cm/minute. At what rate is the base of the triangle changing when the altitude is 10.5 centimeters and the area is 95 square centimeters? The base is changing at cm/min.

Answers

Step-by-step explanation:

at time = 0min,

height, h0 = 10.5cm

area, a0 = 95cmsq

base, b0 = a0 x2/h0

=> b0 = 95 x2 / 10.5 = 18.1cm

at time = 1 min,

increase of height, rh = 1.5cm/min

height at 1 min, h1 = h0 x rh

=> h1= 10.5 × 1.5 = 15.75cm

increase of area, ra = 4.5cmsq/min

area after 1 min, a1 = a0 x ra

=> a1= 95 x 4.5 = 427.5cm/sq

base at 1 min, b1 = a1x2/h1

=> b1 = 427.5 x 2 /15.75 = 54.3 cm

rate of increase for base, rb = b1/b2

=> rb = 54.3/18.1 = 3cm/min

Find the y -intercept and the slope of the line.
Write your answers in simplest form

5x - 2y = 2

Answers

Answer:

The slope is 5/2 and the y intercept is -1

Step-by-step explanation:

To find the slope and the y intercept, we will write the equation in slope intercept form, y =mx+b where m is the slope and b is the y intercept

5x -2y =2

Add 2y to each side

5x-2y+2y =2 +2y

5x = 2+2y

Subtract 2 from each side

5x-2 = 2y+2-2

5x-2 =2y

Divide each side by 2

5x/2 -2/2 = 2y/2

5/2x -1 = y

y = 5/2x -1

The slope is 5/2 and the y intercept is -1

(Suppose that a department contains 10 people, 4 men and 6 women.

(i) How many ways are there to form a committee with 6 members, no restrictions? Explain.

(ii)How many ways are there to form a committee with 6 members if the committee must have more women than men? Explain.

Answers

Answer:

Step-by-step explanation:

Given that there are 10 people 4 men and 6 women

i) No of ways to select 6 members with no restrictions

= 10C6 = 210

ii) If more women than men should be there then we can have any one of the above possibilities

Women, men = (6,0) , (5,1) (4,2)

So No of ways will be sum of these three possibilities

= 6C6(4C0)+(6C5)(4C1)+(6C4)(4C2)

= 1+24+90

=115

When Bill makes a sandwich, he may choose from among 3 kinds of rolls, 4 varieties of meat, and 2 types of sliced cheese. If he chooses one roll, one meat, and one type of cheese, how many different kinds of sandwiches can he make?

Answers

Answer: Bill can make 24 different kinds of sandwiches

Step-by-step explanation:

Given : The number of kinds of rolls = 3

The number of varieties of meat = 4

The number of types of sliced cheese = 2

If he chooses one roll, one meat, and one type of cheese, then the number of different kinds of sandwiches he can make is given by :-

[tex]3\times2\times4=24[/tex]

Hence, Bill can make 24 different kinds of sandwiches.

Mandy has an IQ of 115. We know that the mean () IQ is 100 with a standard deviation of 15. There are 100 people in Mandy’s Alcoholics Anonymous meeting. Taken at random, how many members are smarter than Mandy

Answers

Answer: 16

Step-by-step explanation:

Given : Mean : [tex]\mu=100[/tex]

Standard deviation : [tex]\sigma =15[/tex]

The value of z-score is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 115

[tex]z=\dfrac{115-100}{15}=1[/tex]

The p-value : [tex]P(z>1)=1-P(z<1)=1- 0.8413447=0.1586553[/tex]

Now, the number of people smarter than Many is given by :_

[tex]100\times0.1586553=15.86553\approx16[/tex]

Hence, there are 16 members smarter than Mandy.

Assume that females have pulse rates that are normally distributed with a mean of mu equals 73.0 beats per minute and a standard deviation of sigma equals 12.5 beats per minute. Complete parts​ (a) through​ (c) below. a. If 1 adult female is randomly​ selected, find the probability that her pulse rate is between 69 beats per minute and 77 beats per minute. The probability is nothing. ​(Round to four decimal places as​ needed.)

Answers

The probability that her pulse rate is between 69 beats per minute and 77 beats per minute is 25.1%

What is z score?

Z score is used to determine by how many standard deviations the raw score is above or below the mean.

It is given by:

z = (raw score - mean) / standard deviation

Mean = 73, standard deviation = 12.5

For x = 69:

z = (69 - 73) / 12.5 = -0.32

For x = 77:

z = (77 - 73) / 12.5 = 0.32

P(-0.32 <z < 0.32) = P(z < 0.32) - P(z < -0.32) = 0.6255 - 0.3745 = 0.251

The probability that her pulse rate is between 69 beats per minute and 77 beats per minute is 25.1%

Find out more on z score at: https://brainly.com/question/25638875

Final answer:

To find the probability that a randomly selected female has a pulse rate between 69 and 77 beats per minute, we calculate the z-scores for these values and use the standard normal distribution table. The probability is approximately 0.2481.

Explanation:

To find the probability that a randomly selected female has a pulse rate between 69 and 77 beats per minute, we need to calculate the z-scores for these values and use the standard normal distribution table.

First, we calculate the z-score for 69 using the formula: z = (x - mu) / sigma, where x is the value, mu is the mean, and sigma is the standard deviation. Plugging in the values, we get z = (69 - 73) / 12.5 = -0.32.

Next, we calculate the z-score for 77: z = (77 - 73) / 12.5 = 0.32.

From the standard normal distribution table, we find that the probability of a z-score between -0.32 and 0.32 is approximately 0.2481.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

Solve this differential Equation by using power series
y''-x^2y=o

Answers

We're looking for a solution

[tex]y=\displaystyle\sum_{n=0}^\infty a_nx^n[/tex]

which has second derivative

[tex]y''=\displaystyle\sum_{n=2}^\infty n(n-1)a_nx^{n-2}=\sum_{n=0}^\infty(n+2)(n+1)a_{n+2}x^n[/tex]

Substituting these into the ODE gives

[tex]\displaystyle\sum_{n=0}^\infty(n+2)(n+1)a_{n+2}x^n-\sum_{n=0}^\infty a_nx^{n+2}=0[/tex]

[tex]\displaystyle\sum_{n=0}^\infty(n+2)(n+1)a_{n+2}x^n-\sum_{n=2}^\infty a_{n-2}x^n=0[/tex]

[tex]\displaystyle2a_2+6a_3x+\sum_{n=2}^\infty(n+2)(n+1)a_{n+2}x^n-\sum_{n=2}^\infty a_{n-2}x^n=0[/tex]

[tex]\displaystyle2a_2+6a_3x+\sum_{n=2}^\infty\bigg((n+2)(n+1)a_{n+2}-a_{n-2}\bigg)x^n=0[/tex]

Right away we see [tex]a_2=a_3=0[/tex], and the coefficients are given according to the recurrence

[tex]\begin{cases}a_0=y(0)\\a_1=y'(0)\\a_2=0\\a_3=0\\n(n-1)a_n=a_{n-4}&\text{for }n\ge4\end{cases}[/tex]

There's a dependency between terms in the sequence that are 4 indices apart, so we consider 4 different cases.

If [tex]n=4k[/tex], where [tex]k\ge0[/tex] is an integer, then

[tex]k=0\implies n=0\implies a_0=a_0[/tex]

[tex]k=1\implies n=4\implies a_4=\dfrac{a_0}{4\cdot3}=\dfrac2{4!}a_0[/tex]

[tex]k=2\implies n=8\implies a_8=\dfrac{a_4}{8\cdot7}=\dfrac{6\cdot5\cdot2}{8!}a_0[/tex]

[tex]k=3\implies n=12\implies a_{12}=\dfrac{a_8}{12\cdot11}=\dfrac{10\cdot9\cdot6\cdot5\cdot2}{12!}a_0[/tex]

and so on, with the general pattern

[tex]a_{4k}=\dfrac{a_0}{(4k)!}\displaystyle\prod_{i=1}^k(4i-2)(4i-3)[/tex]

If [tex]n=4k+1[/tex], then

[tex]k=0\implies n=1\implies a_1=a_1[/tex]

[tex]k=1\implies n=5\implies a_5=\dfrac{a_1}{5\cdot4}=\dfrac{3\cdot2}{5!}a_1[/tex]

[tex]k=2\implies n=9\implies a_9=\dfrac{a_5}{9\cdot8}=\dfrac{7\cdot6\cdot3\cdot2}{9!}a_1[/tex]

[tex]k=3\implies n=13\implies a_{13}=\dfrac{a_9}{13\cdot12}=\dfrac{11\cdot10\cdot7\cdot6\cdot3\cdot2}{13!}a_1[/tex]

and so on, with

[tex]a_{4k+1}=\dfrac{a_1}{(4k+1)!}\displaystyle\prod_{i=1}^k(4i-1)(4i-2)[/tex]

If [tex]n=4k+2[/tex] or [tex]n=4k+3[/tex], then

[tex]a_2=0\implies a_6=a_{10}=\cdots=a_{4k+2}=0[/tex]

[tex]a_3=0\implies a_7=a_{11}=\cdots=a_{4k+3}=0[/tex]

Then the solution to this ODE is

[tex]\boxed{y(x)=\displaystyle\sum_{k=0}^\infty a_{4k}x^{4k}+\sum_{k=0}^\infty a_{4k+1}x^{4k+1}}[/tex]

Water is leaking out the bottom of a hemispherical tank of radius 9 feet at a rate of 2 cubic feet per hour. The tank was full at a certain time. How fast is the water level changing when its height h is 6 ​feet? Note​: the volume of a segment of height h in a hemisphere of radius r is pi h squared left bracket r minus left parenthesis h divided by 3 right parenthesis right bracket.

Answers

Answer:

The water level changing by the rate of -0.0088 feet per hour ( approx )

Step-by-step explanation:

Given,

The volume of a segment of height h in a hemisphere of radius r is,

[tex]V=\pi h^2(r-\frac{h}{3})[/tex]

Where, r is the radius of the hemispherical tank,

h is the water level, ( in feet )

Here, r = 9 feet,

[tex]\implies V=\pi h^2(9-\frac{h}{3})[/tex]

[tex]V=9\pi h^2-\frac{\pi h^3}{3}[/tex]

Differentiating with respect to t ( time ),

[tex]\frac{dV}{dt}=18\pi h\frac{dh}{dt}-\frac{3\pi h^2}{3}\frac{dh}{dt}[/tex]

[tex]\frac{dV}{dt}=\pi h(18-h)\frac{dh}{dT}[/tex]

Here, [tex]\frac{dV}{dt}=-2\text{ cubic feet per hour}[/tex]

And, h = 6 feet,

Thus,

[tex]-2=\pi 6(18-6)\frac{dh}{dt}[/tex]

[tex]\implies \frac{dh}{dt}=\frac{-2}{72\pi}=-0.00884194128288\approx -0.0088[/tex]

A company that makes thing-a-ma-bobs has a start up cost of $18263. It costs the company $1.14 to make each thing-a-ma-bob and the company charges $4.06 for each thing-a-ma-bob. Let x represent the number of thing-a-ma-bobs made. Write the cost function for this company. Write the revenue function for this company. Write the profit function for this company.

Answers

Answer:

c(x) = 18263 +1.14xr(x) = 4.06xp(x) = 2.92x -18263

Step-by-step explanation:

cost function

Cost for x tambs is the sum of start-up cost and per-unit cost multiplied by the number of units.

  c(x) = 18263 +1.14x

revenue function

Revenue from the sale of x tambs is the product of their price and the number sold.

  r(x) = 4.06x

profit function

Profit from the sale of x tambs is the difference between the revenue and cost:

  p(x) = r(x) -c(x)

  p(x) = 4.06x -(18263 +1.14x)

  p(x) = 2.92x -18263

The cost function, C(x), for the company is [tex]\( C(x) = 1.14x + 18263 \)[/tex] .The revenue function, R(x), for the company is [tex]\( R(x) = 4.06x[/tex] .The profit function, P(x), for the company is [tex]( P(x) = R(x) - C(x) = 4.06x - (1.14x + 18263) \)[/tex] .

To determine the profit function for the company, we need to calculate the total cost and total revenue for making and selling 'x' thing-a-ma-bobs, respectively, and then subtract the total cost from the total revenue.1. The cost function, C(x), is the sum of the variable cost (cost per unit times the number of units) and the fixed cost (start-up cost). Since it costs $1.14 to make each thing-a-ma-bob and the start-up cost is $18263, the cost function is:[tex]\[ C(x) = (\text{Cost per unit}) \times x + \text{Fixed cost} \]\[ C(x) = 1.14x + 182632[/tex]

. The revenue function, R(x), is the amount of money the company earns from selling 'x' thing-a-ma-bobs at $4.06 each. Therefore, the revenue function is[tex]:\[ R(x) = (\text{Selling price per unit}) \times x \][ R(x) = 4.06x3.[/tex]The profit function, P(x), is the revenue minus the cost. To find the profit for 'x' thing-a-ma-bobs, we subtract the cost function from the revenue function:[tex]\[ P(x) = R(x) - C(x) \]\[ P(x) = 4.06x - (1.14x + 18263) \]\[ P(x) = 4.06x - 1.14x - 18263 \]\[ P(x) = 2.92x - 18263 \]So, the profit function for the company is \( P(x) = 2.92x - 18263 \),[/tex]

where 'x' represents the number of thing-a-ma-bobs made and sold.

Write 61 using Egyptian and Babylonian numbers.

Answers

Answer:

61 in Egyptian numeral is ∩∩∩∩∩∩l

61 is written as - т т

Step-by-step explanation:

Egyptian numeral:

 ∩ mean 10

l = 1

for 60 we can use  6 number of   ∩∩∩∩∩

i.e.

therefore 61 in Egyptian numeral is ∩∩∩∩∩∩l

Babylonian numeral : Basically Babylonian number system is 60 based instead of 10.

there are total number of 59 numerals made up by two symbol only.

61 is written as - т т with a space between two symbol

A raffle is being held to benefit the local animal shelter. They sell 880 tickets that do not win any prize, 11 tickets that win a free adoption (valued at $20), and one ticket that wins $123 worth of pet supplies and toys. If they are selling the tickets for $5 each, how much should the shelter expect to earn for each ticket sold?

Round to the nearest cent, as needed.

Answers

Answer: $4.61 this much amount expect to earn

Step-by-step explanation:

Given that,

Total number of tickets that do not have prize = 880

Tickets that win a free adoption (valued at $20) = 11

Ticket that wins $123 worth of pet supplies and toys = 1

So, total ticket sold = 880 + 11 + 1

                                = 892

Probability of tickets that not getting any prize = [tex]\frac{880}{892}[/tex]

Probability of tickets that win a free adoption = [tex]\frac{11}{892}[/tex]

Probability of tickets that wins $123 worth of pet supplies and toys = [tex]\frac{1}{892}[/tex]

Ticket value for no prize = $5

Ticket value that win a free adoption = -$20 + $5 = -$15

Ticket value that wins $123 worth of pet supplies and toys = -$123 + $5 = -$118

Expected return for each ticket = Σ(probability)(value of ticket)

 =  [tex]\dfrac{880}{892} \times5 + \dfrac{11}{892} \times (-$15) +\dfrac{1}{892}\times(-118)[/tex]

= [tex]\frac{4117}{892}[/tex]

= $4.61 this much amount expect to earn.

Final answer:

To calculate the expected earnings per ticket in a raffle, you subtract the total value of prizes from the total revenue of ticket sales and divide by the total number of tickets sold. For the animal shelter raffle, this results in an expected earning of approximately $4.62 per ticket sold.

Explanation:

The subject of your question falls under the category of Mathematics, specifically dealing with the concept of expected value in probability. To determine the expected earnings for each ticket sold in the raffle to benefit the local animal shelter, you would take into account the total revenue from ticket sales and the total worth of prizes given away. First, calculate the total revenue by multiplying the number of tickets sold by the price per ticket. Then, add up the total value of all the prizes. Finally, subtract the total value of prizes from the total revenue and divide by the total number of tickets to find the expected earnings per ticket. Remember to round to the nearest cent.

Here is an example calculation based on the figures provided:

Calculate total revenue from ticket sales: 892 tickets x $5 = $4460Add up the total value of prizes: (11 x $20) + $123 = $343Subtract the total value of prizes from total revenue: $4460 - $343 = $4117Divide by the total number of tickets to find expected earnings per ticket: $4117 / 892 = approximately $4.62

Therefore, the shelter should expect to earn approximately $4.62 for each ticket sold, after rounding to the nearest cent.

Factor completely 3x4 − 48. 3(x2 − 4)(x2 + 4) 3(x − 2)(x + 2)(x + 2)(x + 2) 3(x − 2)(x + 2)(x2 + 4) 3(x − 2)(x + 2)(x2 − 4)

Answers

Answer:

3 (x-2) (x+2) (x^2+4)

Step-by-step explanation:

3x^4 − 48

Factor out a 3

3(x^4 -16)

Inside the parentheses is the difference of squares (a^2 - b^2) = (a-b) (a+b)

where a = x^2  and b = 4

3 (x^2-4) (x^2+4)

Inside the first parentheses is the difference of squares where a = x and b=2

3 (x-2) (x+2) (x^2+4)

Answer:

3 (x-2) (x+2) (x^2+4)

Step-by-step explanation:

Daily low temperatures in Columbus, OH in January 2014 were approximately normally distributed with a mean of 15.45 and a standard deviation of 13.70. What percentage of days had a low temperature between 5 degrees and 10 degrees? (Enter a number without the percent sign, rounded to the nearest 2 decimal places)

Answers

Answer: 12.10

Step-by-step explanation:

Given : Mean : [tex]\mu = 15.45[/tex]

Standard deviation : [tex]\sigma = 13.70[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 5 degrees

[tex]z=\dfrac{5-15.45}{13.70}=-0.7627737226\approx-0.76[/tex]

For x= 10 degrees

[tex]z=\dfrac{10-15.45}{13.70}=-0.397810218\approx-0.40[/tex]

The P-value : [tex]P(-0.76<z<-0.40)=P(z<-0.40)-P(z<-0.76)[/tex]

[tex]=0.3445783-0.2236273=0.120951\approx0.1210[/tex]

In percent , [tex]0.1210\times100=12.10\%[/tex]

Hence, the percentage of days had a low temperature between 5 degrees and 10 degrees = 12.10%

Pulam, Inc. prepared the following master budget items for July:
Production and sales 36,000 units
Variable manufacturing costs:
Direct materials $ 36,000
Direct labor $ 72,000
Variable manufacturing overhead $ 72,000
Fixed manufacturing costs $ 180,000
Total manufacturing costs $ 360,000
During July, Pulam actually sold 42,000 units. Prepare a flexible budget for Pulam based on actual sales.(Do not round your intermediate calculations).

Production and sales units
Variable manufacturing costs:
Direct materials $
Direct labor $
Variable manufacturing overhead $
Fixed manufacturing costs $
Total manufacturing costs $

Answers

Answer:

During July, Pulam actually sold 42,000 units.

Variable Manufacturing Costs for 42,000 units  are-

1. Direct Material : [tex](36000/36000)\times42000 =42000[/tex] dollars

2. Direct Labor:  [tex](72000/36000)\times42000 =84000[/tex] dollars

3. Variable Manufacturing Overhead : [tex](72000/36000)\times42000 =84000[/tex] dollars

4. Fixed manufacturing costs : $ 180000

5. Total manufacturing costs : [tex]42000+84000+84000+180000=390000[/tex] dollars


FIND THE NEXT NUMBER IN THE SEQUENCE.

4, 9, 16, 25,

Answers

Answer:

The next number in the sequence is 36.

Step-by-step explanation:

Consider the provided sequence.

4, 9, 16, 25

The number 4 can be written as 2².

The number 9 can be written as 3².

The number 16 can be written as 4².

The number 25 can be written as 5².

The general term of the sequence is: [tex]a_n=(n+1)^2[/tex]

Thus, the next term will be:

[tex]a_5=(5+1)^2[/tex]

[tex]a_5=(6)^2[/tex]

[tex]a_5=36[/tex]

Therefore, the next number in the sequence is 36.

The next number in the sequence 4, 9, 16, 25 is 36.

The given sequence is 4, 9, 16, 25. To find the next number, we need to look for a pattern. Notice that these numbers are perfect squares:

⇒ 4 = 2²

⇒ 9 = 3²

⇒ 16 = 4²

⇒ 25 = 5²

The pattern shows that the numbers are the squares of consecutive integers (2, 3, 4, 5). The next integer in this sequence is 6, and its square is:

⇒ 6² = 36

Thus, the next number in the sequence is 36.

This Question: 1 pt Determine whether the set is finite or infinite. 124, 28, 32, 36,... Choose the correct answer below.

Answers

Answer:

The given set is infinite.

Step-by-step explanation:

If a set has finite number of elements, then it is known finite set.

If a set has infinite number of elements, then it is known infinite set. In other words a non finite set is called infinite set.

The given elements of a set are

124, 28, 32, 36,...

Let the given set is

A = { 124, 28, 32, 36,... }

The number of elements in set A is infinite. So, the set A is infinite.

Therefore the given set is infinite.

Sally has 6 red​ flags, 4 green​ flags, and 2 white flags. How many 12​-flag signals can she run up a flag​ pole? She can create nothing signals.

Answers

Answer:

Hence, the answer is:

                           13860

Step-by-step explanation:

Sally has 6 red​ flags, 4 green​ flags, and 2 white flags.

i.e. there are a total of 12 flags.

Now, we are asked to find the different number of arrangements that may be made with the help of these 12-flags.

We need to use the method of permutation in order to find the different number of arrangements.

The rule is used as follows:

If we need to arrange n items such that there are [tex]n_1[/tex] number of items of one type,[tex]n_2[/tex] items same of other type .

Then the number of ways of arranging them is:

[tex]=\dfrac{n!}{n_1!\cdot n_2!}[/tex]

Hence, here the number of ways of forming a flag signal is:

[tex]=\dfrac{12!}{6!\times 4!\times 2!}[/tex]

( since 6 flags are of same color i.e. red , 4 flags are of green color and 2 are of white colors )

[tex]=\dfrac{12\times 11\times 10\times 9\times 8\times 7\times 6!}{6!\times 4!\times 2!}\\\\\\=\dfrac{12\times 11\times 10\times 9\times 8\times 7}{4\times 3\times 2\times 2}\\\\=13860[/tex]

To determine how many different 12-flag signals Sally can run up a flag pole using 6 red flags, 4 green flags, and 2 white flags, we need to calculate the permutations of these flags, taking into account that flags of the same color are indistinguishable from each other.
Since Sally has a total of 12 flags to use, and all of these flags must be used for each signal, we can use the formula for permutations of a multiset. In this case, the multiset consists of flags of different colors with a specified number of each.
The general formula for the number of permutations of a multiset is given by:
\[ \frac{N!}{n_1! \cdot n_2! \cdot ... \cdot n_k!} \]
Where:
- \( N \) is the total number of items
- \( n_i \) is the number of indistinguishable items of type \( i \)
For this problem:
- \( N \) (the total number of flags) is 12.
- \( n_1 \) (the number of red flags) is 6.
- \( n_2 \) (the number of green flags) is 4.
- \( n_3 \) (the number of white flags) is 2.
Now we can plug these numbers into the formula:
\[ \frac{12!}{6! \cdot 4! \cdot 2!} \]
Calculating this, we have:
\[ 12! = 479,001,600 \]
\[ 6! = 720 \]
\[ 4! = 24 \]
\[ 2! = 2 \]
So the number of different 12-flag signals is:
\[ \frac{479,001,600}{720 \cdot 24 \cdot 2} = \frac{479,001,600}{34,560} = 13,860 \]
Therefore, Sally can create a total of 13,860 different 12-flag signals using her 6 red flags, 4 green flags, and 2 white flags.

Please help me with this

Answers

Answer:

∠AMX=72°

Step-by-step explanation:

we know that

An isosceles triangles has two equal sides and two equal interior angles

In the isosceles triangle MAX

we have that

XA=MA

and ∠AXM= ∠AMX -----> angles base    

we have that

∠AXM=72°

therefore

∠AMX=72°

solve y' -x^2y = 0 using power series and write the first four terms of the power series

Answers

We're looking for a solution of the form

[tex]y=\displaystyle\sum_{n\ge0}a_nx^n[/tex]

with derivative

[tex]y'=\displaystyle\sum_{n\ge0}(n+1)a_{n+1}x^n[/tex]

Note that [tex]x=0\implies y(0)=a_0[/tex].

Substituting into the ODE gives

[tex]\displaystyle\sum_{n\ge0}(n+1)a_{n+1}x^n-\sum_{n\ge0}a_nx^{n+2}=0[/tex]

The first series starts with a constant term, while the second starts with a quadratic term, so we should pull out the first two terms of the first series and have it start at [tex]n=2[/tex], then shift the index on the second series to achieve the same effect, which allows us to condense the left side as

[tex]a_1+2a_2x+\displaystyle\sum_{n\ge2}\bigg((n+1)a_{n+1}-a_{n-2}\bigg)x^n=0[/tex]

so that the series solution's coefficients are given according to the recurrence

[tex]\begin{cases}a_0=a_0\\a_1=a_2=0\\(n+1)a_{n+1}-a_{n-2}=0&\text{for }n\ge2\end{cases}[/tex]

We can simplify the latter equation somewhat to get it in terms of [tex]a_n[/tex]:

[tex]a_n=\dfrac{a_{n-3}}n\text{ for }n\ge3[/tex]

This shows dependency between coefficients that are 3 indices apart, so we check 3 cases:

If [tex]n=3k+1[/tex], where [tex]k\ge0[/tex] is an integer, then

[tex]k=0\implies n=1\implies a_1=0[/tex]

[tex]k=1\implies n=4\implies a_4=\dfrac{a_1}4=0[/tex]

and so on for all such [tex]n[/tex], giving

[tex]a_{3k+1}=0[/tex]

If [tex]n=3k+2[/tex], then

[tex]k=0\implies n=2\implies a_2=0[/tex]

and we get the same conclusion as before,

[tex]a_{3k+2}=0[/tex]

If [tex]n=3k[/tex], then

[tex]k=0\implies n=0\impiles a_0=a_0[/tex]

[tex]k=1\implies n=3\implies a_3=\dfrac{a_0}3[/tex]

[tex]k=2\implies n=6\implies a_6=\dfrac{a_3}6=\dfrac{a_0}{3\cdot6}=\dfrac{a_0}{3^2(2\cdot1)}[/tex]

[tex]k=3\implies n=9\implies a_9=\dfrac{a_6}9=\dfrac{a_0}{3^3(3\cdot2\cdot1)}a_0[/tex]

and so on, with the general pattern

[tex]a_{3k}=\dfrac{a_0}{3^kk!}[/tex]

Then the series solution is

[tex]y=\displaystyle\sum_{k\ge0}\bigg(a_{3k}x^{3k}+a_{3k+1}x^{3k+1}+a_{3k+2}x^{3k+2}\bigg)[/tex]

[tex]y=\displaystyle a_0\sum_{k\ge0}\frac{x^{3k}}{3^kk!}[/tex]

[tex]y=\displaystyle a_0\sum_{k\ge0}\frac{\left(\frac{x^3}3\right)^k}{k!}[/tex]

whose first four terms are

[tex]\boxed{a_0\left(1+\dfrac{x^3}3+\dfrac{x^6}{18}+\dfrac{x^9}{162}\right)}[/tex]

The function f(x) = 2x + 510 represents the number of calories burned when exercising, where x is the number of hours spent exercising.

The function g(x) = 200x − 125 represents the calorie deficit that occurs when combining diet with exercise, where x is the number of hours spent exercising.

What is (f + g)(2)? Explain.

514 calories burned while combining diet with 2 hours of exercise
789 calories burned while combining diet with 2 hours of exercise
514 calories burned while exercising for 2 hours
789 calories burned while exercising for 2 hours

Answers

Answer: 789 calories burned while combining diet with 2 hours of exercise

Step-by-step explanation:

we have that

[tex]f(x)=2x+510[/tex]

[tex]g(x)=200x-125[/tex]

we know that

[tex](f+g)(x)=f(x)+g(x)[/tex]

substitute

[tex](f+g)(x)=2x+510+200x-125[/tex]

[tex](f+g)(x)=202x+385[/tex]

Find [tex](f+g)(2)[/tex]

For x=2 hours

substitute

[tex](f+g)(2)=202(2)+385[/tex]

[tex](f+g)(2)=789\ calories[/tex]

therefore

The answer is

789 calories burned while combining diet with 2 hours of exercise

Drug X is to be administered intravenously at a dosage of 20 mg/kg. A patient weighing 60 kg should receive

A. 60 mg

B. 120 mg

C. 600 mg

D. 1200 mg

Answers

Answer:

D. 1200 mg

Step-by-step explanation:

In order to find the solution we need to understand that a dosage of 20 mg/kg means that 20 mg are administered to the patient for each kg of his/her weight.

So, if the patient weight is 60 kg then:

Total drug X = (20mg/Kg)*(60Kg)=1200mg.

In conclusion, 1200 mg will be administered to the patient, so the answer is D.

The mayor of a town has proposed a plan for the construction of a new bridge. A political study took a sample of 1200 voters in the town and found that 56% of the residents favored construction. Using the data, a political strategist wants to test the claim that the percentage of residents who favor construction is more than 53%. State the null and alternative hypotheses.

Answers

Answer: [tex]H_0:p\leq0.53[/tex]

[tex]H_a:p>0.53[/tex]

Step-by-step explanation:

Claim :  A a political strategist wants to test the claim that the percentage of residents who favor construction is more than 53%.

Let 'p' be the percentage of residents who favor construction .

Claim : [tex]p> 0.53[/tex]

We know that the null hypothesis has equal sign.

Therefore , the null hypothesis for the given situation will be opposite to the given claim will be :-

[tex]H_0:p\leq0.53[/tex]

And the alternative hypothesis must be :-

[tex]H_a:p>0.53[/tex]

Thus, the null hypothesis and the alternative hypothesis for this test :

[tex]H_0:p\leq0.53[/tex]

[tex]H_a:p>0.53[/tex]

1) For the following problem: Let f={(-2,3),(-1,1),(0,0),(1,-1), (2,-3)} and let g-{-3,1),(-1,-2), (0, 2),(2, 2),(3,1)}.Find the following a) f(1) and g-1) b) (gof (1) c) (gofof)(-1) d) (fog)(3)

Answers

Answer:

1. f(1)=-1 and g(-1)=-2.

2. (gof)(1)=-2.

3. (gofof)(-1)=-2

4. (fog)(3)=-1

Step-by-step explanation:

The given functions are defined as

f={(-2,3),(-1,1),(0,0),(1,-1), (2,-3)}

g={(-3,1),(-1,-2), (0, 2),(2, 2),(3,1)}

1.

The value of function f at x=1 is -1, So, f(1)=-1.

The value of function g at x=-1 is -2, So, g(-1)=-2.

Therefore the value of f(1) is -1 and the value of g(-1) is -2.

2.

[tex](g\circ f)(1)=g(f(1))[/tex]                       [tex][\because (g\circ f)(x)=g(f(x))][/tex]  

[tex](g\circ f)(1)=g(-1)[/tex]                        [tex][\because f(1)=-1][/tex]  

[tex](g\circ f)(1)=-2[/tex]                           [tex][\because g(-1)=-2][/tex]  

Therefore the value of (gof)(1) is -2.

3.

[tex](g\circ f\circ f)(-1)=(g\circ f)(f(-1))[/tex]                       [tex][\because (g\circ f)(x)=g(f(x))][/tex]  

[tex](g\circ f\circ f)(-1)=(g\circ f)(1)[/tex]                        [tex][\because f(-1)=1][/tex]  

[tex](g\circ f\circ f)(-1)=-2[/tex]                           [tex][\because \text{From part 2}, (g\circ f)(1)=-2][/tex]  

Therefore the value of (gofof)(1) is -2.

4.

[tex](f\circ g)(3)=f(g(3))[/tex]                       [tex][\because (f\circ g)(x)=f(g(x))][/tex]  

[tex](f\circ g)(3)=f(1)[/tex]                        [tex][\because g(3)=1][/tex]  

[tex](f\circ g)(3)=-1[/tex]                           [tex][\because f(1)=-1][/tex]  

Therefore the value of (fog)(3) is -1.


The sizes of matrices A and B are given. Find the sizes of AB and BA whenever they are defined. (If the matrix product is undefined, enter UNDEFINED.)

A is of size 6 × 7, and B is of size 7 × 6.

AB ______x________

BA _____x_________

Answers

Answer:  The required answers are

AB is of order  6 × 6.

BA is of order  7  × 7.

Step-by-step explanation:  Given that the sizes of the matrices A and B are as follows :

A is of size 6 × 7   and   B is of size 7 × 6.

We are to find the sizes of AB and BA whenever they are defined.

We know that

if a matrix P has m rows and n columns, then its size is written as m × n.

Also, two matrices P and Q of sizes m × n and r × s respectively can be multiplies if the number of columns in P is equal to the number of rows in Q.

That is, if n = r. And the size of the matrix P × Q is m × s.

Now, since the number of columns in A is equal to the number of rows in B, the product A × B is possible and is of order 6 × 6.

Similarly, the number of columns in B is equal to the number of rows in A, the product B × A is possible and is of order 7 × 7.

Thus, the required answers are

AB is of order  6 × 6.

BA is of order  7  × 7.

Evaluate the line integral by the two following methods. xy dx + x2y3 dy C is counterclockwise around the triangle with vertices (0, 0), (1, 0), and (1, 2) (a) directly (b) using Green's Theorem

Answers

When we evaluate the line integral by the two following methods the answer is: [tex]\frac{1}{3}[/tex].

(a) Directly:

We will evaluate the line integral directly by breaking it up into three parts, one for each side of the triangle.

1. Along the line from (0, 0) to (1, 0),  y = 0 , so  dy = 0 . The integral simplifies to:

[tex]\[ \int_{(0,0)}^{(1,0)} xy \, dx + x^2y^3 \, dy = \int_{0}^{1} 0 \, dx + 0 \, dy = 0 \][/tex]

 2. Along the line from (1, 0) to (1, 2),  x = 1 , so [tex]\( dx = 0 \)[/tex]. The integral simplifies to:

[tex]\[ \int_{(1,0)}^{(1,2)} 1 \cdot y \, dx + 1^2 \cdot y^3 \, dy = \int_{0}^{2} y \, dy = \left[ \frac{1}{2}y^2 \right]_{0}^{2} = 2 \][/tex]

3. Along the line from (1, 2) to (0, 0),  x  varies from 1 to 0, and  y  varies from 2 to 0. We can express y  as [tex]\( y = 2 - 2x \)[/tex] and [tex]\( dx = -dx \)[/tex] (since x  is decreasing). The integral becomes:

[tex]\[ \int_{(1,2)}^{(0,0)} x(2 - 2x) \, dx + x^2(2 - 2x)^3(-dx) \] \[ = \int_{1}^{0} 2x - 2x^2 \, dx - \int_{1}^{0} 8x^2(1 - x)^3 \, dx \] \[ = \left[ x^2 - \frac{2}{3}x^3 \right]_{1}^{0} - \left[ \frac{8}{3}x^3(1 - x)^3 \right]_{1}^{0} \] \[ = 0 - \left( -\frac{1}{3} \right) - 0 = \frac{1}{3} \][/tex]

Adding up the three parts, we get the direct line integral:

[tex]\[ 0 + 2 + \frac{1}{3} = \frac{7}{3} \][/tex]

(b) Using Green's Theorem:

Green's Theorem states that for a vector field [tex]\( F(x, y) = P(x, y) \, \mathbf{i} + Q(x, y) \, \mathbf{j} \)[/tex]  and a simple closed curve C  oriented counter clockwise, the line integral around C  is equal to the double integral of the curl of F  over the region D  enclosed by C :

[tex]\[ \oint_C P \, dx + Q \, dy = \iint_D \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \][/tex]

For our vector field, [tex]\( P = xy \)[/tex] and [tex]\( Q = x^2y^3 \)[/tex], so:

[tex]\[ \frac{\partial Q}{\partial x} = 2xy^3 \] \[ \frac{\partial P}{\partial y} = x \][/tex]

The double integral over the triangle is:

[tex]\[ \int_{0}^{1} \int_{0}^{2x} (2xy^3 - x) \, dy \, dx \] \[ = \int_{0}^{1} \left[ \frac{1}{2}x \cdot y^4 - xy \right]_{0}^{2x} \, dx \] \[ = \int_{0}^{1} (4x^3 - 2x^2) \, dx \] \[ = \left[ x^4 - \frac{2}{3}x^3 \right]_{0}^{1} \] \[ = 1 - \frac{2}{3} = \frac{1}{3} \][/tex]

The result using Green's Theorem is: [tex]\[ \frac{1}{3} \][/tex]

For the line from (1, 2) to (0, 0), parameterizing  x  from 1 to 0 and  y = 2x , we have:

[tex]\[ \int_{1}^{0} x(2x) \, dx + x^2(2x)^3(-dx) \] \[ = \int_{1}^{0} 2x^2 \, dx - \int_{1}^{0} 8x^5 \, dx \] \[ = \left[ \frac{2}{3}x^3 \right]_{1}^{0} - \left[ \frac{4}{3}x^6 \right]_{1}^{0} \] \[ = 0 - \left( -\frac{2}{3} \right) - 0 + \frac{4}{3} \] \[ = \frac{2}{3} + \frac{4}{3} = 2 \][/tex]

Now, adding up the corrected parts, we get:

[tex]\[ 0 + 2 + 2 = 4 \][/tex]

This corrected value matches the result obtained using Green's Theorem, which confirms that the correct answer is: [tex]\[ \boxed{\frac{1}{3}} \][/tex].

Other Questions
URGENT!! Offering 39 PointsThe solution to this system of equations lies between the x-values -2 and -1.5. At which x-value are the two equations approximately equal? Someone help me answer this vas a ver peliculars? no, no voy a ver Please conduct some research and find an article on Security Threats and please provide link of the article. Why cant a line or Ray have a perpendicular bisector a piece of rope11/12yd long is cut into two pieces. One piece is4/7yd long. How long is the other piece? A magazine provided results from a poll of 2000 adults who were asked to identify their favorite pie. Among the 2000 respondents, 13% chose chocolate pie, and the margin of error was given as + or -4 percentage points. Given specific sample data, which confidence interval is wider: the 95% confidence interval or the 80% confidence interval? Why is it wider? REALLY NEED YOUR HELP!! RITE NOW PLEASE 24 POINTS!!!!REGINA. Hi, everyone. Today we are here to make some decisions about the homecoming dance. Most importantly, we need to pick a theme and a location. I know you came prepared with suggestions and ideas, so lets begin with location. Angel?ANGEL. So, our budget for the dance is $2,500this includes the money we raised during the car wash last week. It will have to pay for the entertainment, the space, decorations, and refreshments.[LOLA raises her hand to be recognized.]REGINA. Yes, Lola?LOLA. I was thinking that the school gym might be the most cost-effective option. We dont have to spend money on the venue and can put the money into the decorations instead to really transform it. I compared venues across town, and many of them would cost between $500 and $1,200 to rent for one night.DONNIE. Thats a stupid idea. Who wants to have it in the gym? How dumb and boring. We should have it at that fancy hotel downtown.How should the moderator of the group respond to Donnies comment?A) She should ask him to leave the discussion and direct the group to continue without him.B) She should make sure the others take note of his idea and point of view on the topic.C) She should provide the facts that help to support his opinion for the location of the dance.D) She should remind him of the rules for discussion and ask him to provide supporting information. I Need Help Failing Badly Geometry Is Hard!! While you are using a battery, the cell reaction is going a) forward, b) backward, c) at equilibrium, d) TEXASIN all possible What will be the value of sumtotal when this code is executed? int n1 = 3, n2 = 6, n3 = 2, sumtotal = 4; if (n1 ! = 4) sumtotal -= n3; else if (n3 The weighted-average process-costing method calculates the equivalent units by ________.A) considering only the work done during the current period B) the units started during the current period minus the units in ending inventory C) the units started during the current period plus the units in ending inventory D) the equivalent units completed during the current period plus the equivalent units in ending inventory you are assigned a new science project and you have lots of ideas about how to do it. The fact you have this ability to come up with ideas reflects originality or fluency what makes a fossil an index fossil? a. The fossil comes from an animal that did not evolve. b. The fossil does not contain any traces of DNA. c. The fossil cannot be dated using radioactive dating. d. The fossil was formed only during a certain short time period. If f(x)=x2+3x+5, what is f(a+h)? Which of the following accurately characterizes the process of freezing?Because energy is released, freezing is an exothermic process.Because energy is absorbed, freezing is an exothermic process.Because energy is released, freezing is an endothermic process.Because energy is absorbed, freezing is an endothermic process. Create a static method called negToZero, which takes an integer array, and returns a new integer array in which all negative entries in the input array have been changed to zero. The non-negative entries should remain unchanged. Example: theArray:{0,4,-6,-5,3} ==> {0,4,0,0,3} public static int [ ] negToZero (int [ ] theArray) { ________________ cause an increase in the contractility of cardiac muscle.a. Negative inotropic agentsb. Negative chronotropic agentsc. Positive chronotropic agentsd. Positive inotropic and positive chronotropic agentse. Positive inotropic agents A person pushes a 16.0 kg lawn mower at constant speed with a force of 87.5 N directed along the handle, which is at an angle of 45.0 to the horizontal. Part D friction force? What force must the person exert on the lawn mower to accelerate it from rest to 1.3 m/s in 2.5 seconds, assuming the same Express your answer to three significant figures and Include the appropriate units Firm I is convinced that a certain class of technologies holds real economic potential. However, it does not know, for sure, which particular version of this technology is going to dominate the market. There are eight competing versions of this technology currently, but ultimately, only one will dominate the market. Should Firm I invest in all eight of these technologies itself? Should it invest in just one of these technologies? Should it partner with other firms that are investing in these different technologies?