Oppositely charged objects attract each other. This attraction holds electrons in atoms and holds atoms to one another in many compounds. However, Ernest Rutherford’s model of the atom failed to explain why electrons were not pulled into the atomic nucleus by this attraction. What change to the atomic model helped solve the problem seen in Rutherford’s model?

Answers

Answer 1

Answer:

A) Bohr’s work with atomic spectra led him to say that the electrons were limited to existing in certain energy levels, like standing on the rungs of a ladder.

Explanation:

Answer 2
Final answer:

The change to the atomic model that helped solve the problem seen in Rutherford's model was the discovery of the strong nuclear force.

Explanation:

Rutherford's model required that the electrons be in motion. Positive and negative charges attract each other, so stationary electrons would fall into the positive nucleus. However, Rutherford's model failed to explain why electrons were not pulled into the atomic nucleus by this attraction. The change to the atomic model that helped solve this problem was the discovery of the strong nuclear force, which is much stronger than electrostatic interactions and holds the protons and neutrons together in the nucleus.

Learn more about Atomic model here:

https://brainly.com/question/9145431

#SPJ3


Related Questions

The cheetah is one of the fastest-accelerating animals, because it can go from rest to 19.6 m/s (about 44 mi/h) in 2.9 s. If its mass is 108 kg, determine the average power developed by the cheetah during the acceleration phase of its motion. Express your answer in the following units.
(a) watts(b) horsepower.

Answers

Answer:

a)P =14288.4 W

b)P = 19.16  horsepower

Explanation:

Given that

m= 108 kg

Initial velocity ,u= 0 m/s

Final velocity ,v= 19.6 m/s

t= 2.9 s

Lets take acceleration of Cheetah is a m/s²

We know that

v= u  + a t

19.6 = 0 + a x 2.9

a= 6.75 m/s²

Now force F

F= m a

F= 108 x 6.75 N

F= 729 N

Now the power P

P = F.v

P = 729 x 19.6 W

P =14288.4 W

We know that

1 W= 0.0013  horsepower

P = 19.16  horsepower

P =14288.4 W

The purpose of studying a system is to identify the strengths and weaknesses of the existing system and examine current inputs, outputs, processes, security and controls, and system performance.

Answers

The purpose of system is to make system more reliable and efficient for desired work completion

Explanation:

In most of the times, the system analysts operate in a dynamic environment where change is  the necessary process . A business application, a business firm or a computer system may be the required environment. In order To rebuild a system, the key elements must be considered which we need to examine are as follows:

1. Outputs and inputs.

2. Security and Control.

3. processor

4. Environment.

5. Feedback.

6. Boundaries and interface.

A "seconds pendulum" is one that moves through its equilibrium position once each second. (The period of the pendulum is precisely 2.000 s.) The length of a seconds pendulum is 0.9923 m at Tokyo and 0.9941 m at Cambridge, England. What is the ratio of the free-fall accelerations at these two locations?

Answers

Ratio of free fall acceleration of Tokyo to Cambridge = 0.998

Explanation:

We know the equation

            [tex]T=2\pi \sqrt{\frac{l}{g}}[/tex]

   where l is length of pendulum, g is acceleration due to gravity and T is period.

Rearranging

              [tex]g= \frac{4\pi^2l}{T^2}[/tex]

Length of pendulum in Tokyo = 0.9923 m

Length of pendulum in Cambridge = 0.9941 m

Period of pendulum in Tokyo = Period of pendulum in Cambridge = 2s

We have

                     [tex]\frac{ g_{\texttt{Tokyo}}}{ g_{\texttt{Cambridge}}}= \frac{\frac{4\pi^2 l_{\texttt{Tokyo}}}{ T_{\texttt{Tokyo}}^2}}{\frac{4\pi^2 l_{\texttt{Cambridge}}}{ T_{\texttt{Cambridge}}^2}}\\\\\frac{ g_{\texttt{Tokyo}}}{ g_{\texttt{Cambridge}}}=\frac{\frac{0.9923}{2^2}}{\frac{0.9941}{2^2}}=0.998[/tex]

Ratio of free fall acceleration of Tokyo to Cambridge = 0.998

In a coffee-cup calorimeter experiment, 10.00 g of a soluble ionic compound was added to the calorimeter contained 75.0 g H2O initially at 23.2°C. The final temperature of the solution was 31.8°C. What was the change in enthalpy for the dissolution of this compound?

Answers

Answer:

The enthalpy for dissolution is - 305.558 J/g

Solution:

Mass of the ionic compound, m = 10.00 g

Mass of water, m' = 75.0 g

Initial temperature, T = [tex]23.2^{\circ}C[/tex]

Final Temperature, T' = [tex]31.8^{\circ}C[/tex]

Now,

To calculate the change in enthalpy:

We know that the specific heat of water is 4.18 [tex]J/g^{\circ}C[/tex]

Total mass of the solution, M = m + m' = 10.00 + 75.0 = 85.0 g

Temperature, difference, [tex]\Delta T = T' - T = 31.8 - 23.2 = 8.6^{\circ}C[/tex]

Thus

The heat absorbed by the solution is given by:

[tex]Q = MC_{w}\Delta T = 85.0\times 4.18\times 8.6 = 3055.58\ J[/tex]

Enthalpy, [tex]\Delta H = -\frac{Q}{m} = - \frac{3055.58}{10} = - 305.558\ J/g[/tex]

Two identical strings, of identical lengths of 2.00 m and linear mass density of μ=0.0065kg/m, are fixed on both ends. String A is under a tension of 120.00 N. String B is under a tension of 130.00 N. They are each plucked and produce sound at the n=10 mode. What is the beat frequency?

Answers

Answer:

beat frequency = 13.87 Hz

Explanation:

given data

lengths l = 2.00 m

linear mass density μ = 0.0065 kg/m

String A is under a tension T1 = 120.00 N

String B is under a tension T2 = 130.00 N

n = 10 mode

to find out

beat frequency

solution

we know here that length L is

L = n × [tex]\frac{ \lambda }{2}[/tex]      ........1

so  λ = [tex]\frac{2L}{10}[/tex]  

and velocity is express as

V = [tex]\sqrt{\frac{T}{\mu } }[/tex]    .................2

so

frequency for string A = f1 = [tex]\frac{V1}{\lambda}[/tex]

f1 = [tex]\frac{\sqrt{\frac{T}{\mu } }}{\frac{2L}{10}}[/tex]

f1 = [tex]\frac{10}{2L} \sqrt{\frac{T1}{\mu } }[/tex]      

and

f2 = [tex]\frac{10}{2L} \sqrt{\frac{T2}{\mu } }[/tex]

so

beat frequency is = f2 - f1

put here value

beat frequency = [tex]\frac{10}{2*2} \sqrt{\frac{130}{0.0065}}[/tex]  - [tex]\frac{10}{2*2} \sqrt{\frac{120}{0.0065} }[/tex]

beat frequency = 13.87 Hz

A molecule moves down its concentration gradient using a transport protein in the plasma membrane. This is an example of

Answers

Final answer:

Facilitated transport, also known as facilitated diffusion, is the process by which a molecule moves down its concentration gradient using transport proteins in the plasma membrane.

Explanation:

Facilitated transport, also known as facilitated diffusion, is the process by which a molecule moves down its concentration gradient using transport proteins in the plasma membrane. This process does not require the input of energy and allows substances to diffuse across the membrane more easily. For example, glucose is transported into cells using glucose transporters that utilize facilitated transport. This process is important for the movement of larger or charged molecules that cannot freely diffuse across the cell membrane.

Determine whether the following actions cause the fission reaction in the reactor to speed up or slow down.
a. speeds up fission: Adding the moderator to the reactor
b. speeds up fission: Removing the control rods from the reactor
c. slows down fission: Inserting the control rods into the reactor
d. slows down fission: Removing the moderator from the reactor
e. slows down fission: A sudden loss of primary coolant water in a pressurized water reactor

Answers

Answer:

option B and C

Explanation:

Control rod are used to regulate the nuclear reactor.

When you insert control rod in the reactor it slows down the nuclear fission inside the reactor and the energy produced in the reactor will be less.

When you remove control road from the reactor the nuclear fission increase inside the reactor and the energy production is high.

Control rod consist of boron, boron absorb the neutron which help to control the nuclear fission.

Hence, the correct answer is option B and C

A Biologists have studied the running ability of the northern quoll, a marsupial indigenous to Australia In one set of experiments, they studied the maximum speed that quolls could run around a curved path without slipping. One quoll was running at 2.4 m/s around a curve with a radius of 1.6 m when it started to slip.
What was the coefficient of static friction between the quoll's feet and the ground in this trial?

Answers

Answer:

Coefficient of static friction = 0.37

Explanation:

At the point the the quoll slides, quoll attains its maximum velocity.

So Ne = (mv^2)/r ....equa 1

And N =mg....equ 2

Where N vertical force of qoull acting on the surface, e = coefficient of friction, m=mass, g=9.8m/s^2, r =radius =1.6m, v= max velocity of quill = 2.4m/s

Sub equ 2 into equ 1

Mge= (mv^2)/r ...equa3

Simplfy equ3

e = v^2/(gr)...equ 4

Sub figures above

e = 5.76/(9.8*1.6)

e = 0.37

A car traveling 6.0 m/s is uninformly accelerating at a rate of 3.0 m/s^2 for 15 seconds. What is it’s final velocity?

Answers

Answer:

The answer to your question is 11.2 m/s

Explanation:

Data

Initial speed (vo) = 6.0 m/s

Acceleration (a) = 3.0 m/s²

time = 15 s

Final speed = ?

Formula

                d = vot + [tex]\frac{1}{2} at^{2}[/tex]

                vf² = vo² + 2ad

Process

                d = (6)(15) + [tex]\frac{1}{2} (3)(15)^{2}[/tex]

                d = 90 + 337.5

                d = 427.5 m

                vf² = (6)² + 2(3)(15)

                vf² = 36 + 90

                vf² = 126

                vf = 11.2 m/s

A ledge on a building is 23 m above the ground. A taut rope attached to a 4.0-kg can of paint sitting on the ledge passes up over a pulley and straight down to a 3.0-kg can of nails on the ground. If the can of paint is accidentally knocked off the ledge, what time interval does a carpenter have to catch the can of paint before it smashes on the ground?

Answers

Answer:

The time can catch before it smashes on the ground is [tex]t=5.73 s[/tex]

Explanation:

Using the force equation

[tex]F=m*a[/tex]

[tex]F_{net}=m*a[/tex]

So replacing and solving to find the acceleration

[tex]a = (m_1*g-m_2*g) / m_1+m_2[/tex]

Finding the factor

[tex]a = g *( m_1-m_2)/m_1+m_2[/tex]

[tex]a=9.8m/s^2 *( 4.0 kg- 3.0 kg) / (4.0 + 3.0) kg[/tex]

[tex]a=1.4 m/s^2[/tex]

Now replacing in Newtons law to find  the time before can catch so:

[tex]d= \frac{1}{2}*a*t^2[/tex]

[tex]t=\sqrt{\frac{2*d}{a}}=\sqrt{\frac{2* 23m}{1.4 m/s^2}}[/tex]

[tex]t=5.73 s[/tex]

The end point of a spring vibrates with a period of 2.1 seconds when a mass m is attached to it. When this mass is increased by 6.810×101 kg, the period is found to be 3.4 seconds. Find the value of m.

Answers

Answer:

Mass attached to the spring is 41.95 kg

Explanation:

We have given time period of the spring T = 2.1 sec

Let the mass attached is m

And spring constant is k

We know that time period is given by

[tex]T=2\pi \sqrt{\frac{m}{k}}[/tex]

[tex]2.1=2\pi \sqrt{\frac{m}{k}}[/tex]---------eqn 1

Now if the mass is increased by 68.10 kg then time period become 3.4 sec

So [tex]3.4=2\pi \sqrt{\frac{m+68.10}{k}}[/tex]------eqn 2

Now dividing eqn 1 by eqn 2

[tex]\frac{2.1}{3.4}=\sqrt{\frac{m}{m+68.10}}[/tex]

[tex]0.381=\frac{m}{m+68.10}[/tex]

[tex]m=41.95 kg[/tex]

So mass attached to the spring is 41.95 kg

Final answer:

To find the value of mass m, use the formula for the period of a mass-spring system.

Explanation:

In order to find the value of mass m, we can use the formula for the period of a mass-spring system:



T = 2π√(m/k)



Where T is the period, m is the mass, and k is the spring constant.



For the initial system with period 2.1 seconds, we have:



2.1 = 2π√(m/k)



For the system with mass increased by 6.810×10^1 kg and period 3.4 seconds, we have:



3.4 = 2π√((m + 6.810×10^1)/k)



Using these two equations, we can solve for the value of m.

A tennis ball is thrown upward from the top of a 680 foot high building at a speed of 56 feet per second. The tennis ball's height above ground can be modeled by the equation . When does the tennis ball hit the ground?

Answers

Answer:

t = 8.5 s

Explanation:

Kinematic equation of the movement of the tennis ball that is thrown upwards :

y = y₀ + v₀*t -½ g*t²   Equation (1)

Where :  

y : position of the ball as a function of time

y₀ : Initial position of the ball

t: time  

g: acceleration due to gravity in m/s²

Known data  

g = 32 ft/s²

y₀ = 680 ft

v₀ = 56 ft/s

Calculation of the time it takes for the ball to thit the ground

We replace data en the equation (1)

y = y₀ + v₀*t -½ g*t²  

0 = 680+(56)*t -½( 32) *t²

16*t²-(56)*t- 680 = 0  equation (2)

solving equation (2) quadratic:

t₁ = 8.5 s

t₁ = -5 s

Time cannot be negative so the time it takes for the ball to hit the ground  is t = 8.5 s

You observe a spiral galaxy with a large central bulge and tightly wrapped arms. It would be classified a

Answers

Answer:

Sa

Explanation:

Spiral Galaxies  -

It is a disk shaped galaxies which have spiral structure , is refereed to as spiral galaxies .

According to Hubble , these galaxies are classified as Sa , Sb , Sc .

Where ,

Sa - have the structure , which is bulged from the central portion , along with a tightly wrapped spiral structure .

Sb - have a lesser bulge and the spiral is looser .

Sc - It has very weak bulge with the open spiral structure .

Hence , from the question ,

The given information is about the Sa .

Beth exerts 14 Newton’s of force to propel a 4.5 kilogram bowling ball down the lane. Describe how the ball will travel.

Answers

The ball will accelerate at a rate of [tex]3.11 m/s^2[/tex]

Explanation:

We can describe the motion of the ball by using Newton's second law, which states that the net force exerted on an object is equal to the product between the mass of the object and its acceleration:

[tex]F=ma[/tex]

where

F is the net force

m is the mass

a is the acceleration

In this problem,

F = 14 N is the force exerted on the ball

m = 4.5 kg is the mass of the ball

Solving the equation, we find its acceleration:

[tex]a=\frac{F}{m}=\frac{14}{4.5}=3.11 m/s^2[/tex]

So, the ball will accelerate at a rate of [tex]3.11 m/s^2[/tex].

Learn more about Newton's second law:

brainly.com/question/3820012

#LearnwithBrainly

Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height h above the ground. Assume that the effects of air resistance are negligible. Rank these throws according to the speed of the baseball the instant before it hits the ground.

Answers

Answer:

The final velocities of all the six balls will be same.

Explanation:

According to law of conservation of energy:

Gain in K.E = Loss in potential energy

   ½ mv^2 = mgh  

Where “m” and “g” are constant. The interchange in energies will occur only with the change in velocity and height. Since, balls are thrown from the same hight with the same initial velocity so, their final velocities will also be same just before striking the ground.

The six balls will reach the ground at the same time, hence the final velocity of the balls will be the same.

During a downward motion of an object, the speed of the object increases as the object moves downwards and becomes maximum before the object hits the ground.

The equation for estimating the final velocity of the six balls is given as;

[tex]v_f = v_i + gt[/tex]

If air resistance is negligible, the six balls will reach the ground at the same time, hence the final velocity of the balls will be the same.

Learn more here:https://brainly.com/question/9909784

Describe what happens, at a microscopic level, when an object is charged by rubbing. For instance, what happens when a plastic pipe is rubbed with a cloth? Describe the specific case where the rod becomes negatively charged

Answers

Answer:

Explanation:

The static charges are generated due to excess or deficiency of electrons, because these are the smallest quanta of charge available at the molecular level which can get transferred with minimal energy requirement.

These charges are usually generated by friction between  the two surfaces leading to the transfer of electron from one to another.

When a plastic pipe is rubbed with a cloth then due to friction the surface of the cloth loses electron which gets stuck at the surface of the pipe making it negatively charged.

Assume the speed of light to be 299 792 458 m/s. If the frequency of an electromagnetic wave is 80,000 GHz (GHz = gigahertz = 109 Hz), what is the wavelength of that radiation? Express your answer in micrometres (μm)

Answers

Answer:

3.747 μm

Explanation:

To answer this question, the fundamental wave equation will be used. Light is an electromagnetic wave so we will use the speed of light for this electromagnetic wave.

v = fλ

299 792 458 m/s = 80,000 *10^9 * λ

λ = 3.747 *10^-6 = 3.747 μm

A father racing his son has half the kinetic energy of the son, whohas three-fifths the mass of the father. The father speeds up by2.5 m/s and then has the same kinetic energy as the son.a) What is the original speed of the father?b) What is the original speed of the son?

Answers

Answer:

a) 6.04 m/s

b) 11.02 m/s

Explanation:

a) Let the father mass be M, and his speed be V. His son mass is m = 3M/5. Since his kinetic energy initially is half of after he increases his speed by 2.5m/s

[tex]E_2 = 2E_1[/tex]

[tex]\frac{M(V+2.5)^2}{2} = 2\frac{MV^2}{2}[/tex]

[tex]V^2 + 5V + 6.25 = 2V^2[/tex]

[tex]V^2 - 5V - 6.25 = 0[/tex]

[tex]V \approx 6.04m/s[/tex]

b) The son kinetic energy initially is:

[tex]E_s = 2E_1 = 2\frac{MV^2}{2} = MV^2 = M*6.04^2 = 36.43M J[/tex]

We can solve for the son speed by the following formula

[tex]E_s = \frac{mv^2}{2}[/tex]

[tex]v^2 = \frac{2E_s}{m} = \frac{2*36.43M}{3M/5} = \frac{10*36.43}{3} = 121.4m/s[/tex]

[tex]v = \sqrt{121.4} = 11.02 m/s[/tex]

Consider the following electron configurations to answer the question:
(i) 1s2 2s2 2p6 3s1
(ii) 1s2 2s2 2p6 3s2
(iii) 1s2 2s2 2p6 3s2 3p1
(iv) 1s2 2s2 2p6 3s2 3p4
(v) 1s2 2s2 2p6 3s2 3p5
The electron configuration of the atom that is expected to have a positive electron affinity is ________.

Answers

Answer:

(ii) 1s2 2s2 2p6 3s2

Explanation:

Electron Affinity is the energy change that occur when an atom gains an electron.

                                  X₍₉₎ + e⁻  →  X⁻           ΔE = Eea

ΔE is change in energy

Eea is electron affinity

Often, electron affinity has negative energy values. The more negative the electron affinity, the easier it is to add an electron to a particular atom. Electron affinity increases across the period in the periodic table. However, there are few exceptions:

1. The electron affinities of group 18 (8A) elements are greater than zero. This is because the atom has a filled valence shell, an addition of electron causes the electron to move to a higher energy shell.

2. The electron affinities of group 2 (2A) elements are more positive because addition of an electron requires it to reside in the previously unoccupied p sub-shell.

3. The electron affinities of group 15 (5A) elements are more positive because addition of an electron requires it to be put in an already occupied orbital.

Applying these consideration to the elements given in the question:

(i) The sum of the electron in 1s²2s² 2p⁶ 3s¹ = 2+2+6+1 = 11 Sodium (Na)

(ii) The sum of the electron in 1s² 2s² 2p⁶ 3s² = 2+2+6+2 = 12 Magnesium (Mg)

(iii) The sum of the electron in 1s² 2s² 2p⁶ 3s² 3p¹ = 2+2+6+2+1 = 13 Aluminium (Al)

(iv) The sum of the electron in 1s² 2s² 2p⁶ 3s² 3p⁴ = 2+2+6+2+4 = 16 Sulfur (S)

(v) The sum of the electron in 1s² 2s² 2p⁶ 3s² 3p⁵ = 2+2+6+2+5 = 17 Chlorine (Cl)

The atom that is expected to have a positive electron affinity is Magnesium which is a group 2A element with electron configuration of 1s² 2s² 2p⁶ 3s².

Final answer:

An atom with a positive electron affinity attracts electrons more than one with negative electron affinity. Typically, these atoms tend to have half-filled or filled subshell configurations. In the given examples, the atom with electron configuration 1s2 2s2 2p6 3s2 3p1 is likely to have a positive electron affinity.

Explanation:

The electron affinity of an atom is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. An atom with a positive electron affinity attracts electrons more than one with negative electron affinity. Usually, the atom would tend to have a half-filled (e.g. 3p3) or filled (e.g. 3p6) subshell configuration.

If we consider the given electron configurations: (i) 1s2 2s2 2p6 3s1 (ii) 1s2 2s2 2p6 3s2 (iii) 1s2 2s2 2p6 3s2 3p1 (iv) 1s2 2s2 2p6 3s2 3p4 (v) 1s2 2s2 2p6 3s2 3p5, it appears that (iii) 1s2 2s2 2p6 3s2 3p1 should have a positive electron affinity. This atom is a Potassium atom (K). It has a positive electron affinity because it is just one electron away from obtaining a full orbit shell (in the 3s and 3p orbitals) which would provide a more stable electron configuration.

Learn more about Positive Electron Affinity here:

https://brainly.com/question/29221564

#SPJ3

Sound wave A delivers 2J of energy in 2s. Sound wave length B delivers 10J of energy in 5s. Sound wave C delivers 2mJ of energy in 1ms. Rank in order, from largest to smallest, the sound powers of Pa, Pb, Pc of these three waves.Explain. What equation would you use to determine this?

Answers

Answer:

[tex]P_c=P_b>P_a[/tex]

Explanation:

E = Energy

T = Time

Power is given by the equation

[tex]P=\frac{E}{T}[/tex]

For first case

[tex]P_a=\frac{2}{2}\\\Rightarrow P_a=1\ W[/tex]

For second case

[tex]P_b=\frac{10}{5}\\\Rightarrow P_b=2\ J[/tex]

For third case

[tex]P_c=\frac{2\times 10^{-3}}{1\times 10^{-3}}\\\Rightarrow P_b=2\ J[/tex]

The rank of power would be [tex]P_c=P_b>P_a[/tex]

An 19-cm-long bicycle crank arm, with a pedal at one end, is attached to a 23-cm-diameter sprocket, the toothed disk around which the chain moves. A cyclist riding this bike increases her pedaling rate from 65 rpm to 90 rpm in 10 s .

Answers

Answer:

The tangential acceleration of the pedal is 0.0301 m/s².

Explanation:

Given that,

Length = 19 cm

Diameter = 23 cm

Time = 10 sec

Initial angular velocity = 65 rpm

Final velocity = 90 rpm

Suppose we need to find the tangential acceleration of the pedal

We need to calculate the tangential acceleration of the pedal

Using formula of tangential acceleration

[tex]a_{t}=r\alpha[/tex]

[tex]a_{t}=\dfrac{23\times10^{-2}}{2}\times\dfrac{\omega_{2}-\omega_{1}}{t}[/tex]

[tex]a_{t}=\dfrac{23\times10^{-2}}{2}\times\dfrac{90\times\dfrac{2]pi}{60}-65\times\dfrac{2\pi}{60}}{10}[/tex]

[tex]a_{t}=0.0301\ m/s^2[/tex]

Hence, The tangential acceleration of the pedal is 0.0301 m/s².

Listed following are four models for the long-term expansion (and possible contraction) of the universe. Rank the models from left to right based on their predictions for the average distance between galaxies five billion years from now, from smallest to largest.
a. recollapsing universe
b. accelerating universe
c. coasting universe
d. critical universe

Answers

Answer:

gdsz

Explanation:

dsgzz cxvzdgctfgdsvftgdsftrdsfdtsardtgasfd5t6sgftsfdrstfdtgsv6cr5vsd5rw5

As an intern with an engineering firm, you are asked to measure the moment of inertia of a large wheel, for rotation about an axis through its center. Since you were a good physics student, you know what to do. You measure the diameter of the wheel to be 0.88 m and find that it weighs 280 N . You mount the wheel, using frictionless bearings, on a horizontal axis through the wheel's center. You wrap a light rope around the wheel and hang a 6.32 kg mass from the free end of the rope. You release the mass from rest; the mass descends and the wheel turns as the rope unwinds. You find that the mass has speed 4.0 m/s after it has descended 2.5 m .(a) What is the moment of inertia of the wheel for an axis perpendicular to the wheel at its center?

Answers

Final answer:

The moment of inertia of the wheel for an axis perpendicular to the wheel at its center is 0.964 kg * m^2.

Explanation:

To calculate the moment of inertia of the wheel, we can use the principle of conservation of energy. The initial gravitational potential energy of the mass is equal to the final rotational kinetic energy of the wheel. This can be represented by the equation:

mg * h = 1/2 * Iω^2

Where m is the mass, g is the acceleration due to gravity, h is the distance the mass has descended, I is the moment of inertia of the wheel, and ω is the angular velocity of the wheel. Rearranging the equation:

I = 2mg * h / ω^2

Substituting the given values:

I = 2 * 6.32 kg * 9.8 m/s^2 * 2.5 m / (4.0 m/s)^2

I = 0.964 kg * m^2

Therefore, the moment of inertia of the wheel for an axis perpendicular to the wheel at its center is 0.964 kg * m^2.

You throw a 50.0g blob of clay directly at the wall with an initial velocity of -5.00 m/s i. The clay sticks to the wall, and the collision takes about 20.0 ms (2.00 x 10^-2 s). a) What is the change in momentum for the blob of clay?

Answers

Answer:0.25 kg-m/s

Explanation:

Given

mass of blob [tex]m=50 gm [/tex]

initial velocity [tex]u=-5 m/s\ \hat{i}[/tex]

time of collision [tex]t=20 ms[/tex]

we know Impulse is equal to change in momentum

initial momentum [tex]P_i=mu[/tex]

[tex]P_i=50\times 10^{-3}\times (-5)=-0.25 kg-m/s[/tex]

Final momentum [tex]P_f=50\times 10^{-3}v[/tex]

[tex]P_f=0[/tex] as final velocity is zero

Impulse [tex]J=P_f-P_i[/tex]

[tex]J=0-(-0.25)[/tex]

[tex]J=0.25 kg-m/s[/tex]

Suppose we consider the system of the three capacitors as a single "equivalent" capacitor. Given the charges of the three individual capacitors calculated in the previous part, find the total charge Qtot for this equivalent capacitor.

Answers

Answer:

Qtot = 6C * deltaV

Explanation:

you can find the total capacitance from adding 1C+2C+3C=6C. and the total voltage is 1V. Capacitance = charge/voltage--> C = Q / V--> 6C = Q / deltaV. this makes Qtot = 6C* deltaV

The Total charge for the equivalent circuit is =  [tex]Q_{tot}[/tex] = 6c * ΔV

  Although your question is incomplete I found the missing part online and used it to resolve the question

Given data :

Total capacitance ( C ) = 6C ( 1 + 2 + 3 )

voltage = 1 V

Three capacitors having values of ; 1 C, 2 C,  3 C

Determine the total charge ( Qtot )

Applying the formula ; Q = CV ----  ( 1 )

 where; Q =  charge

              C = capacitance

              change in V = ΔV

∴ [tex]Q_{tot}[/tex] = 6c * ΔV

Hence the total charge Qtot for the equivalent capacitor =  6c * ΔV

Learn more : https://brainly.com/question/49621

An astronaut drops a hammer on the moon . It takes 1 second to hit the ground after being dropped, and it is going 1.6m/s when it lands. What is the acceleration due to gravity on thr moon?

Answers

Answer:

the value of acceleration due to gravity in moon is 1.6m/[tex]s^{2}[/tex] along downward direction

Explanation:

Here, the acceleration is constant and it is equal to acceleration due to gravity in moon. Therefore the question depicts a situation of uniformly accelerated motion in a straight line. So, let us refresh the three equations of uniformly accelerated straight line motion.

v = u + at

[tex]s = ut + \frac{1}{2}at^{2}[/tex]

[tex]v^{2} = u^{2} +2as[/tex]

where,

u = initial velocity

v = final velocity

s = displacement

a = acceleration

t = time

Since we are dealing with vectors (velocity, acceleration and displacement), we have to take their directions in to account. So we must adopt a coordinate system according to our convenience. Here, we are taking point of throwing as origin, vertically upward direction as positive y axis and vertically downward direction as negative y axis.

t = 1s

u = 0 (since the hammer is dropped)

v = -1.6m/s (since its direction is downward)

a = ?

The only equation that connects all the above quantities is

v = u + at

therefore,

a = [tex]\frac{v - u}{t}[/tex]

substituting the values

a = [tex]\frac{-1.6 - 0}{1}[/tex]

a = -1.6m/[tex]s^{2}[/tex]

Thus, the value of acceleration due to gravity in moon is 1.6m/[tex]s^{2}[/tex]. The negative sign indicates that it is along downward direction.

A car slams on its brakes creating an acceleration of -3.2 m/s2 it comes to a rest after traveling a distance of 210 m what was it's velocity before it began to accelerate

Answers

The initial velocity of the car is 36.6 m/s

Explanation:

The motion of the car is a uniformly accelerated motion (=constant acceleration), therefore we can apply suvat equations:

[tex]v^2-u^2=2as[/tex]

where

v is the final velocity

u is the initial velocity

a is the acceleration

s is the displacement

For the car in this problem, we have:

v = 0 is the final velocity (the car comes to a stop)

[tex]a=-3.2 m/s^2[/tex] is the acceleration

s = 210 m is the displacement of the car

Solving for u, we find the initial velocity:

[tex]u=\sqrt{v^2-2as}=\sqrt{0-(2)(-3.2)(210)}=36.6 m/s[/tex]

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

Calculate the work required to move a planet’s satellite of mass 571 kg from a circular orbit of radius 2R to one of radius 3R, where 8.8 × 106 m is the radius of the planet. The mass of the planet is 7.76 × 1024 kg. Answer in units of J]

Answers

Final answer:

The work required to move a satellite from an orbit of radius 2R to 3R around a planet is calculated using the gravitational potential energy formula and is found to be 3.897×1010 J.

Explanation:

To calculate the work required to move a satellite from one circular orbit to another around a planet, we must consider the gravitational potential energy differences in the two orbits.

The gravitational potential energy (U) of an object of mass m in orbit around a planet of mass M at a distance r is given by U = -GmM/r, where G is the gravitational constant (6.67×10-11 N m2/kg2).

For the initial orbit at radius 2R, the potential energy is U1 = -GmM/(2R), and for the final orbit at radius 3R, the potential energy is U2 = -GmM/(3R). The work done (W) in moving the satellite is the difference in gravitational potential energy, W = U2 - U1. Substituting the values, we get:

W = (-GmM/3R) - (-GmM/2R) = (GmM/6R)

Let's calculate the work required using the given values: G = 6.67×10-11 N m2/kg2, m = 571 kg, M = 7.76×1024 kg, R = 8.8×106 m.

W = (6.67×10-11 N m2/kg2 × 571 kg × 7.76×1024 kg) / (6 × 8.8×106 m)

W = 3.897×1010 J

Therefore, the work required to move the satellite from a circular orbit of radius 2R to one of radius 3R is 3.897×1010 J.

Electromagnetic radiation of 5.16Ă—1016 Hz frequency is applied on a metal surface and caused electron emission. Determine the work function of the metal if the maximum kinetic energy (Ek) of the emitted electron is 4.04Ă—10-19 J.

Answers

Answer:

Work function of the metal, [tex]W_o=3.38\times 10^{-17}\ J[/tex]

Explanation:

We are given that  

Frequency of the electromagnetic radiation,  [tex]f=5.16\times 10^{16}[/tex] Hz

The maximum kinetic energy of the emitted electron, [tex]K=4.04\times 10^{-19}\ J[/tex]

We need to find the work function of the metal.

We know that the maximum kinetic energy of ejected electron

[tex]K=h\nu-w_o[/tex]

Where h=Plank's constant=[tex]6.63\times 10^{-34} J.s[/tex]

[tex]\nu[/tex] =Frequency of light source

[tex]w_o[/tex]=Work function

Substitute the values in the given formula  

Then, the work function of the metal is given by :

[tex]W_o=h\nu -K[/tex]

[tex]W_o=6.63\times 10^{-34}\times 5.16\times 10^{16}-4.04\times 10^{-19}[/tex]

[tex]W_o=3.38\times 10^{-17}\ J[/tex]

So, the work function of the metal is [tex]3.38\times 10^{-17}\ J[/tex]. Hence, this is the required solution.

A 4.9 kg block slides down an inclined plane that makes an angle of 27◦ with the horizontal. Starting from rest, the block slides a distance of 2.7 m in 5.4 s. The acceleration of gravity is 9.81 m/s 2 . Find the coefficient of kinetic friction between the block and plane.

Answers

Answer:

μk = 0.488

Explanation:

Newton's second law:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

We define the x-axis in the direction parallel to the movement of the block on the inclined plane and the y-axis in the direction perpendicular to it.

Forces acting on the block

W: Weight of the block : In vertical direction

FN : Normal force : perpendicular to the inclined plane

fk : kinetic Friction force: parallel to the inclined plane

Calculated of the W

W= m*g

W= 4.9 kg* 9.8 m/s² = 48.02 N

x-y weight components

Wx = Wsin θ = 48.02*sin27° = 21.8 N

Wy = Wcos θ = 48.02*cos27° = 42.786 N

Calculated of the FN

We apply the formula (1)

∑Fy = m*ay    ay = 0

FN - Wy = 0

FN = Wy

FN = 42.786 N

Calculated of the fk

fk = μk* FN=  μk*42.786 Equation (1)

Kinematics of the block

Because the block moves with uniformly accelerated movement we apply the following formula to calculate the acceleration of the block :

d = v₀*t+(1/2)*a*t² Formula (2)

Where:  

d:displacement  (m)

v₀: initial speed  (m/s)

t: time interval   (m/s)

a: acceleration ( m/s²)

Data:

d= 2.7 m

v₀ = 0

t= 5.4 s

We replace data in the formula (2)  

d = v₀*t+(1/2)*a*t²

2.7 = 0+(1/2)*a*( 5.4)²

2.7 = (14.58)*a

a = 2.7 / (14.58)

a= 0.185 m/s²

We apply the formula (1) to calculated μk:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

Wx-fk= m*a     , fk=μk*42.786 of the Equation (1)

21.8 - (42.786)*μk = (4.9)*(0.185)

21.8 -0.907= (42.786)*μk

20.89 = (42.786)*μk

μk = (20.89) / (42.786)

μk = 0.488

Other Questions
1. Entiendes la leccin? No, no entiendo. 2. Quieres ver el partido de bisbol? S, quiero ver ! 3. Estn comiendo los sndwiches? No, no estamos comiendo. 4. Pueden ustedes or el telfono? S, podemos or. 5. Recuerdas el nombre del profesor de japons? S, recuerdo. 6. El botones lleva las maletas? S, lleva. 7. Invitamos a Camila a la fiesta? S, invitamos. 8. Puedes cerrar la ventana? S, puedo cerrar. 9. Mercedes va a traer una pizza a la fiesta? No, no va a traer. 10. Gabriel y Roberto van a estudiar biologa? No, no van a estudiar . What did lise meitner and Otto Frisch believe happens to nuclei that Otto hahn and fritz strassman bombarded with neutrons? So by day shed weave at her great and growing web by night, by the light of torches set beside her, she would unravel all shed done. Three whole years she deceived us blind, seduced us with this scheme.What does the "web" in the passage above refer to? how do i get caught up in online schoolPLEASE HELP!!!!!!!!!!!!!!!!!!!!! Which statements are true about the graph ofy< 2x + 1? Check all that apply.Graph: y < }x+1The slope of the line is 1.The line is solid.The area below the line is shaded.A solution to the inequality is (2.3).The x-intercept of the boundary line is (-3.0).DrawClick or tap the graph to plot a point Given the equation f(x) = 2x + 4x - 1, what is axis of symmetry? a. 1 c. -1 b. 2 d. 0 Alpha Colony and Beta Colony both manufacture textiles and technology. Alpha Colony always produces higher quality textiles and technology with fewer raw materials and in less time than Beta Colony. Which statement would explain the reason why Alpha Colony has an advantage over Beta Colony?A. Alpha Colony has a comparative advantage because it chooses not to export its manufactured goods to other colonies.B. Alpha Colony has a comparative advantage because it chooses to ignore the opportunity cost of using more raw materials.C. Alpha Colony has an absolute advantage because it has an established manufacturing infrastructure and trained workers.D. Alpha Colony has an absolute advantage because it has more farms and mines to produce raw materials needed for its products. A pulley system is used to lift a 2,000 newton engine up a distance of 3 meters. The operator must apply a force of 250 newtons to the chain of the pulley system to lift the motor. To lift the engine 3 meters, the operator must pull a total of 30 meters of chain through the pulley system. What is the value of do? Because of its metabolic processes, your body continually emits thermal energy. Suppose that the air in your bedroom absorbs all of this thermal energy during the time you sleep at night (8.0 hours). Assume your metabolic rate to be P = 120 J/s. Estimate the temperature change you expect in this air. Let the volume of your room be 36 m2 and Heat capacity of air is 1000 J/kg C. Given the electronegativities below, which covalent single bond is most polar?Element: H C N O Electronegativity: 2.1 2.5 3.0 3.5 A) N-H B) O-C C) O-N D) C-H E) O-H NFL quarterback Patrick mahomes threw a pass that clocked 62mph. How fast is this in yards per second? The unit cell in a crystal of diamond belongs to a crystal system different from any we have discussed. The volume of a unit cell of diamond is 0.0454 nm3 and the density of diamond is 3.52 g/cm3. Find the number of carbon atoms in a unit cell of diamond. Jim Crow laws ________. Select one: a. gave White people their ultimate authority b. outlawed busing to achieve racial balance c. improved the position of African Americans in the society d. mandated affirmative action Hirshfeld Corporation's stock has a required rate of return of 10.25%, and it sells for $57.50 per share. The dividend is expected to grow at a constant rate of 6.00% per year. What is the expected year-end dividend, D1? Though horses were domesticated 5-6,000 BP, warfare on horseback emerged much later ~3,000 BP. This required a new kind of horsemanship and horse-human relationship. Which horse culture invented warfare on horseback that required a close relationship?a)Early Kurganb)Hittitesc)Scythiand)Hunse)Mongols five friends will pay $9 per ticket, $3 per drink, and $6 per popcorn at the movies. write an expression that could be used to determine the cost for them to go to the movies What is the period of oscillation of a mass 40kg on a spring with constant k=10N/m? The forestry service personnel at a national forest are estimating the average height of the trees in the forest. They measure the heights of 31 trees and prepare the histogram above. What percentage of the trees are less than 75 feet tall?A. 45.2B. 80.6C. 19.4D. 77.4 A tightened string vibrates with a standing wave. Which of the following statements is correct? Group of answer choices Points on the string undergo the same displacement. Points on the string vibrates with different amplitude. Points on the string vibrates with different frequencies. Points on the string undergo the same speed. Points on the string vibrate with the same energy.. Favorite SubjectSubject Frequency (6)English 4History 2MathPhys EdScienceOther 1TOTAL 25Highlight00:06:40Hide ToolsIf you wanted to further break down the numbers presented here, which would be a logical next step?A)To ask about students' least favorite subjectsTo discuss the various subjects taught at schoolTo interview various students about their favorite subjectsD)To present "favorite subjects' categorized by gender: boys vs. girls