Answer:
with
what maam
Step-by-step explanation:
Answer: the correct option is D
Step-by-step explanation:
The zoologist is recording the loss of wolves in her state and she recorded that the number of wolves, w, in the state on January 1.
One year later, there were 84 wolves in the state which is 23 fewer than the number of wolves in the state a year earlier. This means that a year later, the number of wolves was 23 fewer than w
The number of wolves in the state on January 1 would be the sum of the number of wolves in the state a year later and the number by which it became fewer than the number on January 1. This becomes
w = 84 + 23
w - 23 = 84
A staff member at UF's Wellness Center is interested in seeing if a new stress reduction program will lower employees high blood pressure levels. Twenty people are selected and have their blood pressure measured. Each person then participates in the stress reduction program. One month after the stress reduction program, the blood pressure levels of the employees were measured again. Did the program reduce the average blood pressure level? The 95% confidence interval was (5.6, 10.2). What can we expect will be the p-value for a two sided test using this data?
Answer:
The average blood pressure were higher than after
Step-by-step explanation:
As twenty people are selected and their blood pressure measured. After one month as stress reduction program BP were measured .Confidence interval is 95% so we conduct that blood pressure were higher than after reduction program.
Answer:
The p-value should be smaller than 0.05.
Step-by-step explanation:
The only information we have is the 95% confidence interval for the difference of means. As the lower bound is positive, we are 95% confident that the reduction program had a effect in the blood pressure level.
Then, as the program had a effect in the blood pressure level, we know that the null hypothesis, that states that the blood pressure levels would no change significantly, is rejected.
If the significance level is 0.05, according to the confidence of the interval, to reject the null hypothesis, the p-value had to be lower than the significance level.
Then, the p-value should be lower than 0.05.
An article reports that in a sample of 413 male college students, the average number of energy drinks consumed per month was 2.48 with a standard deviation of 4.87, and in a sample of 382 female college students, the average was 1.22 with a standard deviation of 3.23. Can you conclude that the mean number of energy drinks is greater for male students than for female students? Find the P-value and state a conclusion.
The P-value is 0.0000; we reject the null hypothesis and conclude males consume more energy drinks than females.
We will conduct a hypothesis test for the difference between two means. Here are the steps we'll follow:
1. **State the Hypotheses**:
Null hypothesis (H0): μ1 - μ2 ≤ 0 (The mean number of energy drinks consumed by male students is less than or equal to that consumed by female students.)Alternative hypothesis (H1): μ1 - μ2 > 0 (The mean number of energy drinks consumed by male students is greater than that consumed by female students.)2. **Check the Conditions**:
The samples are independent.The sample sizes are large enough (both greater than 30) for the Central Limit Theorem to apply, meaning the sampling distribution of the difference between means will be approximately normally distributed.3. **Calculate the Test Statistic**:
We'll use the formula for the test statistic for two independent samples (assuming equal variances are not assumed):
[tex]\[ t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \][/tex]
where:
[tex]\(\bar{x}_1\) and \(\bar{x}_2\)[/tex] are the sample means,[tex]\(s_1^2\) and \(s_2^2\)[/tex] are the sample variances,[tex]\(n_1\) and \(n_2\)[/tex] are the sample sizes.4. **Calculate the Degrees of Freedom**:
We'll use the Welch-Satterthwaite equation to approximate the degrees of freedom for the t-distribution:
[tex]\[ df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}} \][/tex]
5. **Find the P-value**:
Since we are conducting a one-tailed test, we will find the area to the right of our calculated t-value in the t-distribution with the calculated degrees of freedom.
6. **State the Conclusion**:
We will compare the P-value to the significance level (usually 0.05) and decide whether to reject the null hypothesis.
Let's perform the calculations.
The test statistic (t-value) for the difference in the mean number of energy drinks consumed per month between male and female college students is approximately 4.3285. The degrees of freedom for this test is approximately 720.78.
The P-value for this one-tailed test is approximately 0.00000857 (rounded to four decimal places, this is 0.0000). Since the P-value is significantly less than the common alpha level of 0.05, we reject the null hypothesis.
**Conclusion**: We can conclude that there is significant evidence at the 0.05 level to suggest that the mean number of energy drinks consumed by male college students is greater than that consumed by female college students.
In 2008 the Pew Research Center interviewed a random sample of 5,566 registered voters and found that 36% were Democrats, 27% Republicans, and 37% Independents.
Let’s assume that this was the actual distribution for political party affiliation for all registered voters in 2008.
We can use a chi-square goodness-of-fit test to answer which of one the following research questions?
a. Is the proportion of Democrats larger than the proportion of Republicans this year?
b. Is the percentage of registered voters that are Independent higher now than the 37% reported in 2008?
c. Is the distribution of political party affiliation for all registered voters in 2012 the same as stated for 2008?
Final answer:
The research question that can be answered using a chi-square goodness-of-fit test is option c: Is the distribution of political party affiliation for all registered voters in 2012 the same as stated for 2008?
Explanation:
The research question that can be answered using a chi-square goodness-of-fit test in this scenario is option c: Is the distribution of political party affiliation for all registered voters in 2012 the same as stated for 2008?
In a chi-square goodness-of-fit test, we compare the observed frequencies (in this case, the distribution of political party affiliation in 2008) with the expected frequencies (the distribution we are testing, which is the distribution of political party affiliation in 2012). If the observed frequencies differ significantly from the expected frequencies, we can conclude that there is a significant difference between the two distributions.
In this case, the observed distribution is 36% Democrats, 27% Republicans, and 37% Independents in 2008. We want to test if this distribution is the same as the distribution in 2012. By performing a chi-square goodness-of-fit test, we can determine if there is a significant difference between the two distributions.
According to the United Nations, in the year 2002, the population of the world was 6.1 billion people and was growing at an annual rate of about 1.5%. If this pattern were to continue, then every year, the population would be 1.015 times the population of the previous year. Thus, if P(t) is the world population (in billions) t years after the base year 2002.
(a) What was the population in 2004?
(b) What will the population be in 2010?
Answer:
(a) 6.2843 billion
(b) 6.8716 billion
Step-by-step explanation:
Since there is a constant growth rate of 1.5% per year, and the population in 2002 was 6.1 billion people. The general equation for the total world population, in billions, after 2002 is:
[tex]P(t) = 6.1*(1+0.015)^t[/tex]
With t being the time, in years, after 2002.
a) What was the population in 2004?
[tex]t=2004-2002=2\\P(2) = 6.1*(1.015)^2\\P(2) = 6.2843 \ billion[/tex]
b) What was the population in 2010?
[tex]t=2010-2002=8\\P(8) = 6.1*(1.015)^8\\P(8) = 6.8716 \ billion[/tex]
Jason had $32. He spent all the money buying four CDs for x dollars each and two magazines for y dollars each. If Jason had bought five CDs and two magazines, he would have run short by $4. The following system of equations models this scenario:
4x + 2y = 32
5x + 2y = 36
Use the system of equations to solve for x and y.
(4, 8)
(5, 6)
(8, 4)
(6, 5)
Answer:
(4,8)
Step-by-step explanation:
We have the two equations:
[tex]$ 4x + 2y = 32 \hspace{15mm} .....(1) $[/tex] and
[tex]$ 5x + 2y = 36 \hspace{15mm} .....(2) $[/tex]
Subtracting (1) from (2):
⇒ 5x + 2y -4x - 2y = 36 - 32
⇒ x = 4
Substituting the value of x in (1), we get:
4(4) + 2y = 32
⇒ 2y = 16
⇒ y = 8
We write the solution in ordered pair as (x,y) = (4,8).
Answer:
The answer is the ordered pairs (4,8) because we used the system equations to solve for x and y.
Step-by-step explanation:
A random sample of size n1 = 16 is selected from a normal population with a mean of 75 and standard deviation of 8. A second random sample of size n2 = 9 is taken independently from another normal population with mean 70 and standard deviation of 12. Let X1 and X2 be the two sample means. Find
(a) The probability that X1 − X2 exceeds 4.
(b) The probability that 3.5 < X1 − X2 < 5.5.
Answer:
the answer is in the attached image below
Step-by-step explanation:
The sum of independent normally distributed random variable is also a normally distributed random variable. The needed probabilities are given as:
(a) The probability that X1 − X2 exceeds 4 is 0.5279 approx(b) The probability that 3.5 < X1 − X2 < 5.5 is 0.0836 approxWhat is the distribution of random variable which is sum of normal distributions?Suppose that a random variable X is formed by n mutually independent and normally distributed random variables such that:
[tex]X_i = N(\mu_i , \sigma^2_i) ; \: i = 1,2, \cdots, n[/tex]
And if
[tex]X = X_1 + X_2 + \cdots + X_n[/tex]
Then, its distribution is given as:
[tex]X \sim N(\mu_1 + \mu_2 + \cdots + \mu_n, \: \: \sigma^2_1 + \sigma^2_2 + \cdots + \sigma^2_n)[/tex]
For the given case, let we take:
[tex]X_1[/tex] = Random variable assuming values of sample 1[tex]X_2[/tex] = Random variable assuming values of sample 2Then, we have:
[tex]X_1 \sim N(\mu = 75, \sigma^2 = (8)^2 = 64)\\\\X_2 \sim N(\mu = 70, \sigma^2 = (12)^2 = 144)\\[/tex]
Then, The random variable [tex]-X_2[/tex] has all negative values than of [tex]X_2[/tex], so its mean will also become negative, but standard deviation would be same(since its measure of spread which would be same for [tex]-X_2[/tex] .
Thus, [tex]-X_2 \sim N(-70, 12^2) = N(-70, 144)[/tex]
Thus, we get:
[tex]X = X_1 - X_2\\\\X \sim N(75 -70, \sigma^2 = 64 + 144)\\\\X \sim N(5, 208)[/tex]
Thus, mean of X is 5, and standard deviation is
[tex]\sqrt{208} \approx 14.42[/tex]
(positive root since standard deviation is non negative quantity)
Thus, calculating the needed probability with the use of z-scores:
Case 1: P( X1 − X2 exceeds 4)P(X > 4)
Converting to standard normal distribution, we get
[tex]Z = \dfrac{X - \mu}{\sigma} \approx \dfrac{X - 5}{14.42}\\\\P(X > 4) \approx P(Z > \dfrac{4-5}{14.42}) \approx P(Z > -0.07) = 1-P(Z \leq -0.07)\\[/tex]
Using the z-tables, the p value for z = -0.07 is 0.4721
p value for Z = z gives [tex]P(Z \leq z) = p[/tex]
And therefore,
[tex]P(Z \leq -0.07) = 0.4721\\\\\rm and\: thus\\\\P(X > 4) = P(Z > -0.07) = 1 - P(Z \leq -0.07) = 1 - 0.4721 = 0.5279[/tex]
b) The probability that 3.5 < X1 − X2 < 5.5.P( 3.5 < X1 − X2 < 5.5 ) = P( 3.5 < X < 5.5)
Using z scores, we get:
[tex]P( 3.5 < X < 5.5) = P(X < 5.5) - P(X < 3.5) \\\\P(3.5 < X < 5.5) \approx P(Z < \dfrac{5.5-5}{14.2}) - P(Z < \dfrac{3.5 - 5}{14.2})\\\\P(3.5 < X < 5.5) \approx P(Z < 0.113) - P(Z < -0.104)[/tex]
Using the z-tables, p value for z = 0.113 is 0.5438
and p value for z = -0.104 is 0.4602
Thus,
[tex]P(3.5 < X < 5.5) \approx P(Z < 0.113) - P(Z < -0.104)\\P(3.5 < X < 5.5) \approx 0.5438 - 0.4602 = 0.0836[/tex]
Learn more about standard normal distribution here:
https://brainly.com/question/10984889
In a study of the accuracy of fast food drive-through orders, one restaurant had 32 orders that were not accurate among 367 orders observed. Use a 0.05 significance level to test the claim that the rate of inaccurate orders is equal to 10%. Does the accuracy rate appear to be acceptable?
Identify the rest statistic for this hypothesis test. Round to two decimal places.
Identify the P-value for this hypothesis test. Round to two decimal places.
Identify the conclusion for this hypothesis tes.
Does the accuracy rate appear to be acceptable?
Answer:
Null hypothesis:[tex]p=0.1[/tex]
Alternative hypothesis:[tex]p \neq 0.1[/tex]
[tex]z=\frac{0.087 -0.1}{\sqrt{\frac{0.1(1-0.1)}{367}}}=-0.83[/tex]
[tex]p_v =2*P(z<-0.83)=0.41[/tex]
The p value obtained was a very high value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of orders that were not accurate is not significant different from 0.1 or 10% .
and the accuracy of the test yes is acceptable since the p value obtained is large enough to fail to reject the null hypothesis.
Step-by-step explanation:
Data given and notation n
n=367 represent the random sample taken
X=32 represent the orders that were not accurate
[tex]\hat p=\frac{32}{367}=0.087[/tex] estimated proportion of orders that were not accurate
[tex]p_o=0.1[/tex] is the value that we want to test
[tex]\alpha=0.05[/tex] represent the significance level
Confidence=95% or 0.95
z would represent the statistic (variable of interest)
[tex]p_v{/tex} represent the p value (variable of interest)
Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that the rate of inaccurate orders is equal to 10%:
Null hypothesis:[tex]p=0.1[/tex]
Alternative hypothesis:[tex]p \neq 0.1[/tex]
When we conduct a proportion test we need to use the z statisitc, and the is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].
Calculate the statistic
Since we have all the info requires we can replace in formula (1) like this:
[tex]z=\frac{0.087 -0.1}{\sqrt{\frac{0.1(1-0.1)}{367}}}=-0.83[/tex]
Statistical decision
It's important to refresh the p value method or p value approach . "This methos is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.
The significance level provided [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.
Since is a bilateral test the p value would be:
[tex]p_v =2*P(z<-0.83)=0.41[/tex]
So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of orders that were not accurate is not significant different from 0.1 or 10% .
A manager must select three coders from her group to write three different software projects. There are 7 junior and 3 senior coders in her group. The first project can be written by any of the coders. The second project must be written by a senior person and the third project must be written by a junior person. How many ways are there for her to assign the three coders to the projects if no person can be assigned to more than one project?
Answer:
The total number of ways are 168.
Step-by-step explanation:
Consider the provided information.
There are 7 junior and 3 senior coders in her group.
The first project can be written by any of the coders. The second project must be written by a senior person and the third project must be written by a junior person.
For second project we have 3 choices and for third project we have 7 choices.
Now there are 2 possible case:
Case I: If first and second coder is senior, then the total number of ways are:
[tex]3\times 2\times 7=42[/tex]
Case II: If first and third coder is junior, then the total number of ways are:
[tex]7\times 3\times 6=126[/tex]
Hence, the total number of ways are: 42+126=168
The manager has 180 different ways to assign the three coders to the three different projects based on the given conditions.
Explanation:The question is about the number of ways to assign three coders to three different projects, respecting certain conditions. This is a combinatorics problem. The first coder can be selected from any coder in the group (10 coders) so we have ten options. The second coder must be a senior so we have 1×3 options (as we have already selected one coder for the first project and we can't assign them to more than one project). Similarly, the third coder must be a junior from the remaining 9 coders (3 seniors and 6 juniors), hence we have 1×6 options for this choice. So, the total number of ways to assign the coders is the product of these options: 10×3×6 = 180 different ways.
Learn more about Combinatorics here:https://brainly.com/question/31293479
#SPJ11
In a sample of 83 walking canes, the average length was found to be 34.9in. with a standard deviation of 1.5. Give a point estimate for the population standard deviation of the length of the walking canes. Round your answer to two decimal places, if necessary.
Answer:
The point estimate for the population standard deviation of the length of the walking canes is 0.16.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], a large sample size can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\frac{\sigma}{\sqrt{n}}[/tex].
In this problem
The point estimate of the standard deviation is the standard deviation of the sample.
In a sample of 83 walking canes, the average length was found to be 34.9in. with a standard deviation of 1.5. By the Central Limit Theorem, we have that:
[tex]s = \frac{1.5}{\sqrt{83}} = 0.16[/tex]
The point estimate for the population standard deviation of the length of the walking canes is 0.16.
Write the equation of the circle with center(-3,-2) and (4,5) a point on the circle
Answer:
(x + 3)^2 + (y + 2)^2 = 98.
Step-by-step explanation:
(x - h)^2 + (y - k) ^2 = r^2 ( center is (h, k) and r = radius.)
So we have:
(x + 3)^2 + (y + 2)^2 = r^2
When x = 4 y = 5, so
(4 + 3)^2 + (5 + 2)^2 = r^2
r^2 = 7^2 + 7^2 = 98
.
Answer:
Step-by-step explanation:
(x+2)^2+(y+3)^2=100
Data on the pH of rain in Ingham County, Michigan, are as follows: 5.47 5.37 5.38 4.63 5.37 3.74 3.71 4.96 4.64 5.11 5.65 5.39 4.16 5.62 4.57 4.64 5.48 4.57 4.57 4.51 4.86 4.56 4.61 4.32 3.98 5.70 4.15 3.98 5.65 3.10 5.04 4.62 4.51 4.34 4.16 4.64 5.12 3.71 4.64 What proportion of the samples has pH below 5.0?
Answer:
[tex]\hat p =\frac{26}{39}=0.667[/tex]
Step-by-step explanation:
Some important concepts
A proportion refers to "the fraction of the total that possesses a certain attribute"
The data det ordered from the smallest to the largest value is:
3.1 ,3.71 ,3.71 ,3.74 ,3.98 ,3.98 ,4.15 ,4.16 ,4.16 ,4.32 ,4.34 ,4.51 ,4.51 ,4.56 ,4.57 ,4.57 ,4.57 ,4.61 ,4.62 ,4.63 ,4.64 ,4.64 ,4.64 ,4.64 ,4.86 ,4.96 ,5.04 ,5.11 ,5.12 ,5.37 ,5.37 ,5.38 ,5.39 ,5.47 ,5.48 ,5.62, 5.65 ,5.65 ,5.7
If we are interesed on the sample values below 5.0 we need to count how many values are below this number. If we do this we got that 26 numbers are below 5.0 and the total of numbers are 39.
so the proportion on this case would be"
[tex]\hat p =\frac{26}{39}=0.667[/tex]
To determine the proportion of rain samples with a pH below 5, count the number of data points less than 5.0 and divide it by the total number of data points. The pH value of the environment can vary greatly due to factors such as the presence of pollution.
Explanation:This question is about finding out the proportion of rain samples that have a pH below 5.0 in Ingham County, Michigan. To do this, you count the number of data points less than 5.0 and divide it by the total number of data points. The pH of the environment (rain, in this case) can vary greatly due to factors such as pollution, affecting the acidity or alkalinity of the rain. Normal rainwater has a pH between 5 and 6 due to the presence of dissolved CO₂ which forms carbonic acid. Anything below 7.0 is acidic and above 7.0 is alkaline.
Learn more about Proportion calculation here:https://brainly.com/question/31010676
#SPJ2
Identify the asymptotes of each function. 1/(x-3) - 6
[tex]\bf \cfrac{1}{x-3}-6\implies \stackrel{\textit{using the LCD of x-3}}{\cfrac{1-(x-3)6}{x-3}}\implies \cfrac{1-6x+18}{x-3}\implies \cfrac{-6x+19}{x-3}[/tex]
for the vertical asymptote, we simply zero out the denominator and solve for "x"
x - 3 = 0
x = 3 <---- that's the only vertical asymptote
for the horizontal asymptote, well, let's notice the degrees of the numerator and denominator, in this case, the degree of the numerator is 1, and the degree of the denominator is 1, thus when that occurs, the horizontal asymptote occurs at the fraction from the leading terms' coefficients.
[tex]\bf \cfrac{-6x+19}{1x-3}\implies \stackrel{\textit{horizontal asymptote}}{\cfrac{-6}{1}\implies -6 = y}[/tex]
A farmer needs to enclose three sides of a garden with a fence (the fourth side is a cliff wall). The farmer has 43 feet of fence and wants the garden to have an area of 228 sq-feet. What should the dimensions of the garden be? (For the purpose of this problem, the width will be the smaller dimension(needing two sides); the length will be the longer dimension (needing one side). Additionally? The length should be as long as possible.)
Answer:
9.5 ft wide by 24 ft long
Step-by-step explanation:
A graphing calculator shows there are two solutions to the system of equations ...
2x + y = 43 . . . . . . fence length when x= width
xy = 228 . . . . . . . area
The solutions are ...
(width, length) = (9.5, 24) or (12, 19)
Since we want the length as long as possible, the choice of dimensions is ...
length = 24 feet; width = 9.5 feet.
In fall 2014, 36% of applicants with a Math SAT of 700 or more were admitted by a certain university, while 18% with a Math SAT of less than 700 were admitted. Further, 38% of all applicants had a Math SAT score of 700 or more. What percentage of admitted applicants had a Math SAT of 700 or more? (Round your answer to the nearest percentage point.)
To answer this question, we must calculate the percentage of the total population in each SAT score category that was admitted to the university. We find that 55% of admitted applicants had a Math SAT scores of 700 or more.
Explanation:First, multiply the overall percentage of applicants by the percentage admitted for each SAT score category. For those with scores of 700 or more, you get 36% * 38% = 13.68%. For those with scores less than 700, it's 18% * 62% = 11.16%. Then, add these results together to get the total percentage of all applicants who were admitted, which is 24.84%.
The next step is to calculate what fraction of this combined admitted students group got a Math SAT of 700 or more. The percentage of admitted students who had a SAT score of 700 or more is the percentage of admitted students in that category divided by the total percentage of all admitted students. So, you get 13.68% ÷ 24.84% = 55.05%. This rounds to 55% when expressed as a percentage, so we can say that 55% of admitted applicants had a Math SAT of 700 or more.
Learn more about Probability calculation here:https://brainly.com/question/33594301
#SPJ12
Final answer:
To find the percentage of admitted applicants with a Math SAT of 700 or more, calculate the overall admission rate (AR), and then determine Group A's contribution to this rate. The percentage of admitted applicants with an SAT score of 700 or more is approximately 55% after rounding to the nearest percentage point.
Explanation:
To find the percentage of admitted applicants who had a Math SAT score of 700 or more, we can use the information provided to set up a weighted average problem. Let's denote the applicants with a Math SAT of 700 or more as Group A and those with a Math SAT of less than 700 as Group B.
From the information given:
36% of Group A were admitted.
18% of Group B were admitted.
38% of all applicants are in Group A; hence, 62% are in Group B (100% - 38%).
We want to find the percentage of all admitted students that had a Math SAT of 700 or more. The overall admission rate (AR) can be calculated as follows:
AR = (Percentage of Group A × Admission rate of Group A) + (Percentage of Group B × Admission rate of Group B)
AR = (38% × 36%) + (62% × 18%)
AR = 13.68% + 11.16%
AR = 24.84%
Next, we calculate the contribution of Group A to the overall admission rate:
Contribution from Group A = Percentage of Group A × Admission rate of Group A
Contribution from Group A = 38% × 36%
Contribution from Group A = 13.68%
Now, we find the percentage of the total admissions that were applicants with a Math SAT of 700 or more:
Percentage of admitted applicants with SAT ≥ 700 = (Contribution from Group A ÷ Overall admission rate) × 100
Percentage of admitted applicants with SAT ≥ 700 = (13.68% ÷ 24.84%) × 100
Percentage of admitted applicants with SAT ≥ 700 ≈ 55% (rounded to nearest percentage point)
Mattel Corporation produces a remote-controlled car that requires three AA batteries. The mean life of these batteries in this product is 34 hours. The distribution of the battery lives closely follows the normal probability distribution with a standard deviation of 5.5 hours. As a part of their testing program Sony tests samples of 25 batteries.
What can you say about the shape of the distribution of sample mean?
What is the standard error of the distribution of the sample mean? (Round your answer to 4 decimal place.)
What proportion of the samples will have a mean useful life of more than 36 hours? (Round your answer to 4 decimal place.)
What proportion of the sample will have a mean useful life greater than 33.5 hours? (Round your answer to 4 decimal place.)
What proportion of the sample will have a mean useful life between 33.5 and 36 hours? (Round your answer to 4 decimal place.)
Answer:
0.0406, 0.8284,0.7887
Step-by-step explanation:
Given that Mattel Corporation produces a remote-controlled car that requires three AA batteries
X is N(34, 5.5)
Hence sample size of 25 would follow a t distribution with df = 24
This is because sample size <30
t distribution with df 24 would be bell shaped symmetrical about the mean and unimodal.
Std error of sample mean = std dev /sqrt n=[tex]\frac{5.5}{5} \\=1.1[/tex]
Prob (X>36) = [tex]P(t>\frac{36-34}{1.1} ) = P(t>1.82)\\= 0.04063[/tex]
i.e nearly 4.1% of the sample would have a mean useful life of more than 36 hours
X>33.5 implies [tex]t>-0.45[/tex]
=0.82837
=0.8284 proportion will have a mean useful life greater than 33.5 hours
Proportion between 33.5 and 36 hours
= [tex]0.3284+0.4593=0.7887[/tex]
The shape of the distribution of the sample mean is approximately normal due to the Central Limit Theorem. The standard error of the distribution of the sample mean can be calculated as 1.1 hours. Proportions of the sample mean falling above and between specific time intervals can be determined using z-scores and the Z-table.
Explanation:The shape of the distribution of the sample mean, in this case, is approximately normal. This is because the distribution of the battery lives closely follows the normal probability distribution. When taking a sample of 25 batteries, the Central Limit Theorem states that the distribution of the sample mean approaches a normal distribution regardless of the shape of the original distribution.
The standard error of the distribution of the sample mean can be calculated using the formula: standard deviation / square root of sample size. In this case, the standard deviation is 5.5 hours and the sample size is 25. Therefore, the standard error is 5.5 / √25 = 1.1 hours.
To determine the proportion of the samples that will have a mean useful life of more than 36 hours, we need to calculate the z-score first. The formula for z-score is: (sample mean - population mean) / standard error. Plugging in the given values, we get (36 - 34) / 1.1 = 1.82. By looking up the z-score in the Z-table, we find the corresponding proportion is approximately 0.0344.
Similarly, to find the proportion of the sample that will have a mean useful life greater than 33.5 hours, we calculate the z-score: (33.5 - 34) / 1.1 = -0.45. By looking up the z-score in the Z-table, we find the corresponding proportion is approximately 0.3264.
To determine the proportion of the sample that will have a mean useful life between 33.5 and 36 hours, we subtract the proportion of the sample that will have a mean useful life greater than 36 hours from the proportion of the sample that will have a mean useful life greater than 33.5 hours. Therefore, 0.3264 - 0.0344 = 0.2920.
Learn more about Distribution of Sample Mean here:https://brainly.com/question/29451043
#SPJ12
please please PLEASE help! no one's been able to answer this yet and I have so much more homework left to do.
Write the slope-intercept form of the equation of the line.
1. through: (4,-4) slope=0
2. through: (5,-4) slope= -1/3
For the first one, since the slope is 0 the line must be just a horizontal line that passes through the given point. The equation would be y=-4 because the y coordinate for the point is -4.
For the second problem, utilize y=mx+b, the parent equation for slope intercept form (m-slope, b-y intercept).
y=mx+b
-4=-1/3(5)+b
b=-2 1/3
equation: y=-1/3x - 2 1/3
You wish to examine whether hot air hand blowers or paper in a medical facility have an effect on the rate of respiratory incidence. You follow 98 health care workers in primary care clinic during flu season. You observe the following incidence of respiratory disease and preferred method of hand drying. 46 workers preferred paper for hand drying, 52 preferred hot air blowers. During the study period 29 of the 98 workers experienced a respiratory illness.
OBSERVED VALUES Sick Not Sick
Paper 19 27 49
HotAir 10 42 52
29 68 98
Your null and alternative hypothesis for the Chi Square test comparing the exposure (air vs paper) and outcome (ill or not ill is Hnull There is no association between the drying choice and ilness Halt There is an association between drying choice and illness
a.True
b. False
Answer:
There is an association between drying choice and illness
a.True
Step-by-step explanation:
H_0: There is no association between the drying choice and ilness
H_a: There is an association between drying choice and illness
(Two tailed chi square test)
Observations are given as per the following table
Observed
Sick Not sick
Paper 19 27 46
Hot air 10 42 52
29 69 98
Expected row total*col total/grand total
Paper 13.6122449 32.3877551 46
Hot air 15.3877551 36.6122449 52
29 69 98
Chi square =(observed-expected)^2/Expected
Paper 2.132484778 0.896261718 3.028746496
Hot air 1.886428842 0.792846905 2.679275747
4.01891362 1.689108623 5.708022243
Thus chi square = 5.708
degrees of freedom = (r-1)(c-1) = 1
p value = 0.0167
Since p <0.05 our alpha we reject null hypothesis
At 5% significance level, we can say
There is an association between drying choice and illness
a.True
A confidence interval is constructed for an unknown population proportion, p. A sample is collected, and the 95% confidence interval is calculated to be 0.40 ± 0.06. Based on this information, it is most accurate to say that there is approximately 95% confidence in the assertion that:
Answer: The population proportion is between 0.34 and 0.46 .
Step-by-step explanation:
Interpretation of 95% confidence interval : A person can be about 95% confident that the true population parameter lies in the interval.
A confidence interval is constructed for an unknown population proportion, p. A sample is collected, and the 95% confidence interval is calculated to be 0.40 ± 0.06.
i.e. Lower limit = [tex]0.40-0.06=0.34[/tex]
Upper limit = [tex]0.40+0.06=0.46[/tex]
i.e. 95% confidence interval = (0.34, 0.46)
i.e. A person can be about 95% confident that the true population proportion (p) lies in the interval (0.34, 0.46).
⇒ It is most accurate to say that there is approximately 95% confidence in the assertion that:
The population proportion is between 0.34 and 0.46 .
According to the Texas Department of State Health Services, there are approximately 17.7 million adults (age 18+) living in Texas, of which 1.45 million have diabetes. In 2010, 366,921 adult Texans were diagnosed with diabetes for the first time.
What is the incidence of diabetes in Texas? Express your answer in units of per 1000 persons per year
Answer:
20.73 ≈ 21 persons per year
Step-by-step explanation:
Data provided in the question:
Total population of Texas = 17.7 million
People having diabetes = 1.45 million
Number of new cases of diabetes diagnosed for the first time = 366,921
Now,
the incidence of diabetes in Texas
= [ Number of new cases diagnosed ] ÷ [ Total population ]
= 366,921 ÷ 17.7 million
= 366,921 ÷ 17,700,000
= 0.02073
thus,
the incidence of diabetes in Texas per 1000 persons
= 0.02073 × 1,000
= 20.73 ≈ 21 persons per year
Given the list of terms 1/3, 1, 5/3, 7/3,.... Find the 15th and −16th term.
Answer:
15th term =29/3
16th term = 31/3
Step-by-step explanation:
Given an arithmetic sequence with the first term a1 and the common difference d , the nth (or general) term is given by an=a1+(n−1)d .
First we find the 15th term
n=15
a1=1/3
d=1 - 1/3 = 2/3
Solution
1/3+(15-1)2/3
1/3+28/3
(1+28)/3
29/3
Lets find the 16th term
1/3+(16-1)2/3
1/3+30/3
(1+30)/3
31/3
Daniel is a front-desk manager at Refington Hotel, a mid-market hotel. During Daniel's shift last week, he received 29 customer complaints. A total of 428 guests had stayed in the hotel that week. Given this information, find out the errors per million opportunities.
Answer:
67,757 errors per million opportunities
Step-by-step explanation:
Assuming that each customer can only make a single complaint (1 error opportunity per customer), the number of errors per million opportunities (EPMO) is given by:
[tex]EPMO = \frac{complaints}{guests}*1,000,000 \\EPMO = \frac{29}{428}*1,000,000 \\EPMO = 67,757[/tex]
Refington hotel should expect 67,757 complaints per million guests.
For population parameter μ = true average resonance frequency for all tennis rackets of a certain type, each of these is a confidence interval. (114.4, 115.6) and (114.1, 115.9) What is the value of the sample mean resonance frequency?
a. 114.5
b. 115.8
c. 114.1
d. 115.0
Answer:
X[bar]= 115
Step-by-step explanation:
Hello!
Every Confidence interval to estimate the population mean are constructed following the structure:
"Estimator" ± margin of error"
Wich means that the intervals are centered around the sample mean. To know the value of the sample mean you have to make the following calculation:
[tex]X[bar]= \frac{Upper bond + Low bond}{2}[/tex]
[tex]X[bar]= \frac{115.6+114.4}{2}[/tex] = 115
Since both intervals were calculated with the information of the same sample, you can choose either to calculate the sample mean.
I hope it helps!
According to a study conducted by an organization, the proportion of Americans who were afraid to fly in 2006 was 0.10. A random sample of 1 comma 400 Americans results in 154 indicating that they are afraid to fly. Explain why this is not necessarily evidence that the proportion of Americans who are afraid to fly has increased.
Final answer:
The slightly higher proportion of Americans who indicated they are afraid to fly in a random sample is not necessarily evidence of an increased fear of flying overall. This variation could be due to sample variability, and without statistical analysis like hypothesis testing or confidence interval construction, one cannot conclude a genuine increase in fear of flying among Americans.
Explanation:
A study conducted by an organization found that the proportion of Americans who were afraid to fly in 2006 was 0.10. When a random sample of 1,400 Americans results in 154 individuals indicating that they are afraid to fly, it might initially seem like evidence that the proportion of Americans afraid to fly has increased. However, this is not necessarily indicative of an overall trend. To understand why we need to consider statistical variability and the concept of a confidence interval.
Statistical fluctuations in samples can lead to results that differ from the actual population proportion. In this case, the sample proportion of individuals afraid to fly is roughly 0.11 (154/1400), only slightly higher than the reported 0.10 from 2006. Without conducting a hypothesis test or constructing a confidence interval around the sample proportion, it's not possible to definitively say whether this difference is statistically significant or just due to random chance.
Furthermore, sample size plays a crucial role in the reliability of estimates. Although a sample size of 1,400 may seem large, the inherent randomness in sample selection could still lead to results differing from the true population proportion. In summary, a slight increase in the sample proportion of individuals afraid to fly, compared to a previous study, is not conclusive evidence of a trend without further statistical analysis to support such a claim.
The data from a sample of 1,400 Americans revealing 154 individuals who are afraid to fly does not necessarily indicate an increase in the proportion of Americans with this fear compared to 2006. Statistically significant evidence through a hypothesis test is required to make such a conclusion since sample data can fluctuate due to random chance.
Explanation:A random sample of 1,400 Americans resulted in 154 indicating that they are afraid to fly, which might suggest an increase from the 2006 study that showed a 0.10 proportion of Americans had this fear. However, this is not necessarily evidence that the proportion of Americans who are afraid to fly has increased due to potential sampling error or the natural fluctuation inherent in sample data. To determine if there is a statistically significant increase, one would need to perform a hypothesis test comparing the sample proportion to the known proportion of 0.10.
Variability can occur in survey results, and a single sample might not represent the entire population accurately. Also, the difference observed might be a result of random chance. Therefore, it's essential to conduct statistical tests to infer whether the observed change is meaningful and not due to sampling variability.
Suppose that the bacteria in a colony grow unchecked according to the Law of Exponential Change. The colony starts with 1 bacterium and triples in number every 20 minutes. How many bacteria will the colony contain at the end of 24 hours?
Answer: There are 2.25×10³⁴ bacteria at the end of 24 hours.
Step-by-step explanation:
Since we have given that
Number of bacteria initially = 1
It triples in number every 20 minutes.
So, [tex]\dfrac{20}{60}=\dfrac{1}{3}[/tex]
So, our equation becomes
[tex]y=y_0e^{\frac{1}{3}k}\\\\3=1e^{\frac{1}{3}k}\\\\\ln 3=\dfrac{1}{3}k\\\\k=\dfrac{1.099}{0.333}=3.3[/tex]
We need to find the number of bacteria that it will contain at the end of 24 hours.
So, it becomes,
[tex]y=1e^{24\times 3.3}\\\\y=e^{79.1}\\\\y=2.25\times 10^{34}[/tex]
Hence, there are 2.25×10³⁴ bacteria at the end of 24 hours.
The colony will contain approximately 3,486,784,401 bacteria at the end of 24 hours.
Explanation:The bacteria colony starts with 1 bacterium and triples in number every 20 minutes. To determine the number of bacteria at the end of 24 hours, we need to calculate the number of 20-minute intervals in 24 hours. There are 24 hours in a day, so there are 24 intervals of 20 minutes in a day. Therefore, the bacteria would triple in number 24 times. Starting with 1 bacterium, after 24 intervals, the number of bacteria would be:
1 * 3^24 = 1 * 3,486,784,401
So, at the end of 24 hours, the colony would contain approximately 3,486,784,401 bacteria.
Learn more about Exponential growth here:https://brainly.com/question/12490064
#SPJ3
The average US woman wears 515 chemicals on an average day from her makeup and toiletries. A random sample from California found that on average the California woman wears 325 chemicals per day with a standard deviation of 90.5.Which hypothesis test should be used to determine whether the sample contains less than the US average of wearing 515 chemicals per day?a. t-test for the population meanb. z-test for the population meanc. z-test for the population proportiond. t-test for the population proportion
Answer:
a. t-test for the population mean
Step-by-step explanation:
given that the average US woman wears 515 chemicals on an average day from her makeup and toiletries
A random sample from California found that on average the California woman wears 325 chemicals per day with a standard deviation of 90.5.
Note that here we have only sample std deviation and not population.
So better to use t test here.
Sample size is not given so whatever be the sample size here t test would be more appropriate.
Here we are testing for mean. So the correct answer is
a. t-test for the population mean
A group of GSU students in the Young Democrats Club wish to determine the likeability of their favorite candidate. They survey 2322 randomly selected registered voters and ask them to rate their candidate (on a "thermometer" from 0 to 100, where 0 means "very cold"and 100 means "very warm"feelings).Suppose the sample of n=2322 responses have a mean warmth of 64.16 with a sample standard deviation of s=26.34.Find the 95% confidence interval to estimate the population/national mean warmth rating for their candidate.A) Note: The critical value, tc, that we use to calculate the margin of error for a 95% Confidence Interval is tc = ____ (round to 4 decimal places)B) The margin of error for this confidence interval is: m = ____ (round to 4 decimal places)C) The 95% Confidence Interval for the likeability of their candidate is: (____ , ____) round each to 2 decimal places
Answer:
a) [tex]tc=\pm 1.9601[/tex]
b) [tex]m=1.9601 \frac{26.34}{\sqrt{2322}}=1.0714[/tex]
c) The 95% confidence interval is given by (63.09;65.23)
Step-by-step explanation:
1) Notation and definitions
n=2322 represent the sample size
[tex]\bar X= 64.16[/tex] represent the sample mean
[tex]s=26.34[/tex] represent the sample standard deviation
m represent the margin of error
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
2) Calculate the critical value tc
In order to find the critical value is impornta to mention that we don't know about the population standard deviation, so on this case we need to use the t distribution. Since our interval is at 95% of confidence, our significance level would be given by [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2 =0.025[/tex]. The degrees of freedom are given by:
[tex]df=n-1=2322-1=2321[/tex]
We can find the critical values in excel using the following formulas:
"=T.INV(0.025,2321)" for [tex]t_{\alpha/2}=-1.9601[/tex]
"=T.INV(1-0.025,2321)" for [tex]t_{1-\alpha/2}=1.9601[/tex]
The critical value [tex]tc=\pm 1.9601[/tex]
3) Calculate the margin of error (m)
The margin of error for the sample mean is given by this formula:
[tex]m=t_c \frac{s}{\sqrt{n}}[/tex]
[tex]m=1.9601 \frac{26.34}{\sqrt{2322}}=1.0714[/tex]
4) Calculate the confidence interval
The interval for the mean is given by this formula:
[tex]\bar X \pm t_{c} \frac{s}{\sqrt{n}}[/tex]
And calculating the limits we got:
[tex]64.16 - 1.9601 \frac{26.34}{\sqrt{2322}}=63.09[/tex]
[tex]64.16 + 1.9601 \frac{26.34}{\sqrt{2322}}=65.23[/tex]
The 95% confidence interval is given by (63.09;65.23)
The heights of adult men in America are normally distributed, with a mean of 69.3 inches and a standard deviation of 2.64 inches. The heights of adult women in America are also normally distributed, but with a mean of 64.5 inches and a standard deviation of 2.53 inches. a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)? z = 2.16 b) What percentage of men are SHORTER than 6 feet 3 inches? Round to nearest tenth of a percent.
Answer:
z-score is 2.16
98.46% of men are SHORTER than 6 feet 3 inches
Step-by-step explanation:
The heights of adult men in America are normally distributed, with a mean of 69.3 inches and a standard deviation of 2.64 inches.
Mean = [tex]\mu = 69.3 inches[/tex]
Standard deviation = [tex]\sigma = 2.64 inches[/tex]
a) If a man is 6 feet 3 inches tall, what is his z-score (to two decimal places)
x = 6 feet 3 inches
1 feet =12 inches
6 feet = 12*6 = 72 inches
So, x = 6 feet 3 inches = 72+3=75 inches
Formula : [tex]Z=\frac{x-\mu}{\sigma}[/tex]
[tex]Z=\frac{75-69.3}{2.64}[/tex]
[tex]Z=2.159[/tex]
So, his z-score is 2.16
No to find percentage of men are SHORTER than 6 feet 3 inches
We are supposed to find P(x< 6 feet 3 inches)
z-score is 2.16
Refer the z table
P(x< 6 feet 3 inches) =0.9846
So, 98.46% of men are SHORTER than 6 feet 3 inches
A Harris Interactive Survey for InterContinental Hotels and Resorts asked respondents, "When traveling internationally, do you generally venture out on your own to experience culture, or stick with your tour group and itineraries?" The survey found that 23% of the respondents stick with their tour group.
In a sample of 6 internationals travellers, what is the probability that 2 will stick with their tour group?
Answer:the probability that 2 will stick with their tour group is 0.21
Step-by-step explanation:
The survey found that 23% of the respondents stick with their tour group. This means that the probability of success,
p is 23/100 = 0.23
Probability of failure, q = 1 - p = 1 - 0.23
q = 0.77
Number of international travellers sampled, n is 6
Assuming a binomial distribution for the responses, the formula for binomial distribution is
P(x = r) = nCr × q^(n-1) × p^r
To determine the probability that 2 will stick with their tour group, we would determine
P( x= r = 2). It becomes
6C2 × 0.77^(6-1) × 0.23^2
= 15 × 0.77^5 × 0.0529
= 0.21
The probability that exactly 2 out of 6 international travelers will stick with their tour group, given that the probability of an individual sticking with the group is 23%, is approximately 27.81%.
The problem described involves calculating the probability of a specific number of successes in a series of independent trials and is an example of a binomial probability problem. In this case, with the probability that a person sticks with their tour group being 23%, or 0.23, and a sample of 6 international travelers, we want to find the probability that exactly 2 out of these 6 travelers stick with their group. This can be calculated using the binomial probability formula:
P(X = k) = [tex]C(n, k) \times p^k \times (1-p)^{n-k}[/tex]
Where:
P(X = k) is the probability of k successes in n trials
C(n, k) is the combination of n things taken k at a time
p is the probability of success on a single trial
n is the number of trials
k is the number of successes in n trials
For our problem:
P(X = 2) = C(6, 2) x [tex]0.23^2[/tex]x[tex](1-0.23)^{6-2}[/tex]
Calculating the combination, we have C(6, 2) = 6! / (2! x (6-2)!).
Thus:
P(X = 2) = 15 x [tex](0.23^2)[/tex] x [tex](0.77^4)[/tex]
P(X = 2) = 15 x 0.0529 x 0.3515
P(X = 2) = 0.2781
Therefore, the probability that exactly 2 of the 6 international travelers will stick with their tour group is approximately 0.2781, or 27.81%.
every 3 hours, a machine produces 60 baskets. What is the unit rate?
a. 180 baskets per hour
b. 3 baskets per hour
c. 20 baskets per hour
d. 57 baskets per hour
Answer:
c. 20 baskets per hour
Step-by-step explanation:
In this context, "per" can be considered to mean "divided by." Then to find the unit rate in terms of baskets per hour, we compute ...
rate = (baskets)/(hours) = (60 baskets)/(3 hours) = (60/3) baskets/hour
rate = 20 baskets/hour . . . . matches choice C
In the casino game of Roulette, there are 38 slots on the wheel. Of the 38 slots, 18 are colored red, 18 are colored black, and 2 are colored green. For a single game, the wheel is spun and a ball is rolled. Eventually, the ball will randomly fall into one of the slots. For the next game, the wheel is respun and the ball rerolled, making the outcome independent of the previous outcome.(a) On a single game, what is the probability that the outcome is red? P(red) = 18/38 = 0.474.(b) Suppose a casino patron plays the game 20 consecutive times and bets that the outcome will be red each time. What is the probability that the patron is correct (and wins) on exactly 10 of the games?(c) Suppose a casino patron plays the game 20 consecutive times and bets that the outcome will be red each time. What is the probability that the patron is correct (and wins) on at most 10 of the games?(d) Suppose a casino patron plays the game 20 consecutive times and bets that the outcome will be red each time. What is the probability that the patron is correct (and wins) on at least 15 of the games?