Professor N. Timmy Date has 31 students in his Calculus class and 17 students in his Discrete Mathematics class.

(a) Assuming that there are no students who take both classes, how many students does Professor Date have?


(b) Assuming that there are five students who take both classes, how many students does Professor Date have?

Answers

Answer 1

Answer: a) 48

b) 43

Step-by-step explanation:

Given : The number of students Professor Date has in his Calculus class = 31

The number of students Professor Date has in his Discrete Mathematics class = 17

(a) If we assume that there are no students who take both classes, then the total number of students Professor Date Has = 31+17=48

(b) If we assume that there are five students who take both classes, then the total number of students Professor Date Has = 31+17-5=43


Related Questions

A genetic experiment with peas resulted in one sample of offspring that consisted of 447447 green peas and 172172 yellow peas. a. Construct a 9090​% confidence interval to estimate of the percentage of yellow peas. b. It was expected that​ 25% of the offspring peas would be yellow. Given that the percentage of offspring yellow peas is not​ 25%, do the results contradict​ expectations?

Answers

Answer:

The results do not contradict expectations.

Step-by-step explanation:

Given that a genetic experiment with peas resulted in one sample of offspring that consisted of 447 green peas and 172 yellow peas.

Proportion of yellow peas = [tex]\frac{172}{172+447} =27.79%[/tex]

Std error = 0.25(0.75)/sq rt 619

=0.0174

Proportion difference = 0.2779-0.25=0.0279

Test statistic = 0.0279/0.0174 =1.603

p value = 0.1089

For two tailed we have p value >0.10

Hence accept null hypothesis.

The results do not contradict expectations.

A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola y = 11 − x 2 . What are the dimensions of such a rectangle with the greatest possible area?

Answers

Answer:[tex]\frac{22}{3}[/tex],[tex]2\dot \sqrt{\frac{11}{3}}[/tex]

Step-by-step explanation:

Given

rectangle with its base on x-axis

and other two corners at parabola

and parabola is downward facing symmetric about y-axis

let y be the y co-ordinate of the corner thus x co-ordinate is given by

[tex]x=\pm \sqrt{11-y}[/tex]

Thus lengths of rectangle is [tex]2\sqrt{11-y}[/tex] & y

Area [tex]=y\times 2\sqrt{11-y}[/tex]

differentiating w.r.t to y for maximum area

[tex]\frac{\mathrm{d} A}{\mathrm{d} y}=2\times \sqrt{11-y}-\frac{y}{2\dot \sqrt{11-y}}=0[/tex]

we get y=[tex]\frac{22}{3}[/tex]

and [tex]x=\pm \sqrt{\frac{11}{3}}[/tex]

A_{max}=16.21 units

y = −(x + 4)2 − 7 vertex

Answers

Answer:

The vertex (h,k) is (-4,-7).

Step-by-step explanation:

I assume you are looking for the vertex [tex]y=-4(x+4)^2-7[/tex].

The vertex form of a quadratic is [tex]y=a(x-h)^2+k[/tex] where the vertex is (h,k) and a tells us if the parabola is open down (if a<0) or up (if a>0). a also tells us if it is stretched or compressed.

Anyways if you compare [tex]y=-4(x+4)^2-7[/tex] to [tex]y=a(x-h)^2+k[/tex] , you should see that [tex]a=-4,h=-4,k=-7[/tex].

So the vertex (h,k) is (-4,-7).

Answer:

The vertex is [tex](-4,-7)[/tex]

Step-by-step explanation:

The vertex form of a parabola is given by:

[tex]y=a(x-h)^2+k[/tex], where (h,k) is the vertex and [tex]a[/tex] is the leading coefficient.

The given parabola has equation:

[tex]y=-1(x+4)^2-7[/tex]

When we compare to the vertex form, we have

[tex]-h=4\implies h=-4[/tex] and [tex]k=-7[/tex].

Therefore the vertex is (-4,-7)

Explain how simulation is used in the real world. Provide a specific example from your own line of work, or a line of work that you find particularly interesting.

Answers

Answer:

Explained

Step-by-step explanation:

Simulation is nothing but an approximate or somewhat accurate imitation of a real world situation. Simulation is actually a computer generated graphics to predict how a system will behave under given set of parameters, without actually applying real resources. Simulation finds a variety of application in various fields.  Simulation of blood flowing through veins and arteries. Simulation of LBW decisions in a cricket match, which helps Umpires to make correct LBW decisions in a match. A lot of recondite  process can understood using Simulation videos that is why concept of smart learning as been introduced.

Identify the radius and center.

x^2 + y^2 + 4y -21 =0

Answers

Answer:

radius 5

center (0,-2)

Step-by-step explanation:

The goal is to get to [tex](x-h)^2+(y-k)^2=r^2 \text{ where } (h,k) \text{ is the center and } r \text{ is the radius }[/tex].

We will need to complete the square for both parts.

That is we need to use:

[tex]u^2+bu+(\frac{b}{2})^2=(u+\frac{b}{2})^2[/tex].

First step is group the x's and y's together and put the constant on the opposing side.  The x's and y's are already together.  So we need to add 21 on both sides:

[tex]x^2+y^2+4y=21[/tex]

Now the x part is already done.

If you compare y^2+4y to [tex]u^2+bu+(\frac{b}{2})^2=(u+\frac{b}{2})^2[/tex]

on the left side we have b is 4 so we need to add (4/2)^2 on both sides of [tex]x^2+y^2+4y=21[/tex].

[tex]x^2+y^2+4y+(\frac{4}{2})^2=21+(\frac{4}{2})^2[/tex]

Now we can write the y part as something squared still using my completing the square formula:

[tex]x^2+(y+\frac{4}{2})^2=21+2^2[/tex]

[tex]x^2+(y+2)^2=21+4[/tex]

[tex](x-0)^2+(y+2)^2=25[/tex]

The center is (0,-2) and radius is [tex]\sqrt{25}=5[/tex]

Hello!

The answer is:

Center: (0,-2)

Radius: 2.5 units.

Why?

To solve the problem, using the given formula of a circle, we need to find its standard equation form which is equal to:

[tex](x-h)^{2}+(y-k)^{2}=r^{2}[/tex]

Where,

"h" and "k"are the coordinates of the center of the circle and "r" is its radius.

So, we need to complete the square for both variable "x" and "y".

The given equation is:

[tex]x^2+y^2+4y-21=0[/tex]

So, solving we have:

[tex]x^2+y^2+4y=21[/tex]

[tex]x^2+(y^2+4y+(\frac{4}{2})^{2})=21+(\frac{4}{2})^{2}\\\\x^2+(y^2+4y+4)=21+4\\\\x^2+(y^2+2)=25[/tex]

[tex]x^2+(y^2-(-2))=25[/tex]

Now, we have that:

[tex]h=0\\k=-2\\r=\sqrt{25}=5[/tex]

So,

Center: (0,-2)

Radius: 5 units.

Have a nice day!

Note: I have attached a picture for better understanding.

For the following, work each by hand showing all steps. (4 points each)

If a dealer is dealing a card game where a player receives 5 cards from a standard 52-card deck, find the following probability. (6 points)

Probability of 3 Clubs and 2 Red cards?

Answers

Answer:

0.0358

Step-by-step explanation:

In a 52 deck, 13 cards are Clubs, and 26 cards are red.

There are ₁₃C₃ ways to choose 3 Clubs from 13.

There are ₂₆C₂ ways to choose 2 red cards from 26.

There are ₅₂C₅ ways to choose 5 cards from 52.

P = (₁₃C₃ ₂₆C₂) / ₅₂C₅

P = (286 × 325) / 2598960

P = 0.0358

Recall the formula for finding the area of a rectangle. Define a
variable for the width and set up an equation to find the dimensions of a
rectangle that has an area 144 square inches, given that the length is 10
inches longer than its width.

Answers

Final answer:

To solve for the width of the rectangle, define the width as w, set up the equation 144 = w(w + 10), and factor the resulting quadratic equation to find w = 8 inches. Hence, the rectangle's dimensions are 8 inches in width and 18 inches in length.

Explanation:

To find the dimensions of a rectangle with an area of 144 square inches where the length is 10 inches longer than its width, we first recall the formula for the area of a rectangle:

Area = Length × Width

Let's define the width as w, and since the length is 10 inches longer, we can say the length is w + 10. Plugging these into the area formula we get:

144 = w × (w + 10)

Now, we have a quadratic equation to solve for w:

Expand the equation: 144 = w2 + 10w

Subtract 144 from both sides to set the equation to zero: w2 + 10w - 144 = 0

Factor the quadratic equation: (w + 18)(w - 8) = 0

Solve for w: w = -18 or w = 8 (since width cannot be negative, w = 8 is the solution.)

Therefore, the dimensions of the rectangle are a width of 8 inches and a length of 18 inches (8 + 10).

625 ÷ 62.5 × 30 ÷ 10

Answers

Answer:

30

Step-by-step explanation:

Follow the correct order of operations.

There are only multiplications and divisions, so do them in the order they appear from left to right.

625 ÷ 62.5 × 30 ÷ 10 =

= 10 × 30 ÷ 10

= 300 ÷ 10

= 30

The graph is a transformation of one of the basic functions. Find the equation that defines the function.

Answers

Answer:

So anyways the equation appears to be [tex]y=(x+4)^3+3[/tex].

Step-by-step explanation:

It looks like a cubic to me.

That is the parent function looks like [tex]f(x)=x^3[/tex].

I'm going to identify the transformations here by using the zero of the function I called f.  So where has the point (0,0) on [tex]y=x^3[/tex] wonder to in the new graph.  It appears to be (-4,3).  So the graph moved left 4 units and up 3 units.

f(x+4)+3 moves the graph left 4 and up 3.

----------Other notes:

f(x-4)+3 moves the graph right 4 and up 3.

f(x+4)-3 moves the graph left 4 and down 3.

f(x-4)-3 moves the graph right 4 and down 3.

So anyways the equation appears to be [tex]y=(x+4)^3+3[/tex].

To determine the equation of a transformed basic function, we typically look at how the graph's shape compares to one of the standard basic functions. The basic functions include linear functions, quadratic functions, absolute value functions, square root functions, cubic functions, and exponential and logarithmic functions. We also consider basic trigonometry functions for periodic graphs.
To find the equation, we need to identify four main transformations that may have been applied to the basic function:
1. **Vertical stretching/shrinking**: If the graph is stretched or shrunk vertically, this is represented by a multiplication factor `a` in front of the basic function `f(x)`.
2. **Horizontal stretching/shrinking**: If the graph is stretched or shrunk horizontally, this is represented by a factor within the function's argument, such as `f(bx)`, where `1/b` is the stretching/shrinking factor.
3. **Vertical shifting**: If the graph is shifted up or down, a constant `c` is added or subtracted from the function, giving `f(x) + c`.
4. **Horizontal shifting**: If the graph is shifted left or right, the function's input is adjusted by adding or subtracting a constant `d` within the argument of the function, yielding `f(x - d)`.
5. **Reflections**: If the graph is flipped over the x-axis, this is represented by a negative sign in front of the `a` factor. If it's flipped over the y-axis, the negative sign is inside the function's argument, `f(-x)`.
Without any specific details about the graph's appearance, the points, or what basic function it resembles, it is impossible to provide the exact transformed function. However, for illustrative purposes, I’ll demonstrate how one might find the equation for a transformed quadratic function based on hypothetical graph observations:
Suppose you find that the graph looks like a parabola that opens upwards and has been:
- Stretched vertically by a factor of 3 (vertical stretch)
- Compressed horizontally by a factor of 1/2 (horizontal stretch)
- Shifted up by 5 units (vertical shift)
- Shifted to the right by 4 units (horizontal shift)
With these observations, you would start with the standard quadratic function, `f(x) = x^2`, and apply the transformations:
1. Vertical stretch by 3: `f(x) = 3x^2`
2. Horizontal compression by a factor of 1/2, which is equivalent to stretching by a factor of 2: `f(x) = 3(x/2)^2 = 3(x^2/4) = (3/4)x^2`
3. Vertical shift up by 5 units: `f(x) = (3/4)x^2 + 5`
4. Horizontal shift right by 4 units: `f(x) = (3/4)(x - 4)^2 + 5`
The transformed function based on the hypothetical scenario would be `f(x) = (3/4)(x - 4)^2 + 5`.
Without specifics of the graph in question, you would follow a similar process: identify the basic function type based on the shape of the graph and apply the relevant transformations.

In a certain​ country, the true probability of a baby being a girl is 0.469. Among the next seven randomly selected births in the​ country, what is the probability that at least one of them is a boy​?

Answers

Answer:

The probability is 0.995 ( approx ).

Step-by-step explanation:

Let X represents the event of baby girl,

The probability of a baby being a girl is, p = 0.469,

So, the probability of a baby who is not a girl is, q = 1 - 0.469 = 0.531,

Also, the total number of experiment, n = 7

Thus, by the binomial distribution formula,

[tex]P(x)=^nC_x(p)^x q^{n-x}[/tex]

Where, [tex]^nC_x=\frac{n!}{x!(n-x)!}[/tex]

The probability that all babies are girl or there is no baby boy,

[tex]P(X=7)=^7C_7(0.469)^7(0.531)^{7-7}[/tex]

[tex]=0.00499125661758[/tex]

Hence, the probability that at least one of them is a boy​ = 1 - P(X=7)

= 1 - 0.00499125661758

= 0.995008743382

0.995

Prove that if AB= 0and A is invertible then B= 0

Answers

Answer with Step-by-step explanation:

Since we have given that

AB = 0 and A is invertible so, AA⁻¹ = I

So, Consider,

[tex]AB=0[/tex]

Multiplying A⁻¹ on both the sides, we get that

[tex]A^{-1}AB=A^{-1}0\\\\(AA^{-1})B=0\\\\IB=0\\\\B=0[/tex]

Hence proved.

could someone explain and help

Answers

Answer:

  80°

Step-by-step explanation:

The sum of the two angles (red and blue) is 145°, so you have ...

  (4x +5)° +(6x -10)° = 145°

  10x = 150 . . . . . . . . divide by °, add 5, simplify

  x = 15 . . . . . . . . . . . divide by 10

Then the measure of the angle of interest is ...

  m∠XMN = (6x -10)° = (6·15 -10)° = 80°

Find the slope of the line through the pair of points by using the slope formula. (-4,3) and (-2, -4) The slope of the line is (Type an integer or a simplified fraction.)

Answers

Answer: [tex]-3\dfrac{1}{2}[/tex].

Step-by-step explanation:

We know that the slope of a line passing through points (a,b) and (c,d) is given by :_

[tex]m=\dfrac{d-b}{c-a}[/tex]

The given points : (-4,3) and (-2, -4)

Now, the slope of the line passing through points (-4,3) and (-2, -4) is given by :-

[tex]m=\dfrac{-4-3}{-2-(-4)}\\\\\Rightarrow\ m=\dfrac{-7}{-2+4}\\\\\Rightarrow\ m=\dfrac{-7}{2}=-3\dfrac{1}{2}[/tex]

The slope of a line passing through points (-4,3) and (-2, -4) is [tex]-3\dfrac{1}{2}[/tex].

40% of the groups budget was spent on activities. If $64,000 was spent on the activities, what was the full budget? solve with the aid of a diagram. State what type of problem this is. if it's division, which type? Explain your reasoning, not just by using an equation.

Answers

Answer:

The full budget has a total value of $160,000

Step-by-step explanation:

This is a simple ratio problem and can be solved using the Rule of Three property. The Rule of Three is used to compare two ratios and find the missing part. In this case the ratios would be the following.

[tex]\frac{64,000}{40 percent} = \frac{x}{100 percent}[/tex]

[tex]\frac{64,000 * 100 percent}{40 percent} = \frac{x}[/tex]

[tex]\frac{6,400,000}{40 percent} = \frac{x}[/tex]

[tex]160,000= \frac{x}[/tex]

So now we know that 100% (The full budget) has a total value of $160,000.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

Samantha is trying to complete the Free Throw wellness challenge. In order to earn her chip, she needs to hit 13 out of 20 free throws on the basketball court Her last three attempts were 12 out of 20, 10 out of 20, and 9 out of 20 How far is her average free throw percentage from the needed free throw percentage to earn the chip? (round to the nearest whole number)

Answers

Answer:

21 % below what she needs

Step-by-step explanation:

She had hit 12, 10 and 9

This averages to

(12+10+9)/3 = 31/3 =10 1/3

She needs 13

Percentage = (needed-actual)/needed * 100%

                    = (13-10 1/3) / 13 * 100%

                    = (2 2/3) /13 * 100%

                    =.205128205 * 100%

                   =20.5128205%

To the nearest whole number

                      21 %

She is 21 % below what she needs

Final answer:

Samantha's current average free throw percentage is 15 percentage points away from the 65% needed to earn her wellness challenge chip.

Explanation:

Samantha is working on improving her free throw percentage in basketball, and she needs to calculate how far her average is from the required target to earn her wellness challenge chip. To determine her average free throw percentage, we first calculate her average number of successful shots by adding her last three attempts and dividing by three: (12 + 10 + 9) / 3 = 31 / 3 = 10.33, rounded to 10 successful shots on average. Since she takes 20 shots each time, her average percentage is (10 / 20) * 100 = 50%.

To earn her chip, she needs to hit 13 out of 20 free throws, which is (13 / 20) * 100 = 65%. The difference between her current average and the needed percentage is 65% - 50% = 15%. Rounding to the nearest whole number, she is 15 percentage points away from the required free throw percentage to succeed in the challenge.

Questions (no partial grades if you don't show your work) 1. In a group of 6 boys and 4 girls, four children are to be selected. In how many diffeest weys ces they be selected if at least one boy must be there

Answers

Answer:

Total number of ways will be 209

Step-by-step explanation:

There are 6 boys and 4 girls in a group and 4 children are to be selected.

We have to find the number of ways that 4 children can be selected if at least one boy must be in the group of 4.

So the groups can be arranged as

(1 Boy + 3 girls), (2 Boy + 2 girls), (3 Boys + 1 girl), (4 boys)

Now we will find the combinations in which these arrangements can be done.

1 Boy and 3 girls = [tex]^{6}C_{1}\times^{4}C_{3}=6\times4[/tex]=24

2 Boy and 2 girls=[tex]^{6}C_{2}\times^{4}C_{2}=\frac{6!}{4!\times2!}\times\frac{4!}{2!\times2!}=15\times6=90[/tex]

3 Boys and 1 girl = [tex]^{6}C_{3}\times^{4}C_{1}=\frac{6!}{4!\times2!}\times\frac{4!}{3!}=\frac{6\times5\times4}{3 \times2} \times4=80[/tex]

4 Boys = [tex]^{6}C_{4}=\frac{6!}{4!\times2!} =\frac{6\times 5}{2\times1}=15[/tex]

Now total number of ways = 24 + 90 + 80 + 15 = 209

74% of workers got their job through college. Express the null and alternative hypotheses in symbolic form for this claim (enter as a decimal WITH a leading zero: example 0.31)

Answers

Answer: Null hypothesis = [tex]H_0:p=0.74[/tex]

Alternative hypothesis = [tex]H_1:p\neq0.24[/tex]

Step-by-step explanation:

Given claim : 74% of workers got their job through college.

In proportion , 0.74 of workers got their job through college.

Let p be the proportion of workers got their job through college.

Then claim : [tex]p=0.74[/tex]

We know that the null hypothesis always takes equality sign and alternative hypothesis takes just opposite of the null hypothesis.

Thus, Null hypothesis = [tex]H_0:p=0.74[/tex]

Alternative hypothesis = [tex]H_1:p\neq0.24[/tex]

Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis (i.e., the same sample size, the same standard deviation, and the same mean) will ______________ be rejected at the same significance level.

Answers

Answer:

Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis will "always" be rejected at the same significance level.

Step-by-step explanation:

Consider the provided statement.

As the value of p is less than the significance level, therefore always reject the null hypothesis. Where p is exact level of significance.

Therefore, the answer to the statement is "Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis (i.e., the same sample size, the same standard deviation, and the same mean) will always be rejected at the same significance level."

Final answer:

If a two-sided null hypothesis is rejected at a given significance level, the corresponding one-sided null hypothesis will also be rejected at the same significance level, because the two-sided test is more stringent.

Explanation:

Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis will also be rejected at the same significance level.

This is because when performing a two-sided test, we are testing both ends of the distribution, thus it requires a stricter criteria to reject the null hypothesis than a one-sided test. Since we have already rejected it under a stricter evaluation, we will definitely reject it under a less strict one.

Consider an example where you are using a significance level of 5 percent (α = 0.05). Suppose that your computed t-statistic is 2.2. This value is greater than the critical value for a two-tailed test from the t29 distribution, which is 2.045. Therefore, you reject the two-sided null hypothesis.

Consequently, when comparing your t-statistic (2.2) with the critical value for a one-sided test (which will be less stringent than that for a two-tailed test), you also reject the one-sided null hypothesis.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

Discount on LCD TV is $240.

Sale Price is $1575.00

What was the list price?

Answers

Answer:  The list price was $1815.00.  

Step-by-step explanation:  Given that the discount on a LCD TV is $240 and the sale price is $1575.00.

We are to find the list price.

The discount is given on the price that is listen on the LCD TV.

So, the list price will be equal to the sum of the sale price and the discount price.

Therefore, the required list price of the LCD TV is given by

[tex]L.P.\\\\=\textup{sale price}+\textup{discount}\\\\=\$(1575.00+240.00)\\\\=\$1815.00.[/tex]

Thus, the list price was $1815.00.  


Determine the exact formula for the following discrete models:

2tn+2 = 3tn+1 + 2tn; t0 = 1; t1 = 3;

49yn+2 = -16yn; y0 = 0; y1 = 2;

9xn+2 = 12xn+1- 85xn; x0 = 0; x1 =1

Answers

I'm partial to solving with generating functions. Let

[tex]T(x)=\displaystyle\sum_{n\ge0}t_nx^n[/tex]

Multiply both sides of the recurrence by [tex]x^{n+2}[/tex] and sum over all [tex]n\ge0[/tex].

[tex]\displaystyle\sum_{n\ge0}2t_{n+2}x^{n+2}=\sum_{n\ge0}3t_{n+1}x^{n+2}+\sum_{n\ge0}2t_nx^{n+2}[/tex]

Shift the indices and factor out powers of [tex]x[/tex] as needed so that each series starts at the same index and power of [tex]x[/tex].

[tex]\displaystyle2\sum_{n\ge2}2t_nx^n=3x\sum_{n\ge1}t_nx^n+2x^2\sum_{n\ge0}t_nx^n[/tex]

Now we can write each series in terms of the generating function [tex]T(x)[/tex]. Pull out the first few terms so that each series starts at the same index [tex]n=0[/tex].

[tex]2(T(x)-t_0-t_1x)=3x(T(x)-t_0)+2x^2T(x)[/tex]

Solve for [tex]T(x)[/tex]:

[tex]T(x)=\dfrac{2-3x}{2-3x-2x^2}=\dfrac{2-3x}{(2+x)(1-2x)}[/tex]

Splitting into partial fractions gives

[tex]T(x)=\dfrac85\dfrac1{2+x}+\dfrac15\dfrac1{1-2x}[/tex]

which we can write as geometric series,

[tex]T(x)=\displaystyle\frac8{10}\sum_{n\ge0}\left(-\frac x2\right)^n+\frac15\sum_{n\ge0}(2x)^n[/tex]

[tex]T(x)=\displaystyle\sum_{n\ge0}\left(\frac45\left(-\frac12\right)^n+\frac{2^n}5\right)x^n[/tex]

which tells us

[tex]\boxed{t_n=\dfrac45\left(-\dfrac12\right)^n+\dfrac{2^n}5}[/tex]

# # #

Just to illustrate another method you could consider, you can write the second recurrence in matrix form as

[tex]49y_{n+2}=-16y_n\implies y_{n+2}=-\dfrac{16}{49}y_n\implies\begin{bmatrix}y_{n+2}\\y_{n+1}\end{bmatrix}=\begin{bmatrix}0&-\frac{16}{49}\\1&0\end{bmatrix}\begin{bmatrix}y_{n+1}\\y_n\end{bmatrix}[/tex]

By substitution, you can show that

[tex]\begin{bmatrix}y_{n+2}\\y_{n+1}\end{bmatrix}=\begin{bmatrix}0&-\frac{16}{49}\\1&0\end{bmatrix}^{n+1}\begin{bmatrix}y_1\\y_0\end{bmatrix}[/tex]

or

[tex]\begin{bmatrix}y_n\\y_{n-1}\end{bmatrix}=\begin{bmatrix}0&-\frac{16}{49}\\1&0\end{bmatrix}^{n-1}\begin{bmatrix}y_1\\y_0\end{bmatrix}[/tex]

Then solving the recurrence is a matter of diagonalizing the coefficient matrix, raising to the power of [tex]n-1[/tex], then multiplying by the column vector containing the initial values. The solution itself would be the entry in the first row of the resulting matrix.

Six years ago my son was one-third my age at that time.

Six years from now he will be one-half my age at that time.

How old is my son?

Answers

m - my age

s - son's age

[tex]s-6=\dfrac{m-6}{3}\\s+6=\dfrac{m+6}{2}\\\\3s-18=m-6\\2s+12=m+6\\\\m=3s-12\\m=2s+6\\\\3s-12=2s+6\\s=18[/tex]

He's 18

Let A = {a, b, c, d, e} and B = {a, c, f, g, i}. Universal Set: ∪= {a,b,c,d,e,f,g,h,i}

1. A ∪ B^c

2. B - A

Answers

Answer:

1. { a, b, c, d, e, h }

2. { f, g, i }

Step-by-step explanation:

Given sets,

A = {a, b, c, d, e},

B = {a, c, f, g, i}

Universal set , ∪ = {a, b, c, d, e, f, g, h, i},

1. Since, [tex]B^c[/tex] = elements of universal set which are not in set B

=  U - B

= { b, d, e, h },

Thus,

[tex]A\cup B^c[/tex] = All elements of A and [tex]B^c[/tex]

= { a, b, c, d, e, h }

2. B - A = elements of set B which are not in set A

= { f, g, i }

Increasing at a constant rate,a company's profits y have gone form $535 milion in 1985 to $570 million in 1990. Find the expected level of profit for 1995 if the trend continues. 2)

Answers

Answer:

total profit=$607.278

Step-by-step explanation:

company's profit in 1985= $535 million

company's profit in 1990=$570 million

growth rate = [tex]\frac{570-535}{535}\times 100[/tex]

                    = [tex]\frac{35}{535} \times 100[/tex]

                    = 6.54 %

profit in year 1995 will be = [tex]\frac{6.54}{100}\times 570 =\ \$37.278[/tex]

hence total profit= $570+$37.278

                             = $607.278

Suppose that you currently own a clothes dryer that costs $25 per month to operate A new efficient dryer costs $630 and has an estimated operating cost of $15 per month. How long will it take for the new dryer to pay for itself? months The clothes dryer will pay for itself in

Answers

Answer:

Dryer will pay for itself in 63 months or 5 years and 3 months.

Step-by-step explanation:

Let after x months new dryer will pay for itself.

Old dryer is costing $25 to operate so after x months it will cost = 25x

Similarly new dryer which cost $630 and operating cost is $15 per month.

So after x months new drier will cost = $(630 + 15x)

If the new dryer pay for itself in x months then total cost of both the dryers after x months should be same.

Therefore, 25x = 630 + 15x

25x - 15x = 630

10x = 630

x = [tex]\frac{630}{10}[/tex]

x = 63 months

Or x = 5 years 3 months

Answer is 63 months or 5 years 3 months.

In order to compare two scales, 30 objects are weighed on both scales. Each object would then have two weight values (one from scale 1 and one from scale 2). Based on the nature of the differences in the two weight measurements for the 30 objects, the two scales may be compared. Do these samples represent dependent or independent samples? A. dependent samples. B. independent samples.

Answers

Answer:

These two samples are independent samples.

Step-by-step explanation:

Each object would then have two weight values (one from scale 1 and one from scale 2). Based on the nature of the differences in the two weight measurements for the 30 objects, the two scales may be compared.

These two samples are independent samples.

Though the objects are same but the scales are different.

In Problems 25-28 use (12) to verify that the indicated function is a solution of the given differential equation. Assume an appropriate interval / of definition of each solution. - 3 dt dy 25. x dx 3xy 1: y-e|. = e3r t

Answers

the answer is 17. the answer is 17

Deines Corporation has fixed costs of $480,000. It has a unit selling price of $6, unit variable cost of $4.4, and a target net income of $1,500,000. Compute the required sales in units to achieve its target net income.

Answers

Answer:

The required sales in units to achieve its target net income is 1,237,500 units.

Step-by-step explanation:

From the given information it is clear that

Fixed cost = $480,000

Selling Price = $6 per unit

Variable Cost = $4.4 per unit

Target net income = $1,500,000

We need to find the required sales in units to achieve its target net income.

[tex]Units=\frac{\text{Fixed cost + Target net income}}{\text{Selling Price - Variable Cost}}[/tex]

[tex]Units=\frac{480000+1500000}{6-4.4}[/tex]

[tex]Units=\frac{1980000}{1.6}[/tex]

[tex]Units=1237500[/tex]

Therefore the required sales in units to achieve its target net income is 1,237,500 units.

Dave wants to purchase 25 pounds of party mix for a total of ?$60. To obtain the? mixture, he will mix nuts that cost ?$4 per pound with pretzels that cost ?$2 per pound. How many pounds of each type and mix should he? use?

Answers

Answer:

5 pounds of nuts and 20 pounds of pretzels

Step-by-step explanation:

Let

x ----> the number of pounds of nuts

y ----> the number of pounds of pretzels

we know that

x+y=25

x=25-y ------> equation A

4x+2y=60 ---> equation B

Solve the system by substitution

Substitute equation A in equation B and solve for y

4(25-y)+2y=60

100-4y+2y=60

4y-2y=100-60

2y=40

y=20 pounds of pretzels

Find the value of x

x=25-y

x=25-20=5 pounds of nuts

Final answer:

Dave should use 5 pounds of nuts and 20 pounds of pretzels to make the party mix.

Explanation:

Let's assume that Dave buys x pounds of nuts and y pounds of pretzels. Since he wants to buy a total of 25 pounds of party mix, we can write the equation x + y = 25.

The cost of nuts per pound is $4 and the cost of pretzels per pound is $2. Therefore, the cost of x pounds of nuts is 4x dollars and the cost of y pounds of pretzels is 2y dollars.

We can write the equation 4x + 2y = 60 to represent the total cost of the party mix.

To solve this system of equations, we can use substitution. Solve the first equation for x in terms of y: x = 25 - y.

Substitute this expression for x into the second equation to get 4(25 - y) + 2y = 60.

Simplify this equation to get 100 - 4y + 2y = 60. Combine like terms to get -2y = -40. Divide both sides by -2 to solve for y: y = 20.

Substitute this value back into the first equation to find x: x = 25 - 20 = 5.

Therefore, Dave should use 5 pounds of nuts and 20 pounds of pretzels to make the party mix.

The taxes on a house assessed at $64000 are $1600 a year. If the assessment is raised to $80000 and the tax rate did not change, how much would the taxes be now?

Answers

Answer:

$2000 a year.

Step-by-step explanation:

Let's find the answer by using the following formula:

taxes=(house assessment)*(tax rate) for the initial conditions we have:

(1600/year)=(64000)*(tax rate)

(1600/year)/(64000)=(tax rate)

tax rate=0.025/year

For the current conditions we have:

taxes=(house assessment)*(tax rate)

taxes=(80000)*(0.025/year)

taxes=2000/year

So, the taxes will be $2000 a year.

If ​$14,000 is invested at 4​% compounded quarterly​, what is the amount after 8 ​years?

The amount after 8 years will be ​

Answers

Answer:

The amount after 8 years is $19249.17

Step-by-step explanation:

For any calculation for investments there si the compound interest formula:

[tex]A=P(1+\frac{r}{n} )^(n*t)[/tex]

Where

P = principal amount (the initial amount you borrow or deposit)

r  = annual rate of interest (as a decimal)

t  = number of years the amount is deposited or borrowed for.

A = amount of money accumulated after n years, including interest.

n  =  number of times the interest is compounded per year  

So for this example

P, the original amount ($14000)

r, 4%

t, 8 years

A, the amount after 8 years

n, 4, due that is quarterly

[tex]P=$14000(1+((4/100)/(4)))^(4*8)\\\\P= $19249.17[/tex]

Other Questions
While driving in heavy traffic, Nathan narrowly misses hitting another car. After the event, his heart rate and blood pressure increase. According to Selye, Nathan is MOST likely in which phase of the general adaptation syndrome? (A) resistance (B) exhaustion(C) alarm reaction(D) primary appraisal Explain why the symptoms of celiac disease are consistent with the effects of celiac disease on the small intestine. A(n)_______ (rational /irrational) number answer is desired. Point W is located on QR so that QW/QR = 3/4. What are the coordinates of point W? Which of the following groups are most likely to grow as a percentage of the U.S. population Asian Americans Whites African Americans All of the above The acceleration of a baseball pitcher's hand as he delivers a pitch is extreme. For a professional player, this acceleration phase lasts only 50 ms, during which the ball's speed increases from 0 to about 90 mph, or 40 m/s.What is the force of the pitcher's hand on the 0.145 kg ball during this acceleration phase? Which shows one way to determine the factors of 4x3 + x2 8x 2 by grouping? Target ROI is 19% Invested Capital is $527956 Full Cost per unit $1446 Expected sales volume is 748 units. If the company prices each unit to earn the target ROI, what amount of profit would be added to the cost of each unit? Round your answer to the nearest whole dollar . Don't use dollar signs or commas when entering your answer. A general environmental analysis can be expected to produce all of the following EXCEPTa. objective answers.b. recognition of environmental trends.c. identification of organizational opportunities.d. identification of organizational threats. A photon has a momentum of 5.55 x 10-27 kg-m/s. (a) What is the photon's wavelength? nm (b) To what part of the electromagnetic spectrum does this wavelength correspond? the tolerance is +/-2% Two friends visited Washington D.C. for the weekend. Person 1 rode the subway one stop, 5 times at the peak fare price and four times at the off peak fare price for a total cost of $17.40. Person 2 rode with Person 1, 2 times at the peak fare price and three times at the off peak fair price for a total cost of $9.20. How much was the peak fare price? Which of the following is something you need to keep an eye out fornear packed intersections?A. Farm equipmentB. Animals crossingC. Increased police presenceD. Pedestrians ignoring DON'T WALK signs Find the coordinates when the parallel lines AB and PQ are reflected over the x-axis. The points are A(1, 1), B(1,4), andP(3, 1). Q(3, 4). What is the conjugated expression? A rectangle has a base length of 14 inches and an unknown height, h. The area of the rectangle is less than 56 square inches.Which inequality represents the possible values of h, the height of the rectangle?on-14> 5614-h 5614h I Need The Answer Plz Geometry Is Hard!!! 18 is what percent of 24? What is the vertex of the graph of f(x) = |x + 5| 6? (6, 5) (6, 5) (5, 6) (5, 6) A ball is dropped from a certain height. The function below represents the height f(n), in feet, to which the ball bounces at the nth bounce: f(n) = 9(0.7)n What does the number 9 in the function represent? what would N be in this problem 9=8n