Quadrilateral UVWX is reflected over the x-axis to form quadrilateral U′V′W′X′.

If vertex U is located at (-4, 5) and vertex V is located at (-6, 2), then vertex U′ is located at blank and vertex V′ is located at blank

Answers

Answer 1

Answer:

U' = (-4,-5)

V' = (-6,-2)

Step-by-step explanation:

Vertex U has coordinates

U = (-4,5)

Vertex V has coordinates

V = (-6,2)

When a quadrilateral is reflected across x- axis the sign of x coordinate remains same and sign of y coordinate changes.

So, U= (-4,5)

then U' is:

U' = (-4,-5)

V = (-6,2)

then V' is

V' = (-6,-2)

Answer 2

Answer:

(-4, -5) and V' is at (-6, -2)


Related Questions

plz help meh wit dis question but I need to show work..... ​

Answers

Answer:

5

Step-by-step explanation:

16+24

--------------

30-22

Complete the items on the top of the fraction bar

40

----------

30-22

Then the items under the fraction bar

40

------------

8

Then divide

5

Step-by-step explanation:

First of all, solve the numerator.

16+24=40

Secondly, solve the denominator:

30-22 = 8

So now the fraction appear like this :

[tex] \frac{40}{8} [/tex]

40/8 = 5

What is the sum of entries a32 and b32 in A and B? (matrices)

Answers

Answer:

The correct answer is option D.  13

Step-by-step explanation:

From the figure we can see two matrices A and B

To find the sum of a₃₂ and b₃₂

From the given attached figure we get

a₃₂ means that the third row second column element in the matrix A

b₃₂ means that the third row second column element in the matrix B

a₃₂ = 4 and b₃₂ = 9

a₃₂ + b₃₂ = 4 + 9

 = 13

The correct answer is option D.  13

[tex]A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}[/tex]

So

[tex]a_{32}=4\\b_{32}=9\\\\a_{32}+b_{32}=4+9=13[/tex]

Which of the following numbers are less than 9/4?

Choose all that apply:

A= 11/4
B= 15/8
C= 2.201

Answers

Answer:

OPTION B.

OPTION C.

Step-by-step explanation:

In order to know which numbers are less than [tex]\frac{9}{4}[/tex], you can convert this fraction into a decimal number. To do this, you need to divide the numerator 9 by the denominator 4. Then:

 [tex]\frac{9}{4}=2.25[/tex]

 Now you need convert the fractions provided in the Options A and B into decimal numbers by applying the same procedure. This are:

Option A→ [tex]\frac{11}{4}=2.75[/tex] (It is not less than 2.25)

Option B→ [tex]\frac{15}{8}=1.875[/tex] (It is less than 2.25)

The number shown in Option C is already expressed in decimal form:

Option C→ [tex]2.201[/tex] (It is less than 2.25)

Its definitely c because i know

Please help and explain

Answers

Answer: Option A

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Step-by-step explanation:

Use the quadratic formula to find the zeros of the function.

For a function of the form

[tex]ax ^ 2 + bx + c = 0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case the function is:

[tex]2x^2-6x+5=0[/tex]

So

[tex]a=2\\b=-6\\c=5[/tex]

Then using the quadratic formula we have that:

[tex]x=\frac{-(-6)\±\sqrt{(-6)^2-4(2)(5)}}{2(2)}[/tex]

[tex]x=\frac{6\±\sqrt{36-40}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{-4}}{4}[/tex]

Remember that [tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{6\±\sqrt{4}*\sqrt{-1}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{4}i}{4}[/tex]

[tex]x=\frac{6\±2i}{4}[/tex]

[tex]x=\frac{3\±i}{2}[/tex]

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

What is the volume of a sphere that has a radius of 9?​

Answers

Answer:

V = 3053.63

Step-by-step explanation:

The volume of a sphere that has a radius of 9 is 3053.63.

V=4

3πr3=4

3·π·93≈3053.62806

Answer is provided in the image attached.

Whats the quotient for this? ​

Answers

Answer:

Step-by-step explanation:

Divide 4378 by 15

From 4378 lets take the first two digits for division:

43/ 15

We know that 43 does not come in table of 15

So we will take 15 *2 = 30

43-30 = 13

The quotient is 3 and the remainder is 13

Now take one more number which is 7 with 13

137/15.

Now 137 does not come in table of 15

15*9 = 135

135-137 = 2

It means quotient is 9 and remainder is 2

Now take one more number which is 8 with 2

28/15

28 does not come in table of 15

15*1 = 15

28-15 = 13/15

Now the quotient is 1 and remainder is 13

Hence, the quotient of 4,378 is 291 and remainder is 13 ....

If 47400 dollars is invested at an interest rate of 7 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent.

(a) Annual: $______
(b) Semiannual: $ _____
(c) Monthly: $______
(d) Daily: $_______

Answers

Answer:

Part A) Annual [tex]\$66,480.95[/tex]  

Part B) Semiannual [tex]\$66,862.38[/tex]  

Part C) Monthly [tex]\$67,195.44[/tex]  

Part D) Daily [tex]\$67,261.54[/tex]  

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

Part A)

Annual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=1[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{1})^{1*5}[/tex]  

[tex]A=47,400(1.07)^{5}[/tex]  

[tex]A=\$66,480.95[/tex]  

Part B)

Semiannual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=2[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{2})^{2*5}[/tex]  

[tex]A=47,400(1.035)^{10}[/tex]  

[tex]A=\$66,862.38[/tex]  

Part C)

Monthly

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=12[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{12})^{12*5}[/tex]  

[tex]A=47,400(1.0058)^{60}[/tex]  

[tex]A=\$67,195.44[/tex]  

Part D)

Daily

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=365[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{365})^{365*5}[/tex]  

[tex]A=47,400(1.0002)^{1,825}[/tex]  

[tex]A=\$67,261.54[/tex]  

The value of an investment of $47,400 at an interest rate of 7% per year was calculated at the end of 5 years for different compounding methods, reaching slightly different amounts, with the highest value obtained through daily compounding.

The value of the investment at the end of 5 years for different compounding methods would be:

(a) Annual: $62,899.68(b) Semiannual: $63,286.83(c) Monthly: $63,590.92(d) Daily: $63,609.29

Write the slope-intercept form of the equation that passes through the point (0,-3) and is perpendicular to the line y = 2x - 6

Answers

For this case we have that by definition, the equation of a line of the slope-intersection form is given by:

[tex]y = mx + b[/tex]

Where:

m: It's the slope

b: It is the cutoff point with the y axis

By definition, if two lines are perpendicular then the product of their slopes is -1.

We have the following line:

[tex]y = 2x-6[/tex]

Then[tex]m_ {1} = 2[/tex]

The slope of a perpendicular line will be:

[tex]m_ {1} * m_ {2} = - 1\\m_ {2} = \frac {-1} {m_ {1}}\\m_ {2} = - \frac {1} {2}[/tex]

Thus, the equation of the line will be:

[tex]y = - \frac {1} {2} x + b[/tex]

We substitute the given point and find "b":

[tex]-3 = - \frac {1} {2} (0) + b\\-3 = b[/tex]

Finally the equation is:

[tex]y = - \frac {1} {2} x-3[/tex]

Answer:

[tex]y = - \frac {1} {2} x-3[/tex]

Answer:

[tex]y=-\frac{1}{2}x -3[/tex]

Step-by-step explanation:

The slope-intercept form of the equation of a line has the following form:

[tex]y=mx + b[/tex]

Where m is the slope of the line and b is the intercept with the y axis

In this case we look for the equation of a line that is perpendicular to the line

[tex]y = 2x - 6[/tex].

By definition If we have the equation of a line of slope m then the slope of a perpendicular line will have a slope of [tex]-\frac{1}{m}[/tex]

In this case the slope of the line [tex]y = 2x - 6[/tex] is [tex]m=2[/tex]:

Then the slope of the line sought is: [tex]m=-\frac{1}{2}[/tex]

The intercept with the y axis is:

If we know a point [tex](x_1, y_1)[/tex] belonging to the searched line, then the constant b is:

[tex]b=y_1-mx_1[/tex] in this case the poin is: (0,-3)

Then:

[tex]b= -3 -(\frac{1}{2})(0)\\\\b=-3[/tex]

finally the equation of the line is:

[tex]y=-\frac{1}{2}x-3[/tex]

Rachel has been watching the number of alligators that live in her neighborhood. The number of alligators changes each week.
n f(n)
1 48
2 24
3 12
4 6
Which function best shows the relationship between n and f(n)?
f(n) = 48(0.5)^n − 1
f(n) = 48(0.5)^n
f(n) = 24(0.5)^n
f(n) = 96(0.5)^n − 1

Answers

Answer:

f(x) = 48(0.5)^n - 1 ⇒ 1st answer

Step-by-step explanation:

* Lets explain how to solve the problem

- The number of alligators changes each week

∵ The number in week 1 is 28

∵ The number in week 2 is 24

∵ The number in week 3 is 12

∵ The number in week 4 is 6

∴ The number of alligators is halved each week

∴ The number of alligators each week = half the number of alligators

   of the previous week

- The number of alligators formed a geometric series in which the

  first term is 48 and the constant ratio is 1/2

∵ Any term in the geometric series is Un = a r^(n - 1), where a is the

  first term and r is the constant ratio

∴ f(n) = a r^(n - 1)

∵ a = 48 ⇒ The number of alligators in the first week

∵ r = 1/2 = 0.5

∴ f(x) = 48(0.5)^n - 1

the answer is f(x) = 48(0.5)^n - 1

A parallelogram has coordinates A(1,1), B(5,4), C(7,1), and D(3,-2) what are the coordinates of parallelogram A’BCD after 180 degree rotation about the origin and a translation 5 units to the right and 1 unit down ?

Answers

Answer:

The coordinates are  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

Step-by-step explanation:

* Lets revise some transformation

- If point (x , y) rotated about the origin by angle 180°

 ∴ Its image is (-x , -y)

- If the point (x , y) translated horizontally to the right by h units

 ∴ Its image is (x + h , y)

- If the point (x , y) translated horizontally to the left by h units

 ∴ Its image is (x - h , y)

- If the point (x , y) translated vertically up by k units

 ∴ Its image is (x , y + k)

- If the point (x , y) translated vertically down by k units

 ∴ Its image is (x , y - k)

* Now lets solve the problem

∵ ABCD is a parallelogram

∵ Its vertices are A (1 , 1) , B (5 , 4) , C (7 , 1) , D (3 , -2)

∵ The parallelogram rotates about the origin by 180°

∵ The image of the point (x , y) after rotation 180° about the origin

   is (-x , -y)

∴ The images of the vertices of the parallelograms are

  (-1 , -1) , (-5 , -4) , (-7 , -1) , (-3 , 2)

∵ The parallelogram translate after the rotation 5 units to the right

   and 1 unit down

∴ We will add each x-coordinates by 5 and subtract each

   y-coordinates by 1

∴ A' = (-1 + 5 , -1 - 1) = (4 , -2)

∴ B' = (-5 + 5 , -4 - 1) = (0 , -5)

∴ C' = (-7 + 5 , -1 - 1) = (-2 , -2)

∴ D' = (-3 + 5 , 2 - 1) = (2 , 1)

* The coordinates of the parallelograms A'B'C'D' are:

  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

The perimeter of a bedroom is 88 feet. The ratio of the width to the length is 5:6. What are the dimensions of the bedroom?

Answers

Answer:

20 feet wide, 24 feet long

Step-by-step explanation:

Let x - width, y - length.

The perimeter is given by the formula:

P = 2*(width + length) or using x, y

P = 2*(x + y) = 88

x + y = 44

And we know that the ratio between the sides is 5/6:

x/y = 5/6. x is on top because the length is bigger than the width

x = 5y/6

Plug this in the first expression:

y + 5y/6 = 44. Muliply by 6

6y + 5y = 264

11y = 264

y = 264/11 = 24.

So x = 5(24)/6  = 20

children play a form of hopscotch called jumby. the pattern for the game is as given below.

Find the area of the pattern in simplest form.​

Answers

Answer:

7t^2 + 21t

Step-by-step explanation:

You have 7 tiles of each t by t+3.

One tile has an area of

t * (t+3) = t^2 + 3t

So in total the area is

7* (t^2 + 3t)

7t^2 + 21t

Match the identities to their values taking these conditions into consideration sinx=sqrt2 /2 cosy=-1/2 angle x is in the first quadrant and angle y is in the second quadrant. Information provided in the picture. PLEASE HELP

Answers

Answer:

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \cos(x+y)\quad }\longleftrightarrow \boxed{\quad \dfrac{-(\sqrt{6}+\sqrt{2})}{4}\quad }[/tex]

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \sin(x+y)\quad }\longleftrightarrow \boxed{\quad\dfrac{\sqrt{6}-\sqrt{2}}{4}\quad }[/tex]

[tex]\boxed{\quad \tan(x+y)\quad }\longleftrightarrow \boxed{\quad\sqrt{3} -2\quad }[/tex]

[tex]\boxed{\vphantom{\sqrt{3}}\quad \tan(x-y)\quad }\longleftrightarrow \boxed{\quad-(2+\sqrt{3})\quad }[/tex]

Step-by-step explanation:

To find the values of the given trigonometric identities, we first need to find the values of cos x and sin y using the Pythagorean identity, sin²x + cos²x ≡ 1.

Given values:

[tex]\sin x = \dfrac{\sqrt{2}}{2}\qquad \textsf{Angle $x$ is in Quadrant I}\\\\\\\cos y=-\dfrac{1}{2}\qquad \textsf{Angle $y$ is in Quadrant II}[/tex]

Find cos(x):

[tex]\sin^2 x+\cos^2 x=1\\\\\\\left(\dfrac{\sqrt{2}}{2}\right)^2+\cos^2 x=1\\\\\\\dfrac{1}{2}+\cos^2 x=1\\\\\\\cos^2 x=1-\dfrac{1}{2}\\\\\\\cos^2 x=\dfrac{1}{2}\\\\\\\cos x=\pm \sqrt{\dfrac{1}{2}}\\\\\\\cos x=\pm \dfrac{\sqrt{2}}{2}[/tex]

As the cosine of an angle is positive in quadrant I, we take the positive square root:

[tex]\cos x=\dfrac{\sqrt{2}}{2}[/tex]

Find sin(y):

[tex]\sin^2 y + \cos^2 y = 1 \\\\\\ \sin^2 y + \left(-\dfrac{1}{2}\right)^2 = 1 \\\\\\ \sin^2 y + \dfrac{1}{4} = 1 \\\\\\ \sin^2 y = 1-\dfrac{1}{4} \\\\\\ \sin^2 y = \dfrac{3}{4} \\\\\\ \sin y =\pm \sqrt{ \dfrac{3}{4}} \\\\\\ \sin y = \pm \dfrac{\sqrt{3}}{2}[/tex]

As the sine of an angle is positive in quadrant II, we take the positive square root:

[tex]\sin y = \dfrac{\sqrt{3}}{2}[/tex]

The tangent of an angle is the ratio of the sine and cosine of that angle. Therefore:

[tex]\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1[/tex]

[tex]\tan y=\dfrac{\sin y}{\cos y}=\dfrac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3}[/tex]

Now, we can use find the sum or difference of two angles by substituting the values of sin(x), cos(x), sin(y), cos(y), tan(x) and tan(y) into the corresponding formulas.

[tex]\dotfill[/tex]

cos(x + y)

[tex]\cos(x+y)=\cos x \cos y - \sin x \sin y \\\\\\ \cos(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) - \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\ \cos(x+y)=-\dfrac{\sqrt{2}}{4} - \dfrac{\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-\sqrt{2}-\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{2}+\sqrt{6})}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{6}+\sqrt{2})}{4}[/tex]

[tex]\dotfill[/tex]

sin(x + y)

[tex]\sin(x+y)=\sin x \cos y + \cos x \sin y \\\\\\\sin(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) + \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\\sin(x+y)=-\dfrac{\sqrt{2}}{4} + \dfrac{\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{-\sqrt{2}+\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{\sqrt{6}-\sqrt{2}}{4}[/tex]

[tex]\dotfill[/tex]

tan(x + y)

[tex]\tan(x+y)=\dfrac{\tan x + \tan y}{1-\tan x \tan y} \\\\\\ \tan(x+y)=\dfrac{1 + (-\sqrt{3})}{1-(1) (-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1 -\sqrt{3}}{1+\sqrt{3}} \\\\\\ \tan(x+y)=\dfrac{(1 -\sqrt{3})(1 -\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1-2\sqrt{3}+3}{1-\sqrt{3}+\sqrt{3}-3} \\\\\\ \tan(x+y)=\dfrac{4-2\sqrt{3}}{-2} \\\\\\ \tan(x+y)=-2+\sqsrt{3} \\\\\\ \tan(x+y)=\sqrt{3} -2[/tex]

[tex]\dotfill[/tex]

tan(x - y)

[tex]\tan(x-y)=\dfrac{\tan x - \tan y}{1+\tan x \tan y} \\\\\\\tan(x-y)=\dfrac{1 - (-\sqrt{3})}{1+(1) (-\sqrt{3})} \\\\\\\tan(x-y)=\dfrac{1 +\sqrt{3}}{1-\sqrt{3}} \\\\\\\tan(x-y)=\dfrac{(1 +\sqrt{3})(1 +\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \\\\\\ \tan(x-y)=\dfrac{1+2\sqrt{3}+3}{1+\sqrt{3}-\sqrt{3}-3} \\\\\\ \tan(x-y)=\dfrac{4+2\sqrt{3}}{-2} \\\\\\ \tan(x-y)=-2-\sqrt{3}\\\\\\\tan(x-y)=-(2+\sqrt{3})[/tex]

what is the area of the sector shown

Answers

Answer:

[tex] D.~ 34.2~cm^2 [/tex]

Step-by-step explanation:

An arc measure of 20 degrees corresponds to a central angle of 20 degrees.

Area of sector of circle

[tex] area = \dfrac{n}{360^\circ}\pi r^2 [/tex]

where n = central angle of circle, and r = radius

[tex] area = \dfrac{20^\circ}{360^\circ}\pi (14~cm)^2 [/tex]

[tex] area = \dfrac{1}{18}(3.14159)(196~cm^2) [/tex]

[tex] area = 34.2~cm^2 [/tex]

How is the interquartile range calculated?
Minimum
Q1
Q1
Median
Median
Q3
Q3
Maximum
Maximum

Answers

Answer:

A

Step-by-step explanation:

The interquartile range is the difference between the upper quartile and the lower quartile, that is

interquartile range = [tex]Q_{3}[/tex] - [tex]Q_{1}[/tex]

Final answer:

The interquartile range (IQR) represents the spread of the middle 50 percent of a data set and is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). It also helps in identifying potential outliers in the data.

Explanation:

The interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the middle 50 percent of a data set. It is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). To elaborate:


 First Quartile (Q1): This is the median of the lower half of the data set, not including the median if the number of data points is odd.
 Third Quartile (Q3): This is the median of the upper half of the data set, not including the median if the number of data points is odd.
 The IQR is found by the formula IQR = Q3 - Q1.

If, for example, Q1 is 2 and Q3 is 9, the IQR is calculated as 9 minus 2, resulting in an IQR of 7.

In addition to providing insight into the spread of the central portion of the data set, the IQR can also be used to identify potential outliers. These are values that fall more than 1.5 times the IQR above Q3 or below Q1.

Helllllllppppp plzzzzzzzzz

Answers

Answer:

Hey, You have chosen the correct answer.

the correct answer is C.

The answer is C you got it right

Consider the function represented by 9x+3y= 12 with x as the independent variable. How can this function be written using
function notation?
o AV=-=x+
o 0) = -3x+4
o Px) =-x+
o F) = - 3y+ 4​

Answers

Answer:

f(x)=-3x+4

(can't see some of your choices)

Step-by-step explanation:

We want x to be independent means we want to write it so when we plug in numbers we can just choose what we want to plug in for x but y's value will depend on our choosing of x.

So we need to solve for y.

9x+3y=12

Subtract 9x on both sides

     3y=-9x+12

Divide both sides by 3:

     y=-3x+4

Replace y with f(x).

    f(x)=-3x+4

The diagram represents three statements: p, q, and r. For what value is both p ∧ r true and q false?

2
4
5
9

Answers

Answer:

9

Step-by-step explanation:

From the diagram:

only p true in 8 cases;only q true in 7 cases;only r true in 6 cases;both p and q true, r false in 5 cases;both p and r true, q false in 9 cases;both q and r true, p false in 4 cases;all three p, q and r true in 2 cases.

So, correct option is 9 cases.

Answer:

The correct option is 4. For value 9 both p ∧ r true and q false.

Step-by-step explanation:

The diagram represents three statements: p, q, and r.

We need to find the value for which p ∧ r is true and q false.

p ∧ r true mean the intersection of statement p and r. It other words p ∧ r true means p is true and r is also true.

From the given venn diagram it is clear that the intersection of p and r is

[tex]p\cap r=9+2=11[/tex]

p ∧ r true and q false means intersection of p and r but q is not included.

From the given figure it is clear that for value 2 all three statements are true. So, the value for which both p ∧ r true and q false is

[tex]11-2=9[/tex]

Therefore the correct option is 4.

Evaluate the function rule for the given value. y = 15 • 3^x for x = –3

Answers

Answer:

5/9

Step-by-step explanation:

y = 15 • 3^x

Let x = -3

y = 15 • 3^(-3)

The negative means the exponent goes to the denominator

y = 15 * 1/3^3

  = 15 * 1/27

  =15/27

Divide the top and bottom by 3

 =5/9

A high school track is shaped as a rectangle with a half circle on either side . Jake plans on running four laps . How many meters will jake run ?

Answers

Answer:

[tex]1,207.6\ m[/tex]

Step-by-step explanation:

step 1

Find the perimeter of one lap

we know that

The perimeter of one lap is equal to the circumference of a complete circle (two half circles is equal to one circle) plus two times the length of 96 meters

so

[tex]P=\pi D+2(96)[/tex]

we have

[tex]D=35\ m[/tex]

[tex]\pi =3.14[/tex]

substitute

[tex]P=(3.14)(35)+2(96)[/tex]

[tex]P=301.9\ m[/tex]

step 2

Find the total meters of four laps

Multiply the perimeter of one lap by four

[tex]P=301.9(4)=1,207.6\ m[/tex]

Answer:

1207.6

Step-by-step explanation:

step 1

i got it right on the test

step 2

you get it right on the test

What is the midpoint of a line segment with the endpoints (-6, -3) and (9,-7)?

Answers

Answer: (1.5, -5)

Step-by-step explanation: a p e x

Solve the equations to find the number and type of solutions
The equation 8 - 4x = 0 has
real solution(s).
DONE

Answers

Answer:

This has one real solution, x=4

Step-by-step explanation:

8 - 4x = 0

Add 4x to each side

8 - 4x+4x = 0+4x

8 =4x

Divide each side by 4

8/4 = 4x/4

2 =x

This has one real solution, x=4

Answer:

This equation has 1 real solution, x=2....

Step-by-step explanation:

8- 4x=0

Move 8 to the R.H.S

-4x=0-8

-4x=-8

Divide both sides by -4

-4x/-4 = -8/-4

x=2

Thus this equation has 1 real solution, x=2 ....

how does one do this? may someone teach me how to calculate and solve this problem please, thanks.​

Answers

Answer:

x=1

Step-by-step explanation:

So we are talking about parabola functions.

All parabolas (even if they aren't functions) have their axis of symmetry going through their vertex.

For parabola functions, your axis of symmetry is x=a number.

The "a number" part will be the x-coordinate of the vertex.

The axis of symmetry is x=1.

Answer:

x=1

Step-by-step explanation:

The vertex of a parabola is the minimum or maximum of the parabola.

This is the line  where the parabola makes a mirror image.

Assuming the equation for the parabola is ( since this is a function)

y= a(x-h)^2 +k

where (h,k) is the vertex

Then x=h is the axis of symmetry

y = a(x-1)^2+5

when we substitute the vertex into the equation

The axis of symmetry is x=1

Isabel is on a ride in an amusement park that Slidez the right or to the right and then it will rotate counterclockwise about its own center 60° every two seconds how many seconds pass before Isabel returns to her starting position

Answers

Final answer:

Isabel's ride rotates 60° every two seconds. It takes 6 intervals (360° divided by 60°) to make a full rotation. Multiplying 6 intervals by 2 seconds gives us 12 seconds for Isabel to return to the starting position.

Explanation:

To determine how many seconds will pass before Isabel returns to her starting position on the ride, we need to establish the total degrees of rotation that equate to a full circle, which is 360°. Since the ride rotates 60° every two seconds, we can calculate the number of two-second intervals required to complete a full 360° rotation.

Firstly, divide 360° by 60° to find the number of intervals:

360° / 60° = 6 intervals

Since each interval takes 2 seconds, multiply the number of intervals by 2 to find the total time:

6 intervals × 2 seconds/interval = 12 seconds.

Therefore, it will take Isabel 12 seconds to return to her starting position on the amusement park ride.

The equations 3x-4y=-2, 4x-y=4, 3x+4y=2, and 4x+y=-4 are shown on a graph.

Which is the approximate solution for the system of equations 3x+4y=2 and 4x+y=-4?
A. (–1.4, 1.5)
B. (1.4, 1.5)
C. (0.9, –0.2)
D. (–0.9, –0.2)

i cant download the graph picture but please help.

Answers

Answer:

A (-1,4,1.5)

Step-by-step explanation:

Solve by graphing, the lines intersect near this point.

Use the Quadratic Formula to solve the equation x2 - 4x = -7

Answers

Final answer:

The given quadratic equation x² - 4x = -7 is rearranged into standard form and then solved using the quadratic formula -b ± √(b² - 4ac) / (2a). The roots of the equation are realized from solving this formula.

Explanation:

The subject of this problem is a quadratic equation in the form of ax²+bx+c = 0. The given equation is x² - 4x = -7, which can be rearranged into standard form as x² - 4x + 7 = 0. Thus, in this case, a=1, b=-4, and c=7.

The solutions or roots for this quadratic equation can be calculated using the quadratic formula, which is -b ± √(b² - 4ac) / (2a). Substituting the values of a, b, and c into the formula will give the roots of the given equation.

Doing that, we get: x = [4 ± √((-4)² - 4*1*7)] / (2*1)

The values that solve the equation are the roots of the quadratic equation.

Learn more about Quadratic Equation here:

https://brainly.com/question/30098550

#SPJ12

Final answer:

To solve the equation x^2 - 4x = -7 using the Quadratic Formula, we follow the steps of plugging the values of a, b, and c into the formula, evaluating the square root and simplifying to find the solutions.

Explanation:

To solve the equation x2 - 4x = -7 using the Quadratic Formula, we first need to make sure the equation is in standard form, which is ax2 + bx + c = 0. In this case, a = 1, b = -4, and c = 7. Plugging these values into the Quadratic Formula, we get:

x = (-(-4) ± √((-4)2 - 4(1)(-7))) / (2(1))

x = (4 ± √(16 + 28))/2

x = (4 ± √44)/2

x = (4 ± 2√11)/2

x = 2 ± √11

So the solutions to the equation x2 - 4x = -7 are x = 2 + √11 and x = 2 - √11.

Learn more about Quadratic Equations here:

https://brainly.com/question/30098550

#SPJ12

What is the equation of the graph below​

Answers

Answer:

y=-(x-3)^2+2

Step-by-step explanation:

since the curve is convex up so the coefficient of x^2 is negative

and by substituting by the point 3 so y = 2

Answer:

B

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

here (h, k) = (3, 2), hence

y = a(x - 3)² + 2

If a > 0 then vertex is a minimum

If a < 0 then vertex os a maximum

From the graph the vertex is a maximum hence a < 0

let a = - 1, then

y = - (x - 3)² + 2 → B

1. Factor each of the following completely. Look carefully at the structure of each quadratic function and consider the best way to factor. Is there a GCF? Is it an example of a special case? SHOW YOUR WORK

Answers

Answer: 1) (x - 7)(x - 8)

               2) 2x(2x-7)(x + 2)

               3) (4x + 7)²

               4) (9ab² - c³)(9ab² + c³)

Step-by-step explanation:

1) x² - 15x + 56  → use standard form for factoring

                    ∧

                -7 + -8 = -15

  (x - 7) (x - 8)

************************************

2) 4x³ - 6x² - 28x      → factor out the GCF (2x)

2x(2x² - 3x - 14)         → factor using grouping

2x[2x² + 4x    - 7x - 14]    

2x[ 2x(x + 2)   -7(x + 2)]

2x(2x - 7)(x + 2)

*************************************

3) 16x² + 56x + 49     → this is the sum of squares

√(16x²) = 4x      √(49) = 7

              (4x + 7)²

******************************************************

4) 81a²b⁴ - c⁶          → this is the difference of squares

√(81a²b⁴) = 9ab²       √(c⁶) = c³

       (9ab² - c³)(9ab² + c³)

   

write a point slope equation for the line that has slope 3 and passes through the point (5,21). do not use parenthesis on the y side

Answers

Answer:

y - 21 = 3(x - 5)

Step-by-step explanation:

The equation of a line in point- slope form is

y - b = m(x - a)

where m is the slope and (a, b) a point on the line

here m = 3 and (a, b) = (5, 21), hence

y - 21 = 3(x - 5) ← in point- slope form

Final answer:

The point slope form of an equation is y - y1 = m(x - x1). Substituting the given point (5,21) and slope 3 into the equation, we get y - 21 = 3(x - 5). To remove the parenthesis on the y side, we simplify the equation to be y = 3x + 6.

Explanation:

The question asks for the writing of a point-slope equation of a line with a given slope of 3 that passes through a point (5,21). The point-slope form of an equation is generally denoted as:

y - y1 = m(x - x1)

Here, (x1, y1) = (5,21) and m (slope) = 3. Hence, substituting these values yields the equation:

y - 21 = 3(x - 5)

The asked equation without parenthesis on the y side would be:

y = 3x - 15 + 21

So, the final equation is:

y = 3x + 6

Learn more about Point-Slope Equation

https://brainly.com/question/35491058

#SPJ11

Which linear function represents the line given by the point-slope equation y +7=-2/3(x + 6)

Answers

Answer:

y = -(2/3)*x - 11

Step-by-step explanation:

To convert a point-slop equation into a linear function, there are certain steps which have to be followed. The primary aim is to make y the subject of the equation. By making sure that y is on the left hand side of the equation and x is on the right hand side of the equation, our goal will be achieved. To do that, first of all do the cross multiplication. This will result in:

3(y+7) = -2(x+6).

Further simplification results in:

3y + 21 = -2x - 12.

Keeping the expression of y on the left hand side and moving the constant on the right hand side gives:

3y = -2x - 33.

Leaving y alone on the left hand side gives:

y = -(2/3)*x - 33/3.

Therefore, y = -(2/3)*x - 11!!!

Other Questions
A substance that is easily magnetized is a You brought 9 feet of elastic to make hair ties each hair ties need 3 3/8 inches of elastic how many hair ties can you make 40-50 What is the simplest form of the expression (12.7y 3.1x) + 5.9y (4.2y + x)? A soccer ball with mass 0.420 kg is initially moving with speed 2.00 m/s. A soccer player kicks the ball, exerting a constant force of magnitude 40.0 N in the same direction as the balls motion. Over what distance must the players foot be in contact with the ball to increase the balls speed to 6.00 m/s? Consider the two reactions. 2NH3(g)+3N2O(g)4NH3(g)+3O2(g)4N2(g)+3H2O(l)2N2(g)+6H2O(l) ????=1010 kJ????=1531 kJ Using these two reactions, calculate and enter the enthalpy change for the reaction below. N2(g)+12O2(g)N2O(g) On a triangle, the vector from one vertex to another vertex is -12,5. What is the length of the side? Solve by completing the square. x2+6x6=0 If N || P and P bisects M then _____ (13) (WILL MARK BRAINIEST PLEASE ASSIST) Define the inverse secant function by restricting the domain of the secant function to the intervals: 0,2 and 2, and sketch the inverse functions graph. Washing his dad's car alone, eight-year-old Levi takes 2.5 hours. If his dad helps him, then it takes 1 hour. How long does it take Levi's dad to wash the car by himself What is the x-intercept of the line shown below? Enter youranswer as a coordinate pair. If a ball is drawn from a bag containing 13 red balls numbered 1-13 and 5 white balls numbered 14-18. What is the probability that a. the ball is not even numbered? b. the ball red and even numbered? c. the ball red or even numbered? d. the ball is neither red or even numbered? Which of the following is true about Indias weather patterns? a.monsoon rains are heaviest during summer b.monsoon rains are heaviest during winter c.monsoon rains are stronger during an El Nino d.India has an even distribution of precipitation year-round Which one is my real GPA? Exercise 10-7 Direct Materials Variances [LO10-1] Huron Company produces a commercial cleaning compound known as Zoom. The direct materials and direct labor standards for one unit of Zoom are given below: Standard Quantity or Hours Standard Price or Rate Standard Cost Direct materials 5.70 pounds $ 2.50 per pound $ 14.25 Direct labor 0.50 hours $ 7.50 per hour $ 3.75 During the most recent month, the following activity was recorded: Eleven thousand pounds of material were purchased at a cost of $2.40 per pound. The company produced only 1,100 units, using 9,900 pounds of material. (The rest of the material purchased remained in raw materials inventory.) 650 hours of direct labor time were recorded at a total labor cost of $7,800. Required: Compute the materials price and quantity variances for the month. (Indicate the effect of each variance by selecting "F" for favorable, "U" for unfavorable, and "None" for no effect (i.e., zero variance). Input all amounts as positive values. Do not round intermediate calculations.) Three people are gathered around a campfire. One has his hands cupped around a ceramic mug of hot chocolate to warm them. Another is toasting a marshmallow above the fire. The third is roasting a hot dog above the glowing coals. Identify the primary source of heat transfer each person isenjoying A given binomial experiment has n=100 trials and p=1/3. Is it more likely to get x=20 successes or x=45 successes. Why? help!!!!!!!!!!! If one factor of x2 + 2x 24 is (x+6), what is the other factor?(x+8)(x8)(x+4)(x4) A multicellular eukaryotic organism that lacks cell walls and is a heterotroph belongs in kingdom...A. PlantaeB. ArchaebacteriaC. Fungi D. BacteriaE. AnimaliaF. Protista