Questions (no partial grades if you don't show your work) 1. In a group of 6 boys and 4 girls, four children are to be selected. In how many diffeest weys ces they be selected if at least one boy must be there

Answers

Answer 1

Answer:

Total number of ways will be 209

Step-by-step explanation:

There are 6 boys and 4 girls in a group and 4 children are to be selected.

We have to find the number of ways that 4 children can be selected if at least one boy must be in the group of 4.

So the groups can be arranged as

(1 Boy + 3 girls), (2 Boy + 2 girls), (3 Boys + 1 girl), (4 boys)

Now we will find the combinations in which these arrangements can be done.

1 Boy and 3 girls = [tex]^{6}C_{1}\times^{4}C_{3}=6\times4[/tex]=24

2 Boy and 2 girls=[tex]^{6}C_{2}\times^{4}C_{2}=\frac{6!}{4!\times2!}\times\frac{4!}{2!\times2!}=15\times6=90[/tex]

3 Boys and 1 girl = [tex]^{6}C_{3}\times^{4}C_{1}=\frac{6!}{4!\times2!}\times\frac{4!}{3!}=\frac{6\times5\times4}{3 \times2} \times4=80[/tex]

4 Boys = [tex]^{6}C_{4}=\frac{6!}{4!\times2!} =\frac{6\times 5}{2\times1}=15[/tex]

Now total number of ways = 24 + 90 + 80 + 15 = 209


Related Questions

If the trapezoid below is reflected across the x-axis, what are the coordinates of B”?

Answers

Answer:

B'(3, -8)

Step-by-step explanation:

The image is the mirror image of the trapezoid below the x-axis.

Each x-coordinate remains the same. Each y-coordinate becomes the opposite.

B'(3, -8)

Answer:

(3 , -8)

Step-by-step explanation:

The current coordinates of B. are (3,8). The x-axis is the horizontal line that runs across. This means that if the trapezoid were to be reflected, it would end up upside down. When this happens, only the y value changes its sign.

In short, your Y value would become negative, making 8 change to -8

The function f(x)= x(squared) is similar to: g(x)= -3(x-5)(squared)+4. Describe the transformations. Show Graphs

Answers

Answer:

Parent function f(x) is inverted, stretched vertically by 1 : 3, shifted 5 units right and 4 units upwards to form new function g(x).

Step-by-step explanation:

The parent function graphed is f(x) = x²

This graph when inverted (parabola opening down)function becomes

g(x) = -x²

Further stretched vertically by a scale factor of 1:3 then new function becomes as g(x) = -3x²

Then we shift this function by 5 units to the right function will be

g(x) = -3(x - 5)²

At last we shift it 4 units vertically up then function becomes as

g(x) = -3(x - 5)² + 4

Professor Jones has to select 6 students out of his English class randomly to participate in a regional contest. There are 36 students in the class. Is this a PERMUTATION or a COMBINATION problem? How many ways can Prof. Jones choose his students?

Answers

Answer: This is a combination.

There are 1947792 ways to choose his students.

Step-by-step explanation:

Since we have given that

Number of students in a class = 36

Number of students selected for his English class = 6

We would use "Combination" .

As permutation is used when there is an arrangement.

whereas Combination is used when we have select r from group of n.

So, Number of ways that Prof. Jones can choose his students is given by

[tex]^{36}C_6=1947792[/tex]

Hence, there are 1947792 ways to choose his students.

1.(a) Find the matrix that represent the linear transformation f: p1\rightarrowp1 with respect to the bais {1,x};

f(a+bx)=(8a+2b)+(5a-b)x

(b) Does there exist a basis of P1 with respect to which f has a diagonal matrix that represents it? If so, what is the basis.

Answers

Answer:

[tex]a) \quad A=\left[\begin{array}{cc}8&5\\5&-1\end{array}\right] \\\\\\b) \quad \{-1+5x, 2+x\}[/tex]

Step-by-step explanation:

To compute the representation matrix A of f with respect the basis {1,x} we first compute

[tex]f(1)=f(1+0x)=(8\cdot 1 + 2 \cdot 0) + (5 \cdot 1 - 0)x=8+5x \\\\f(x)=f(0 + 1\cdot x)=(8 \cdot 0 + 2\cdot 1)+(5 \cdor 0 - 1)x = 2-1[/tex]

The coefficients of the polynomial f(1) gives us the entries of the first column of the matrix A, where the first entry is the coefficient that accompanies the basis element 1 and the second entry is the coefficient that accompanies the basis element x. In a similar way, the coefficients of the polynomial f(x) gives us the the entries of the second column of A. It holds that,

[tex]A=\left[\begin{array}{ccc}8&5\\2&-1\end{array}\right][/tex]

(b) First, note that we are using a one to one correspondence between the basis {1,x} and the basis {(1,0),(0,1)} of [tex]\mathbb{R}^2[/tex].

To compute a basis P1 with respect to which f has a diagonal matrix, we first have to compute the eigenvalues of A. The eigenvalues are the roots of the characteristic polynomial of A, we compute

[tex]0=\det\left[\begin{array}{ccc}8-\lambda & 2\\ 5 & -1-\lambda \end{array}\right]=(8 - \lambda)(-1-\lambda)-18=(\lambda - 9)(\lambda +2)[/tex]

and so the eigenvalues of the matrix A are [tex]\lambda_1=-2 \quad \text{and} \quad \lambda_2=9[/tex].

After we computed the eigenvalues we use the systems of equations

[tex]\left[\begin{array}{cc}8&2\\5&-1\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right] = \left[\begin{array}{c}-2x_1\\-2x_2\end{array}\right] \\\\\text{and} \\\\\left[\begin{array}{cc}8&2\\5&-1\end{array}\right]\left[\begin{array}{c}x_1 \\ x_2\end{array}\right]=\left[\begin{array}{cc}9x_1\\2x_1\end{array}\right][/tex]  

to find the basis of the eigenvalues. We find that [tex]v_1=(-1,5 )[/tex] is an eigenvector for the eigenvalue -2 and that [tex]v_2=(2,1)[/tex] is an eigenvector for the eigenvalue 9. Finally, we use the one to one correspondence between the [tex]\mathbb{R}^2[/tex] and the space of liear polynomials to get the basis [tex]P1=\{-1+5x, 2+x\}[/tex] with respect to which f is represented by the diagonal matrix [tex]\left[\begin{array}{ccc}-2&0\\0&9\end{array}\right][/tex]

Verify that y = c_1 + c_2 e^2x is a solution of the ODE y" - 2y' = 0 for all values of c_1 and c_2.

Answers

Answer:

For any value of C1 and C2, [tex]y = C1 + C2*e^{2x}[/tex] is a solution.

Step-by-step explanation:

Let's verify the solution, but first, let's find the first and second derivatives of the given solution:

[tex]y = C1 + C2*e^{2x}[/tex]

For the first derivative we have:

[tex]y' = 0 + C2*(2x)'*e^{2x}[/tex]

[tex]y' = C2*(2)*e^{2x}[/tex]

For the second derivative we have:

[tex]y'' = C2*(2)*(2x)'*e^{2x}[/tex]

[tex]y'' = C2*(2)*(2)*e^{2x}[/tex]

[tex]y'' = C2*(4)*e^{2x}[/tex]

Let's solve the ODE by the above equations:

[tex]y'' - 2y' = 0[/tex]

[tex]C2*(4)*e^{2x} - 2*C2*(2)*e^{2x} = 0[/tex]

[tex]C2*(4)*e^{2x} - C2*(4)*e^{2x} = 0[/tex]

From the above equation we can observe that for any value of C2 the equation is solved, and because the ODE only involves first (y') and second (y'') derivatives, C1 can be any value as well, because it does not change the final result.  

Determine whether T : R^2 -->R^2,T((x.y)) = (x,y^2) is a linear transformation

Answers

Answer:  No, the given transformation T is NOT a linear transformation.

Step-by-step explanation:  We are given to determine whether the following transformation T : R² --> R² is a linear transformation or not :

[tex]T(x,y)=(x,y^2).[/tex]

We know that

a transformation T from a vector space U to vector space V is a linear transformation if for [tex]X_1,~X_2[/tex] ∈U and a, b ∈ R

[tex]T(aX_1+bX_2)=aT(X_1)+bT(X_2).[/tex]

So, for (x, y), (x', y') ∈ R², and a, b ∈ R, we have

[tex]T(a(x,y)+b(x',y'))\\\\=T(ax+bx',ay+by')\\\\=(ax+bx',(ay+by')^2)\\\\=(ax+bx',a^2y^2+2abyy'+y'^2)[/tex]

and

[tex]aT(x,y)+bT(x',y')\\\\=a(x,y)+b(x', y'^2)\\\\=(ax+bx',ay+by')\\\\\neq (ax+bx',a^2y^2+2abyy'+y'^2).[/tex]

Therefore, we get

[tex]T(a(x,y)+b(x',y'))\neq aT(x,y)+bT(x',y').[/tex]

Thus, the given transformation T is NOT a linear transformation.

Forty percent of the homes constructed in the Quail Creek area include a security system. Three homes are selected at random: What is the probability all three of the selected homes have a security system

Answers

Answer: 0.064

Step-by-step explanation:

Binomial probability formula :-

[tex]P(X)=^nC_x \ p^x\ (1-p)^{n-x}[/tex], where P(x) is the probability of getting success in x trials, n is total number of trials and p is the probability of getting succes in each trial.

Given : The proportion of the homes constructed in the Quail Creek area include a security system :  [tex]p=0.40[/tex]

Now, if three homes are selected at random, then the probability all three of the selected homes have a security system is given by :-

[tex]P(3)=^3C_3 \ (0.40)^3\ (1-0.40)^{3-3}\\\\=(0.40)^3=0.064[/tex]

Hence, the probability all three of the selected homes have a security system = 0.064

The probability that all three homes selected at random in the Quail Creek area have a security system is 6.4%.

The probability that all three of the selected homes in the Quail Creek area have a security system, given that 40% of the homes have a security system, can be calculated by using the rule for independent events in probability.

Since each house is selected at random, we can multiply the probability of each house having a security system together:

P(all three homes have a security system) = P(home 1 has security system) × P(home 2 has security system) × P(home 3 has security system)

As every home has a 40% (or 0.40) chance of having a security system:

P(all three) = 0.40 × 0.40 × 0.40 = 0.064

Therefore, there is a 6.4% chance that all three homes selected will have a security system.

Tessa's class had a math exam where the grades were between 0 and 10. N(g) models the number of students whose grade on the exam was ggg. What does the statement N(8)>2⋅N(5) mean?

Answers

Interpreting the situation, we can conclude that the statement means that the number of students with a grade of 8 was more than twice the number of students with a grade of 5.

N(g) is the number of students who got a grade of g in the exam.

Thus, N(8) is the number of students who got a grade of 8, while N(5) is the number of students who got a grade of 5.

[tex]N(8) > 2N(5)[/tex]

It means that the number of students with a grade of 8 was more than twice the number of students with a grade of 5.

A similar problem is given at https://brainly.com/question/11271837

The statement [tex]\( N(8) > 2 \cdot N(5) \)[/tex] means that the number of students who scored a grade of 8 on the exam is greater than twice the number of students who scored a grade of 5 on the exam.

To understand this, let's break down the notation:

-  N(g)  represents the number of students who scored (g) on the exam.

-  N(8)  is the number of students who scored an 8.

-  N(5)  is the number of students who scored a 5.

The inequality [tex]\( N(8) > 2 \cdot N(5) \)[/tex] compares these two quantities. It states that the count of students with a grade of 8 exceeds two times the count of students with a grade of 5. This indicates that a higher number of students performed better (scoring an 8) than those who scored a 5, with the difference being more than the number of students who scored a 5. In other words, if we were to take the number of students who scored a 5 and double it, there would still be more students who scored an 8. This could be an indicator of the overall performance of the class, suggesting that more students achieved a higher grade than those who scored in the middle range of the grading scale.

Find the general solution of the following nonhomogeneous second order differential equation: y" - 4y = e^2x

Answers

Answer:

Solution is [tex]y=c_{1}e^{2x}+c_{2}e^{-2x}+\frac{1}{4}xe^{2x}[/tex]

Step-by-step explanation:

the given equation y''-4y[tex]=e^{2x}[/tex] can be written as

[tex]D^{2}y-4y=e^{2x}\\\\(D^{2}-4)y=e^{2x}\\\\[/tex]

The Complementary function thus becomes

y=c_{1}e^{m_{1}x}+c_{2}e^{m_{2}x}

where [tex]m_{1} , m_{2}[/tex] are the roots of the [tex]D^{2}-4[/tex]

The roots of [tex]D^{2}-4[/tex] are +2,-2 Thus the comlementary function becomes

[tex]y=c_{1}e^{2x}+c_{2}e^{-2x}[/tex]

here [tex]c_{1},c_{2}[/tex] are arbitary constants

Now the Particular Integral becomes using standard formula

[tex]y=\frac{e^{ax}}{f(D)}\\\\y=\frac{e^{ax}}{f(a)} (f(a)\neq 0)\\\\y=x\frac{e^{ax}}{f'(a)}(f(a)=0)[/tex]

[tex]y=\frac{e^{2x}}{D^{2}-4}\\\\y=\frac{e^{2x}}{(D+2)(D-2)}\\\\y=\frac{1}{D-2}\times \frac{e^{2x}}{2+2}\\\\y=\frac{1}{4}\times \frac{e^{2x}}{D-2}\\\\y=\frac{1}{4}xe^{2x}[/tex]

Hence the solution is = Complementary function + Particular Integral

Thus Solution becomes [tex]y=c_{1}e^{2x}+c_{2}e^{-2x}+\frac{1}{4}xe^{2x}[/tex]

The final general solution is [tex]y(x) = C1e^2x + C2e^-2x + 1/2xe^2x[/tex].

To find the general solution of the given differential equation: y'' - 4y = e2x, we will follow these steps:

1. Solve the Homogeneous Equation

First, solve the homogeneous part: y'' - 4y = 0

The characteristic equation is: r2 - 4 = 0

Solving for r, we get: r = ±2

Thus, the general solution to the homogeneous equation is: yh(x) = C1e2x + C2e-2x

2. Find a Particular Solution

Next, find a particular solution, yp(x), to the non homogeneous equation through the method of undetermined coefficients. Assume a particular solution of the form: yp(x) = Axe2x

Differentiating, we get: yp' = Ae2x + 2Axe2x and yp'' = 4Axe2x + 2Ae2x

Substitute these into the original equation:

4Axe2x + 2Ae2x - 4(Axe2x) = e2x

which simplifies to: 2Ae2x = e2x

Thus, A = 1/2

So, the particular solution is: yp(x) = (1/2)xe2x

3. Form the General Solution

The general solution to the nonhomogeneous differential equation is the sum of the homogeneous solution and the particular solution:

y(x) = yh(x) + yp(x)

Therefore, the general solution is: [tex]y(x) = C1e2x + C2e-2x + (1/2)xe2x[/tex].

Evaluate 6 - 2(-1) + | -5 | =

Answers

Answer:

  13

Step-by-step explanation:

The product of two negative numbers is positive. The absolute value of a number is its magnitude written with a positive sign.

  6 -2(-1) +|-5|

  = 6 + 2 + 5

  = 13

jose has $18 to spend for dinner what is the maximum amount he spend on meal and drinks so that he can leave a 15% tip? what percent of 60 is 18?

Answers

Answer:

$15.30

30% of 60 is 18

Step-by-step explanation:

To find the maximum amount he can spend on a meal, you have to find how  much he is going to tip.

So to find the tip you multiply 15% by 18 and you get 2.7

Then you subtract 18 by 2.7 to find out how much he can spend on the meal.

18 - 2.7 = 15.30

So he can spend $15.30 on his meal and tip $2.70

To find what percent of 60 is 18, you have to use this equation:

is over of equals percent over 100

So is/of = x/100 We have the x as the percent because that's what you're trying to figure out.

You would put 18 as is because it has the word is before it and put 60 as of because it has of before it.

So 18/60 = x/100

Now you would do Cross Product Property

18*100 = 1800

60*x = 60x

60x = 1800

Now divide 60 by itself and by 1800

1800/60 = 30

x = 30%

A manufacturer produces bearings, but because of variability in the production process, not all of the bearings have the same diameter. The diameters have a normal distribution with a mean of 1.2 centimeters (cm) and a standard deviation of 0.03 cm. The manufacturer has determined that diameters in the range of 1.17 to 1.23 cm are acceptable. What proportion of all bearings falls in the acceptable range? (Round your answer to four decimal places.)

Answers

Answer:

68%

Step-by-step explanation:

It is given that the diameters of bearing have a normal distribution.

Mean = u = 1.2 cm

Standard deviation = [tex]\sigma[/tex] = 0.03 cm

We have to find the proportion of values which falls in between 1.17 to 1.23

In order to find this we have to convert these values to z-scores first. The formula to calculate z score is:

[tex]z=\frac{x- \mu}{\sigma}[/tex]

For 1.17:

[tex]z=\frac{1.17-1.2}{0.03}=-1[/tex]

For 1.23:

[tex]z=\frac{1.23-1.2}{0.03}=1[/tex]

So, we have to tell what proportion of values fall in between z score of -1 and 1. Since the data have normal distribution we can use empirical rule to answer this question.

According to the empirical rule:

68% of the values fall within 1 standard deviation of the mean i.e. 68% of the values fall between the z score of -1 and 1.

Therefore, the answer to this question is 68%

Find the m∠p.

54

90°


27°


36°

Answers

90+54=144
180-144=36
This is the answer p=36

Problem 5.58. Supposef XY and g : Y Z are functions If g of is one-to-one, prove that fmust be one-to-one 2. Find an example where g o f is one-to-one, but g is not one-to-one

Answers

Answer with explanation:We are given two functions f(x) and g(y) such that:

  f : X → Y  and  g: Y → Z

Now we have to show:

If gof is one-to-one then f must be one-to-one.

Given:

gof is one-to-one

To prove:

f is one-to-one.

Proof:

Let us assume that f(x) is not one-to-one .

This means that there exist x and y such that x≠y but f(x)=f(y)

On applying both side of the function by the function g we get:

g(f(x))=g(f(y))

i.e. gof(x)=gof(y)

This shows that gof is not one-to-one which is a contradiction to the given statement.

Hence, f(x) must be one-to-one.

Now, example to show that gof is one-to-one but g is not one-to-one.

Let A={1,2,3,4}  B={1,2,3,4,5} C={1,2,3,4,5,6}

Let f: A → B

be defined by f(x)=x

and g: B → C be defined by:

g(1)=1,g(2)=2,g(3)=3,g(4)=g(5)=4

is not a one-to-one function.

since 4≠5 but g(4)=g(5)

Also, gof : A → C

is a one-to-one function.

Let f(x) = (x − 3)−2. Find all values of c in (2, 5) such that f(5) − f(2) = f '(c)(5 − 2). (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)

Answers

The answer does not exist.

Note - The statement has typing mistakes. Correct form is presented below:

Let [tex]f(x) = (x-3)^{-2}[/tex]. Find all values of [tex]c[/tex] in (2, 5) such that [tex]f(5) - f(2) = f'(c) \cdot (5-2)[/tex]. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)

In this question we should use the Mean Value Theorem, which states that given a secant line between points A and B, there is at least a point C that belongs to the curve whose derivative exists.

We begin by calculating [tex]f(2)[/tex] and [tex]f(5)[/tex]:

[tex]f(2) = (2-3)^{-2}[/tex]

[tex]f(2) = 1[/tex]

[tex]f(5) = (5-3)^{-2}[/tex]

[tex]f(5) = 1[/tex]

And the slope of the derivative is:

[tex]f'(c) = \frac{f(5) - f(2)}{5-2}[/tex]

[tex]f'(c) = 0[/tex]

Now we find the derivative of the function:

[tex]f'(x) = -2\cdot (x-3)^{-3}[/tex]

[tex]-2\cdot (x-3)^{-3} = 0[/tex]

[tex]-2 = 0[/tex] (ABSURD)

Hence, we conclude that the answer does not exist.

We kindly invite to see this question on Mean Value Theorem: https://brainly.com/question/3957181

Eight measurements were made on the inside diameter of forged piston rings used in an automobile engine. The data (in millimeters) are 74.001, 74.003, 74.015, 74.000, 74.005, 74.002, 74.007, and 74.000. Calculate the sample mean and sample standard deviation. Round your answers to 3 decimal places. Sample mean

Answers

Answer: The sample mean and sample standard deviation is 74.004 millimeters and 0.005 millimeters respectively.

Step-by-step explanation:

The given values : 74.001, 74.003, 74.015, 74.000, 74.005, 74.002, 74.007, and 74.000.

[tex]\text{Mean =}\dfrac{\text{Sum of all values}}{\text{Number of values}}\\\\\Rightarrow\overline{x}=\dfrac{ 592.033}{8}=74.004125\approx74.004[/tex]

The sample standard deviation is given by :-

[tex]\sigma=\sum\sqrt{\dfrac{(x-\overline{x})^2}{n}}\\\\\Rightarrow\ \sigma=\sqrt{\dfrac{0.000177}{8}}=0.00470372193056\approx0.005[/tex]

Hence, the sample mean and sample standard deviation is 74.004 millimeters and 0.005 millimeters respectively.

Assume that the heights of men are normally distributed. A random sample of 16 men have a mean height of 67.5 inches and a standard deviation of 3.2 inches. Construct a 99% confidence interval for the population standard deviation, σ. (2.2, 5.4) (2.2, 6.0) (1.2, 3.2) (2.2, 5.8)

Answers

Answer: (2.2, 5.8)

Step-by-step explanation:

The confidence interval for standard deviation is given by :-

[tex]\left ( \sqrt{\dfrac{(n-1)s^2}{\chi^2_{(n-1),\alpha/2}}} , \sqrt{\dfrac{(n-1)s^2}{\chi^2_{(n-1),1-\alpha/2}}}\right )[/tex]

Given :  Sample size : 16

Mean height : [tex]\mu=67.5[/tex] inches

Standard deviation : [tex]s=3.2[/tex] inches

Significance level : [tex]1-0.99=0.01[/tex]

Using Chi-square distribution table ,

[tex]\chi^2_{(15,0.005)}=32.80[/tex]

[tex]\chi^2_{(15,0.995)}=4.60[/tex]

Then , the 99% confidence interval for the population standard deviation is given by :-

[tex]\left ( \sqrt{\dfrac{(15)(3.2)^2}{32.80}} , \sqrt{\dfrac{(15)(3.2)^2}{4.6}}\right )\\\\=\left ( 2.1640071232,5.77852094812\right )\approx\left ( 2.2,5.8 \right )[/tex]

Neneh is a florist. Neneh can arrange 20 bouquets per day. She is considering hiring her husband Mustapha to work for her. Together Neneh and Mustapha can arrange 35 bouquets per day. What is Mustapha’s marginal product?

Answers

Answer:

Mustapha can arrange 15 bouquets per day.

Step-by-step explanation:

Neneh can arrange 20 bouquets per day.

Together Neneh and Mustapha can arrange 35 bouquets per day.

So,  Mustapha can arrange [tex]35-20=15[/tex] bouquets per day.

Therefore, Mustapha’s marginal product is 15 bouquets.

A data set lists earthquake depths. The summary statistics are nequals300​, x overbarequals5.89 ​km, sequals4.44 km. Use a 0.01 significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to 5.00. Assume that a simple random sample has been selected. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim.

Answers

Answer:

Null hypothesis [tex]H_0:\mu=5.00km[/tex]

Alternative hypothesis [tex]H_1:\mu\neq 5.00km[/tex]

The p value is 0.000517, which is less than the significance level 0.01, therefore we reject the null hypothesis and conclude that population mean is not equal to 5.00.

Step-by-step explanation:

It is given that a data set lists earthquake depths. The summary statistics are

[tex]n=300[/tex]

[tex]\overline{x}=5.89km[/tex]

[tex]s=4.44km[/tex]

Level of significance = 0.01

We need to test the claim of a seismologist that these earthquakes are from a population with a mean equal to 5.00.

Null hypothesis [tex]H_0:\mu=5.00km[/tex]

Alternative hypothesis [tex]H_1:\mu\neq 5.00km[/tex]

The formula for z-value is

[tex]z=\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}[/tex]

[tex]z=\frac{5.89-5.00}{\frac{4.44}{\sqrt{300}}}[/tex]

[tex]z=\frac{0.89}{0.25634351952}[/tex]

[tex]z=3.4719[/tex]

The p-value for z=3.4719 is 0.000517.

Since the p value is 0.000517, which is less than the significance level 0.01, therefore we reject the null hypothesis and conclude that population mean is not equal to 5.00.

Final answer:

The null and alternative hypotheses are H0: µ = 5.00 km and HA: µ ≠ 5.00 km. A t-test is used to calculate the test statistic, and the p-value is compared to the significance level of 0.01 to either reject or not reject the null hypothesis. The final conclusion is made in consideration of the original claim.

Explanation:

In statistics, hypothesis testing is a tool for inferring whether a particular claim about a population is true. For this question about earthquake depths, we would start by setting our null hypothesis (H0) and our alternative hypothesis (HA).

The null hypothesis would be H0: µ = 5.00 km, and the alternative hypothesis would be HA: µ ≠ 5.00 km.

The test statistic can be calculated using a t test, since we are dealing with a sample mean and we know the sample standard deviation (sequals4.44 km).

The p-value associated with this test statistic would then be calculated, and compared to the significance level of 0.01. If the p-value is less than 0.01, we reject the null hypothesis. If, however, the p-value is greater than 0.01, we cannot reject the null hypothesis.

The final conclusion must be stated in terms of the original claim. If we reject the null hypothesis, we conclude that the evidence supports the claim that the mean earthquake depth is not equal to 5.00 km (supporting the alternative hypothesis). If we do not reject the null hypothesis, we conclude that the evidence does not support the claim that the mean is not 5.00 km. The data does not provide sufficient evidence to support a conclusion that the mean earthquake depth is different than 5.00 km.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ11

Jim borrows $14,000 for a period of 4 years at 6 % simple interest. Determine the interest due on the loan. [4 marks

Answers

Answer: $ 3,360

Step-by-step explanation:

Given : The principal amount borrowed for loan : [tex]P=\ \$14,000[/tex]

Time period : [tex]t=4[/tex]

Rate of interest : [tex]r=6\%=0.06[/tex]

The formula to calculate the simple interest is given by :-

[tex]S.I.=P\times r\times t\\\\\Rightatrrow\ S.I.=14000\times4\times0.06\\\\\Rightatrrow\ S.I.=3360[/tex]

Hence, the interest due on the loan = $ 3,360

Write an equation of the circle with center (-7, -4) and radius 6 .

Answers

Answer:

(x+7)^2 + (y+4)^2 = 6^2

or

(x+7)^2 + (y+4)^2 = 36

Step-by-step explanation:

We can write the equation of a circle in the form

(x-h)^2 + (y-k)^2 = r^2

Where (h,k) is the center and r is the radius

(x--7)^2 + (y--4)^2 = 6^2

(x+7)^2 + (y+4)^2 = 6^2

or

(x+7)^2 + (y+4)^2 = 36

Write an equation of the line through(2-1) and perpendicular to 2yx-4 Write the equation in the form x The one the Enter your answer in the box and then click Check Answer parts showing i Type here to search

Answers

Answer:

[tex]2x+y=3[/tex]

Step-by-step explanation:

Here we aer given a point (2,-1) and a line [tex]2y=x-4[/tex]. We are supposed to find the equation of the line passing through this point and perpendicular to this line.

Let us find the slope of the line perpendicular to [tex]2y=x-4[/tex]

Dividing above equation by 2 we get

[tex]y=\frac{1}{2}x-2[/tex]

Hence we have this equation in slope intercept form and comparing it with

[tex]y=mx+c[/tex] , we get Slope [tex]m = \frac{1}{2}[/tex]

We know that product of slopes of two perpendicular lines in -1

Hence if slope of line perpendicular to [tex]y=\frac{1}{2}x-2[/tex] is m' then

[tex]m\times m' =-1[/tex]

[tex]\frac{1}{2} \times m' =-1[/tex]

[tex]m'=-2[/tex]

Hence the slope of the line we have to find is -2

now we have slope and a point

Hence the equation of the line will be

[tex]\frac{y-(-1)}{x-2}=-2[/tex]

[tex]y+1=-2(x-2)[/tex]

[tex]y+1=-2x+4[/tex]

adding 2x and subtracting  on both sides we get

[tex]2x+y=3[/tex]

Which is our equation asked

The _____ measures how accurate the point estimate is likely to be in estimating a parameter. standard deviation degree of unbiasedness interval estimate margin of error confidence level Why are confidence intervals preferred over significance tests by most researchers? they provide a range of plausible values for the parameter they allow use to accept the null hypothesis if the hypothesis value is contained within the interval since confidence intervals have a level of confidence associated with them, they give us more confidence in our decision regarding the null hypothesis they indicate whether or not the hypothesis parameter value is plausible all of these An interval estimate is typically preferred over a point estimate because i) it gives us a sense of accuracy of the point estimate ii) we know the probability that it contains the parameter (e.g., 95%) iii) it provides us with more possible parameter values I only II only both I and II all of these III only

Answers

Answer:

Standard deviation.

Step-by-step explanation:

The standard deviation measures how accurate the point estimate is likely to be in estimating a parameter.

The confidence interval measures how accurate the point estimate is likely to be in estimating a parameter.

A confidence interval communicates how accurate our estimate is likely to  be.

The confidence interval is a range of of all plausible values of the random variable under test at a given confidence level which is expressed in percentage such as 98%, 95% and 90% of confidence level.  

The standard deviation is the parameter to signify the  dispersion of data around  the mean value of the data.

Researchers prefer it because    on the basis of the percentage of certainty in the test result of  null hypothesis are accepted or rejected as it includes some chance for errors too. (example  95% sure means 5% not sure) also this gives a range of values and hence good chance to normalize errors.    

An interval estimate is typically preferred over a point estimate because

i) it gives us a sense of accuracy of the point estimate

ii) we know the probability that it contains the parameter (e.g., 95%)

iii) it provides us with more possible parameter values

I only

II only  

both I and II  

all of these

III only

All three statements above are true hence all of these is  the answer.

For more information please refer to the link below

  https://brainly.com/question/24131141

A simple random sample of electronic components will be selected to test for the mean lifetime in hours. Assume that component lifetimes are normally distributed with population standard deviation of 27 hours. How many components must be sampled so that a 99% confidence interval will have margin of error of 3 hours?

Answers

Answer:

540

Step-by-step explanation:

we have given E=0.3

σ = 27 hours

100(1-α)%=99%

from here α=0.01

using standard table [tex]Z_\frac{\alpha }{2}=Z_\frac{0.01}{2}=2.58[/tex]

[tex]n=\left ( Z_\frac{\alpha }{2}\times \frac{\sigma }{E} \right )^{2}[/tex] =

[tex]\left ( 2.58\times \frac{27}{3} \right )^{2}[/tex]

n = [tex]23.22^{2}[/tex]

n=539.16

n can not be in fraction so n=540

Final answer:

To obtain a 99% confidence interval with a margin of error of 3 hours, at least 602 components must be sampled.

Explanation:

In order to determine the number of components that must be sampled so that a 99% confidence interval will have a margin of error of 3 hours, we can use the formula:

n = (z * s / E)^2

Where:

n = sample size

z = z-value corresponding to the desired confidence level (in this case, 99% confidence level)

s = population standard deviation

E = margin of error

Plugging in the given values, we have:

n = (2.576 * 27 / 3)^2

n = 601.3696

Rounding up to the nearest whole number, we need to sample at least 602 components.

Learn more about confidence interval here:

https://brainly.com/question/34700241

#SPJ3

A sum of money amounting to P5.15 consists of 10 cents and 25 cents, If there are 32 coins in all, how many 25 cents are there? A. 14 pcs B. 13 pcs C. 15 pcs D. 12 pcs

Answers

Answer: Option 'B' is correct.

Step-by-step explanation:

Let the number of 10 cents pcs be 'x'.

Let the number of 25 cents pcs be 'y'.

Since we have given that

Total number of coins = 32

Sum of money = $5.15

As we know that

$1 = 100 cents

$5.15 = 5.15×100 = 515 cents

According to question, we get that

[tex]x+y=32-----------(1)\\\\10x+25y=\$515------------(2)[/tex]

Using the graphing method, we get that

x = 19

y = 13

So, there are 13 pcs of 25 cents.

Hence, Option 'B' is correct.

Final answer:

By creating a system of equations based on the total number of coins (32) and their total value (P5.15), we calculate that there are 13 pieces of 25-cent coins.

Explanation:

The student's question involves figuring out the number of 25-cent coins among a total of 32 coins which altogether amount to P5.15. This problem can be solved by setting up a system of equations to account for the total number of coins and the total value in pesos.

Let's denote the number of 10-cent coins as t and the number of 25-cent coins as q. We know from the problem that there are 32 coins in total, so:

(1) t + q = 32

We also know that the total value of the coins is P5.15, or 515 cents. Therefore:

(2) 10t + 25q = 515

By solving this system of equations, we can find the value of q, the number of 25-cent coins. First, we can multiply equation (1) by 10 to eliminate t when we subtract the equations:

10t + 10q = 320

Subtracting this from equation (2) gives us:

15q = 195

Dividing both sides by 15, we find that:

q = 13

So, there are 13 pieces of 25-cent coins, which corresponds to option B.

Six different integers are picked from the numbers 1 through 10. How many possible combinations are there, if the the second smallest integer in the group is 3?


Please solve ASAP

Answers

Answer:

1680 ways

Step-by-step explanation:

We have to select 6 different integers from 1 to 10. It is given that second smallest integer is 3. This means, for the smallest most integer we have only two options i.e. it can be either 1 or 2.

So, the selection of 6 numbers would be like:

{1 or 2, 3, a, b, c ,d}

There are 2 ways to select the smallest digit. Only 1 way to select the second smallest digit. For the rest four digits which are represented by a,b,c,d we have 7 options. This means we can chose 4 digits from 7. Number of ways to chose 4 digits from 7 is calculated as 7P4 i.e. by using permutations.

[tex]7P4 = \frac{7!}{(7-4)!}=840[/tex]

According to the fundamental rule of counting, the total number of ways would be the product of the individual number of ways we calculated above. So,

Total number of ways to pick 6 different integers according to the said criteria would be = 2 x 1 x 840 = 1680 ways

Seventeen candidates have filed for the upcoming county council election. 7 are women and 10 are men a) Is how many ways can 10 county council members be randomly elected out of the 17 candidates? (b) In how many ways can 10 county council members be randomly elected from 17 candidates if 5 must be women and 5 must be men? c) If 10 county council members are randomly elected from 17 candidates, what is the probability that 5 are women and 5 are men? Round answer to nearest ten-thousandth (4 places after decimal).

Answers

Answer: (a) 19448 ways

(b) 5292 ways

(c) 0.2721

Step-by-step explanation:

(a) 10 county council members be randomly elected out of the 17 candidates in the following ways:

= [tex]^{n}C_{r}[/tex]

= [tex]^{17}C_{10}[/tex]

= [tex]\frac{17!}{10!7!}[/tex]

= 19448 ways

(b) 10 county council members be randomly elected from 17 candidates if 5 must be women and 5 must be men in the following ways:

we know that there are 7 women and 10 men in total, so

= [tex]^{7}C_{5}[/tex] × [tex]^{10}C_{5}[/tex]

= [tex]\frac{7!}{5!2!}[/tex] × [tex]\frac{10!}{5!5!}[/tex]

= 21 × 252

= 5292 ways

(c) Now, the probability that 5 are women and 5 are men are selected:

= [tex]\frac{ ^{7}C_{5} * ^{10}C_{5}}{^{17}C_{10}}[/tex]

= [tex]\frac{5292}{19448}[/tex]

= 0.2721

If you draw a card with a value of three or less from a standard deck of cards, I will pay you $43. If not, you pay me $11. (Aces are considered the highest card in the deck.) Step 1 of 2 : Find the expected value of the proposition. Round your answer to two decimal places. Losses must be expressed as negative values.

Answers

If [tex]W[/tex] is a random variable representing your winnings from playing the game, then it has support

[tex]W=\begin{cases}43&\text{if you draw something with value at most 3}\\-11&\text{otherwise}\end{cases}[/tex]

There are 52 cards in the deck. Only the 1s, 2s, and 3s fulfill the first condition, so there are 12 ways in which you can win $43. So [tex]W[/tex] has PMF

[tex]P(W=w)=\begin{cases}\frac{12}{52}=\frac3{13}&\text{for }w=43\\1-\frac{12}{52}=\frac{10}{13}&\text{for }w=-11\\0&\text{otherwise}\end{cases}[/tex]

You can expect to win

[tex]E[W]=\displaystyle\sum_ww\,P(W=w)=\frac{43\cdot3}{13}-\frac{11\cdot10}{13}=\boxed{\frac{19}{13}}[/tex]

or about $1.46 per game.

Final answer:

The expected value of the proposition is $7.31.

Explanation:Expected Value Calculation:

To calculate the expected value, we need to multiply each possible outcome by its corresponding probability and then sum them up.

The probability of drawing a card with a value of three or less is 12/52 since there are 12 cards with values of three or less in a standard deck of 52 cards. The probability of not drawing a card with a value of three or less is 40/52.

Using these probabilities and the given payoffs, we can calculate the expected value as follows:
Expected Value = (Probability of Winning * Payoff if Win) + (Probability of Losing * Payoff if Lose)
Expected Value = (12/52 * 43) + (40/52 * -11)

Calculating this expression gives us an expected value of $7.31 (rounded to two decimal places).

Learn more about Expected Value here:

https://brainly.com/question/35639289

#SPJ2

The average assembly time for a Ford Taurus is μ = 38 hrs. An engineer suggests that using a new adhesive to attach moldings will speed up the assembly process. The new adhesive was used for one month. During that month, the average assembly time for 36 cars was = 37.5 hours with a standard deviation s = 1.2 hours. Use α = 0.01. Based on the calculated P-value will you reject or fail to reject the null hypothesis? Select one: a. reject the null hypothesis / data is significant b. fail to reject the null hypothesis c. cannot be determined

Answers

Answer:

a) reject null hypothesis since p < 0.01

Step-by-step explanation:

Given that the  average assembly time for a Ford Taurus is

[tex]μ = 38 hrs[/tex]

Sample size [tex]n=36[/tex]

[tex]x bar = 37.5\\s=1.2\\SE = 1.2/6 = 0.2[/tex]

Test statistic t = mean diff/se = 0.5/0.2 = 2.5

(Here population std dev not known hence t test is used)

df = 35

p value = 0.008703

a) reject null hypothesis since p < 0.01

Write equations for the horizontal and vertical lines passing through the point (-1, -7)

Answers

Answer:

see below

Step-by-step explanation:

The horizontal line will have the same y and the y value will be constant

y = -7

The vertical line will have the same x and the x value will be constant

x = -1

Other Questions
Transcription initiation of the lac operon is enhanced when _______ interacts with rna polymerase. Which answer best summarizes the purpose of the olive branch petition?A) It Was Written By The Colonists To Ask The King To Protect Their Rights And To Tell Him They Wanted Peace. It Was Rejected By The King.B) It Was Written By The King To Ask The Colonists To Protect His Troops And To Tell Them He Wanted Peace. It Was Rejected By The Colonists.C) It Was Written By The Colonists To Ask The Second Continental Congress To Have Peace Talks With The King. The Congress Accepted The Petition.D) It Was Written By The King To Ask The Second Continental Congress To Stop Fighting British Troops And To Pay Higher Taxes. The Congress Rejected The Petition. The data shown on the scatter plot below demonstrates the relationship between the time of day and the total numberof calories that a teenager consumes throughout the day.That as time ___________,the total number of calories that a teenager consumes throughout the day___________.Blank A options:Stays the sameIncreasesDecreasesBlank B options:Stays the sameDecreasesIncreases Determine the theoretical probability of rolling a number larger than two and a standard 66 sided cube Which of the following is a criterion by which game meats are evaluated by the USDA? A. Diet B. Size C. Country of origin D. Color an electric clothes dryer has a resictance of 16 Ohms it drawes 15 A of current what is the voltage in volts of the wall outlet that it is pluged into 18-r=12[tex]18 - r = 12[/tex] Which of the following best describes a fission reaction involving lithium? (1 point) A. Two lithium atoms form bonds with each other, absorbing a large amount of energy.B. The nuclei of lithium atoms join together to form heavier isotopes, and energy is released.C. An atom of lithium absorbs electrons, undergoes an increase in energy level, and splits into fragments.D. The nucleus of an atom of lithium splits, resulting in smaller fragments and the release of a large amount of energy. What literary device is an author using when he or she uses words to communicate the opposite of their literal meaning What is the probability of an event that is impossible? Suppose that a probability is approximated to be zero based on empirical results. Does this mean that the event is impossible? Hammer Time Company sells hammers that it purchases at a cost of $5. Hammer Time sells the hammers for $15. Last year, it sold 12,000 hammers. The company estimates that it can sell 5,000 more hammers than last year if it decreases the selling price to $10 per hammer. What is the budgeted sales revenue if Hammer Time implements the decrease in selling price? Mixed 3 liters 20% solutions with 2 liters 70% solution. Whats the final concentration, Two infinite parallel surfaces carry uniform charge densities of 0.20 nC/m2 and -0.60 nC/m2. What is the magnitude of the electric field at a point between the two surfaces? the simple form of business ownership ? help pleaseeeee solve 3-x/2=>12 Consider two copper wires. One has twice the length and twice the cross-sectional area of the other. How do the resistances of these two wires compare? A) Both wires have the same resistance. B) The shorter wire has twice the resistance of the longer wire. The longer wire has twice the resistance of the shorter wire. D) The longer wire has four times the resistance of the shorter wire. E) The shorter wire has four times the resistance of the longer wire. Given that the first term and the common difference of an arithmetic progression are 6 and 3 respectively. Calculate the sum of all terms from 4th term to the 14th term. A set of equations is given below: equation C:y=5x+10 equation D:y=5x+2 which of the following best describes the solution to the given set of equations? One solution no solution two solutions infinitely many solutions 1. Let a; b; c; d; n belong to Z with n > 0. Suppose a congruent b (mod n) and c congruent d (mod n). Use the definitionof congruence to(a) prove that a + c congruent b + d (mod n).(b) prove that ac congruent bd (mod n).Expert Answer A cube has side length 0.7 metres.Work out the total surface area of the cube.Give your answer in square centimetres