Ron finds 9 books at a bookstore that he would like to buy, but he can afford only 5 of them. In how many ways can he make his selection? How many ways can he make his selection if he decides that one of the books is a must?
a. 3024; 1680
b. 7560; 840
c. 120; 1680
d. 126; 70

Answers

Answer 1

Answer:

d. 126; 70

Step-by-step explanation:

given that Ron  finds 9 books at a bookstore that he would like to buy, but he can afford only 5 of them.

Out of 9 books he has to select 5 of them

Here selection of books can be done in any order.  Hence order does not matter

No of ways he selects 5 books out of 9 books = 9C5

= 126

Part II

One book is a must

Hence he has options only 4 books from the remaining 8.

No of ways when one book is compulsory = selecting 3 books from 8 books

= 8C4

= 70

Option d is right.


Related Questions

A biologist observed that a certain bacterial colony obeys the population growth law and that the colony triples every 4 hours.

If the colony occupied 2 square centimeters initially, find:

(a) An expression for the size P(t) of the colony at any time t.

(b) The area occupied by the colony after 12 hours.

(c) The doubling time for the colony?

Answers

Answer:

a) [tex]P(t) = 2e^{0.275t}[/tex]

b) 54.225 square centimeters.

c) 2.52 hours

Step-by-step explanation:

The population growth law is:

[tex]P(t) = P_{0}e^{rt}[/tex]

In which P(t) is the population after t hours, [tex]P_{0}[/tex] is the initial population and r is the growth rate, as a decimal.

In this problem, we have that:

The colony occupied 2 square centimeters initially, so [tex]P_{0} = 2[/tex]

The colony triples every 4 hours. So

[tex]P(4) = 3P_{0} = 6[/tex]

(a) An expression for the size P(t) of the colony at any time t.

We have to find the value of r. We can do this by using the P(4) equation.

[tex]P(t) = P_{0}e^{rt}[/tex]

[tex]6 = 2e^{4r}[/tex]

[tex]e^{4r} = 3[/tex]

Applying ln to both sides, we get:

[tex]4r = 1.1[/tex]

[tex]r = 0.275[/tex]

So

[tex]P(t) = 2e^{0.275t}[/tex]

(b) The area occupied by the colony after 12 hours.

[tex]P(t) = 2e^{0.275t}[/tex]

[tex]P(12) = 2e^{0.275*12}[/tex]

[tex]P(12) = 54.225[/tex]

(c) The doubling time for the colony?

t when [tex]P(t) = 2P_{0} = 2*2 = 4[/tex].

[tex]P(t) = 2e^{0.275t}[/tex]

[tex]4 = 2e^{0.275t}[/tex]

[tex]e^{0.275t} = 2[/tex]

Applying ln to both sides

[tex]0.275t = 0.6931[/tex]

[tex]t = 2.52[/tex]

We're testing the hypothesis that the average boy walks at 18 months of age (H0: p = 18). We assume that the ages at which boys walk is approximately normally distributed with a standard deviation of 2.5 months. A random sample of 25 boys has a mean of 19.2 months. Which of the following statements are correct?

I. This finding is significant for a two-tailed test at .05.
II. This finding is significant for a two-tailed test at .01.
III. This finding is significant for a one-tailed test at .01.

a. I only
b. II only
c. III only
d. II and III only
e. I and III only

Answers

Answer:

II. This finding is significant for a two-tailed test at .01.

III. This finding is significant for a one-tailed test at .01.

d. II and III only

Step-by-step explanation:

1) Data given and notation    

[tex]\bar X=19.2[/tex] represent the battery life sample mean    

[tex]\sigma=2.5[/tex] represent the population standard deviation    

[tex]n=25[/tex] sample size    

[tex]\mu_o =18[/tex] represent the value that we want to test    

[tex]\alpha[/tex] represent the significance level for the hypothesis test.    

t would represent the statistic (variable of interest)    

[tex]p_v[/tex] represent the p value for the test (variable of interest)    

2) State the null and alternative hypotheses.    

We need to conduct a hypothesis in order to check if the mean battery life is equal to 18 or not for parta I and II:    

Null hypothesis:[tex]\mu = 18[/tex]    

Alternative hypothesis:[tex]\mu \neq 18[/tex]    

And for part III we have a one tailed test with the following hypothesis:

Null hypothesis:[tex]\mu \leq 18[/tex]    

Alternative hypothesis:[tex]\mu > 18[/tex]  

Since we know the population deviation, is better apply a z test to compare the actual mean to the reference value, and the statistic is given by:    

[tex]z=\frac{\bar X-\mu_o}{\frac{\sigma}{\sqrt{n}}}[/tex] (1)    

z-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".    

3) Calculate the statistic    

We can replace in formula (1) the info given like this:    

[tex]z=\frac{19.2-18}{\frac{2.5}{\sqrt{25}}}=2.4[/tex]    

4) P-value    

First we need to calculate the degrees of freedom given by:  

[tex]df=n-1=25-1=24[/tex]  

Since is a two tailed test for parts I and II, the p value would be:    

[tex]p_v =2*P(t_{(24)}>2.4)=0.0245[/tex]

And for part III since we have a one right tailed test the p value is:

[tex]p_v =P(t_{(24)}>2.4)=0.0122[/tex]

5) Conclusion    

I. This finding is significant for a two-tailed test at .05.

Since the [tex]p_v <\alpha[/tex]. We reject the null hypothesis so we don't have a significant result. FALSE

II. This finding is significant for a two-tailed test at .01.

Since the [tex]p_v >\alpha[/tex]. We FAIL to reject the null hypothesis so we have a significant result. TRUE.

III. This finding is significant for a one-tailed test at .01.

Since the [tex]p_v >\alpha[/tex]. We FAIL to reject the null hypothesis so we have a significant result. TRUE.

So then the correct options is:

d. II and III only

Answer:

E. I and III only

Step-by-step explanation:

I. .05

III. one-tailed at .01

Use Green's Theorem to calculate the circulation of F =2xyi around the rectangle 0≤x≤8, 0≤y≤3, oriented counterclockwise.

Answers

Green's theorem says the circulation of [tex]\vec F[/tex] along the rectangle's border [tex]C[/tex] is equal to the integral of the curl of [tex]\vec F[/tex] over the rectangle's interior [tex]D[/tex].

Given [tex]\vec F(x,y)=2xy\,\vec\imath[/tex], its curl is the determinant

[tex]\det\begin{bmatrix}\frac\partial{\partial x}&\frac\partial{\partial y}\\2xy&0\end{bmatrix}=\dfrac{\partial(0)}{\partial x}-\dfrac{\partial(2xy)}{\partial y}=-2x[/tex]

So we have

[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_D-2x\,\mathrm dx\,\mathrm dy=-2\int_0^3\int_0^8x\,\mathrm dx\,\mathrm dy=\boxed{-192}[/tex]

Final answer:

The circulation of the vector field 2xyi around the given rectangle, as computed via Green's Theorem, is 0 due to the curl of F being 0.

Explanation:

To use Green's Theorem to calculate the circulation around a rectangle, first we should realize that Green's Theorem states that the line integral around a simple closed curve C of F.dr is equal to the double integral over the region D enclosed by C of the curl of F. Here, F is the vector field defined as 2xyi. The given rectangle is oriented counterclockwise and the values of x and y are given as 0≤x≤8 and 0≤y≤3 respectively. The line integral denotes the circulation of the field.

The circulation is thus the double integral over the rectangle of ∇ x F. But in this case, since F = 2xyi, we get ∇ x F = 0. Hence, the circulation of F around the given rectangle is 0.

Learn more about Green's Theorem here:

https://brainly.com/question/35137715

#SPJ3

Consider the computer output below. Fill in the missing information. Round your answers to two decimal places (e.g. 98.76). Test of mu = 100 vs not = 100 Variable N Mean StDev SE Mean 95% CI (Lower) 95% CI (Upper) T X 19 98.77 4.77 Enter your answer; SE Mean Enter your answer; 95% CI (Lower) Enter your answer; 95% CI (Upper) Enter your answer; T (a) How many degrees of freedom are there on the t-statistic? Enter your answer in accordance to the item a) of the question statement (b) What is your conclusion if ? Choose your answer in accordance to the item b) of the question statement(c) What is your conclusion if the hypothesis is versus ? Choose your answer in accordance to the item c) of the question statement

Answers

Final answer:

The degrees of freedom for the t-statistic are 18. The conclusion cannot be determined without the p-value. If the null hypothesis is true, there is not enough evidence to support the alternative hypothesis.

Explanation:

(a) The degrees of freedom for the t-statistic are found by subtracting 1 from the sample size. In this case, the sample size is 19 so the degrees of freedom would be 19 - 1 = 18.

(b) If the p-value is less than the alpha level (typically 0.05), we reject the null hypothesis. In this case, the p-value is not provided, so we cannot determine the conclusion.

(c) If the null hypothesis is true, we would not reject it and conclude that there is not enough evidence to support the alternative hypothesis.

A marketing research company desires to know the mean consumption of milk per week among males over age 25. They believe that the milk consumption has a mean of 2.5 liters, and want to construct a 85% confidence interval with a maximum error of 0.07 liters. Assuming a variance of 1.21 liters, what is the minimum number of males over age 25 they must include in their sample? Round your answer up to the next integer.

Answers

In this exercise we have to use the knowledge of variance to calculate the value of n, so we have that:

the sample is n=306

Organizing the information given in the statement we have that:

Mean of milk consumption = 2.5litresMaximum error E = 0.07Variance S = 1.21 litresConfidence interval of 85%

So given by the equation we have:

[tex]Z' = t(0.075)= 1.44\\n = (Z'*S/E)^2\\n = ( 1.44 * 0.85/0.07)^2\\n = (17.4857)^2\\n = 305.75\\n = 306[/tex]

See more about variance at brainly.com/question/22365883

The minimum number of males over age 25 they must include in their sample is 512.

Given, Desired confidence level: 85%

Maximum error (E): 0.07 liters

Variance ([tex]\sigma^{2}[/tex]): 1.21 liters

Standard deviation ([tex]\(\sigma\)[/tex]): [tex]\(\sigma\)[/tex] = [tex]\sqrt{1.21}[/tex] = 1.1

Z-value for 85% confidence level (lookup Z-value for 0.425 in the standard normal distribution): [tex]\[ Z \approx 1.44 \][/tex]

n= [tex]\left(\frac{Z \sigma}{E}\right)^2[/tex]

[tex]\[ n = \left(\frac{1.44 \times 1.1}{0.07}\right)^2 \][/tex]

n= (1.584/0.07)² = 511.986

n = 512

Brian Vanecek, VP of Operations at Portland Trust Bank, is evaluating the service level provided to walk-in customers. Accordingly, his staff recorded the waiting times for 64 randomly selected walk-in customers and determined that their mean waiting time was 15 minutes. Assume that the population standard deviation is 4 minutes. The 95% confidence interval for the population mean of waiting times is ________.A. 14.02 to 15.98B. 7.16 to 22.84C. 14.06 to 15.94D. 8.42 to 21.58E. 19.80 to 23.65

Answers

Answer: A. 14.02 to 15.98

Step-by-step explanation:

Let [tex]\mu[/tex] denotes the mean waiting time for population.

Given : Sample size : n= 64

Sample mean : [tex]\overline{x}=15[/tex]   (minutes)

Population standard deviation = [tex]\sigma= 4[/tex]

Confidence level : 95%

By z-table , the critical values for 95% confidence = z*=1.96

Confidence interval for population mean : [tex]\overline{x}\pm z^* \dfrac{\sigma}{\sqrt{n}}[/tex]

The 95% confidence interval for the population mean of waiting times will be :

[tex]15\pm (1.96)\dfrac{4}{\sqrt{64}}[/tex]

[tex]15\pm (1.96)\dfrac{4}{8}[/tex]

[tex]15\pm (1.96)(0.5)[/tex]

[tex]15\pm 0.98[/tex]

[tex](15-0.98,\ 15+0.98)=(14.02,\ 15.98)[/tex]

Hence, the 5% confidence interval for the population mean of waiting times is 14.02 to 15.98.

Thus , the correct answer is Option A.

Assume that a simple random sample has been selected from a normally distributed population and test the given claim. Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim. In a manual on how to have a number one​ song, it is stated that a song must be no longer than 210 seconds. A simple random sample of 40 current hit songs results in a mean length of 234.1 sec and a standard deviation of 54.52 sec. Use a 0.05 significance level and the accompanying Minitab display to test the claim that the sample is from a population of songs with a mean greater than 210 sec. What do these results suggest about the advice given in the​ manual?

Answers

Answer:

There is enough evidence to conclude that the sample is from a population of songs with a mean greater than 210 sec.

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = 210 seconds

Sample mean, [tex]\bar{x}[/tex] = 234.1 sec

Sample size, n = 40

Sample standard deviation, s = 54.52 sec

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu \leq 210\text{ seconds}\\H_A: \mu > 210\text{ seconds}[/tex]

We use one-tailed t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{234.1 - 210}{\frac{54.52}{\sqrt{40}} } = 2.795[/tex]

Now, [tex]t_{critical} \text{ at 0.05 level of significance, 9 degree of freedom } = 1.684[/tex]

We calculate the p-value with the help of standard normal table.

P-value = 0.004005

Since,                    

[tex]t_{stat} > t_{critical}[/tex]

We fail to accept the null hypothesis and accept the alternate hypothesis.

Thus, there is enough evidence to conclude that the sample is from a population of songs with a mean greater than 210 sec.

The given data shows that  the sample mean length of 234.1 sec results in a low p-value, it reject the claim that songs must be no longer than 210 seconds.

Explanation of hypothesis testing for mean song length compared to a specific value with given data.

Null hypothesis (H0): The mean length of songs is 210 seconds or less (μ ≤ 210 sec).

Alternative hypothesis (Ha): The mean length of songs is greater than 210 seconds (μ > 210 sec).

Test statistic: Calculate the z-score using the sample mean, population mean, standard deviation, and sample size.

P-value: Using the z-score, find the p-value from the standard normal distribution table.

Conclusion: If the p-value is less than the significance level (0.05), reject the null hypothesis. In this case, if the sample mean length of 234.1 sec results in a low p-value, we reject the claim that songs must be no longer than 210 seconds.

With respect to the number of categories, k, when would a multinomial experiment be identical to a binomial experiment?

a. k = 2
b. k = 3
c. k = 4
d. k = 1

Answers

Answer:

Option A)  k = 2

Step-by-step explanation:

Multimonial Experiment

A multimonial experiment is an experiment with n repeated trials and each trial has a discrete number of possible outcomes.

Binomial Experiment

Binomial experiment is an experiment with n repeated trials and each trial has only two possible outcomes.

Thus, if k  represents the number of possible outcomes, then for k = 2, a multimonial experiment will become a binomial experiment.

Option A)  k = 2

Salmon Weights: Assume that the weights of spawning Chinook salmon in the Columbia river are normally distributed. You randomly catch and weigh 17 such salmon. The mean weight from your sample is 19.2pounds with a standard deviation of 4.4 pounds. You want to construct a 90% confidence interval for the mean weight of all spawning Chinook salmon in the Columbia River.

(a) What is the point estimate for the mean weight of all spawning Chinook salmon in the Columbia River?
pounds

(b) Construct the 90% confidence interval for the mean weight of all spawning Chinook salmon in the Columbia River. Round your answers to 1 decimal place.
< ? <

(c) Are you 90% confident that the mean weight of all spawning Chinook salmon in the Columbia River is greater than 18 pounds and why?

No, because 18 is above the lower limit of the confidence interval.

Yes, because 18 is below the lower limit of the confidence interval.

No, because 18 is below the lower limit of the confidence interval.

Yes, because 18 is above the lower limit of the confidence interval.


(d) Recognizing the sample size is less than 30, why could we use the above method to find the confidence interval?

Because the sample size is greater than 10.

Because we do not know the distribution of the parent population.

Because the parent population is assumed to be normally distributed.

Because the sample size is less than 100.

Answers

Answer:

a) [tex]\bar X= 19.2[/tex] represent the sample mean. And that represent the best estimator for the population mean since [tex]\hat \mu =\bar X=19.2[/tex]  b) The 90% confidence interval is given by (17.3;21.1)  

c) No, because 18 is above the lower limit of the confidence interval.

d) Because the parent population is assumed to be normally distributed.

The reason of this is because the t distribution is an special case of the normal distribution when the degrees of freedom increase.

Step-by-step explanation:

1) Notation and definitions  

n=17 represent the sample size

Part a  

[tex]\bar X= 19.2[/tex] represent the sample mean. And that represent the best estimator for the population mean since [tex]\hat \mu =\bar X=19.2[/tex]  Part b

[tex]s=4.4[/tex] represent the sample standard deviation  

m represent the margin of error  

Confidence =90% or 0.90

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

2) Calculate the critical value tc  

In order to find the critical value is important to mention that we don't know about the population standard deviation, so on this case we need to use the t distribution. Since our interval is at 90% of confidence, our significance level would be given by [tex]\alpha=1-0.90=0.1[/tex] and [tex]\alpha/2 =0.05[/tex]. The degrees of freedom are given by:  

[tex]df=n-1=17-1=16[/tex]  

We can find the critical values in excel using the following formulas:  

"=T.INV(0.05,16)" for [tex]t_{\alpha/2}=-1.75[/tex]  

"=T.INV(1-0.05,16)" for [tex]t_{1-\alpha/2}=1.75[/tex]  

The critical value [tex]tc=\pm 1.75[/tex]  

3) Calculate the margin of error (m)  

The margin of error for the sample mean is given by this formula:  

[tex]m=t_c \frac{s}{\sqrt{n}}[/tex]  

[tex]m=1.75 \frac{4.4}{\sqrt{17}}=1.868[/tex]  

4) Calculate the confidence interval  

The interval for the mean is given by this formula:  

[tex]\bar X \pm t_{c} \frac{s}{\sqrt{n}}[/tex]  

And calculating the limits we got:  

[tex]19.2 - 1.75 \frac{4.4}{\sqrt{17}}=17.332[/tex]  

[tex]19.2 + 1.75 \frac{4.4}{\sqrt{17}}=21.068[/tex]  

The 90% confidence interval is given by (17.332;21.068)  and rounded would be:  (17.3;21.1)

Part c

No, because 18 is above the lower limit of the confidence interval.

Part d

Because the parent population is assumed to be normally distributed.

The reason of this is because the t distribution is an special case of the normal distribution when the degrees of freedom increase.

Records at the UH library show that 12% of all UH students check out books on history, 28% of all UH students check out books on science, and 6% check out books on both history and science. What is the probability that a randomly selected UH student checks out a history book or a science book or both?

Answers

Answer:

There is a 34% probability that a randomly selected UH student checks out a history book or a science book or both.

Step-by-step explanation:

We solve this problem building the Venn's diagram of these probabilities.

I am going to say that:

A is the probability that a UH student checks out books on history.

B is the probability that a UH students checks out books on science.

We have that:

[tex]A = a + (A \cap B)[/tex]

In which a is the probability that a UH student checks a book on history but not on science and [tex]A \cap B[/tex] is the probability that a UH student checks books both on history and science.

By the same logic, we have that:

[tex]B = b + (A \cap B)[/tex]

What is the probability that a randomly selected UH student checks out a history book or a science book or both?

[tex]P = a + b + (A \cap B)[/tex]

We start finding these values from the intersection.

6% check out books on both history and science. So [tex]A \cap B = 0.06[/tex]

28% of all UH students check out books on science. So [tex]B = 0.28[/tex]

[tex]B = b + (A \cap B)[/tex]

[tex]0.28 = b + 0.06[/tex]

[tex]b = 0.22[/tex]

12% of all UH students check out books on history

[tex]A = a + (A \cap B)[/tex]

[tex]0.12 = a + 0.06[/tex]

[tex]a = 0.06[/tex]

So

[tex]P = a + b + (A \cap B) = 0.06 + 0.22 + 0.06 = 0.34[/tex]

There is a 34% probability that a randomly selected UH student checks out a history book or a science book or both.

Each lap around pavia park is 1 7/8 miles. Ellen rode her bike for 3 1/2 laps before leaving the park. How many total miles did ellen ride her bike in pavia park?

Answers

Answer:

Step-by-step explanation:

The distance of each lap around pavia park is 1 7/8 miles. Converting

1 7/8 miles to improper fraction, it becomes 15/8 miles.

Ellen rode her bike for 3 1/2 laps before leaving the park. Converting

3 1/2 laps to improper fraction, it becomes 7/2 laps.

The total number of miles that Ellen rode her bike in pavia park would be the product of the distance of each lap and the number of laps that he covered. It becomes

15/8 × 7/2 = 105/16 = 6.5626 miles

Please help me with these 2 questions! 50 points!

Answers

Answer:x = 9

Step-by-step explanation:

The attached photo is that of the given diagram. b represents the angle adjacent 75 degrees.

If line m is parallel to line n, it means that angle b degrees and angle (10x + 15) are corresponding angles. Corresponding angles are equal.

Therefore,

b = 10x + 15

The sum of angles on a straight line is 180 degrees. It means that

b + 75 = 180

b = 180 - 75 = 105

Therefore

10x + 15 = 105

10x = 105 - 15 = 90

x = 90/10 = 9

Answer:

x = 9°

Step-by-step explanation:

105° must be equal to 10x + 15 ° for lines to be parallel.

> 105° = 10x + 15°

> 10x = 90°

> x = 9°

The sales of a grocery store had an average of $8,000 per day. The store introduced several advertising campaigns in order to increase sales. To determine whether or not the advertising campaigns have been effective in increasing sales, a sample of 64 days of sales was selected. It was found that the average was $8,300 per day. From past information, it is known that the standard deviation of the population is $1,200. The value of the test statistic is:
The p-value is, (round to 4 decimal places):

Answers

Answer:

Null hypothesis:[tex]\mu \leq 8000[/tex]  

Alternative hypothesis:[tex]\mu > 8000[/tex]  

[tex]z=\frac{8300-8000}{\frac{1200}{\sqrt{64}}}=2[/tex]  

[tex]p_v =P(Z>2)=0.0228[/tex]  

Step-by-step explanation:

1) Data given and notation  

[tex]\bar X=8300[/tex] represent the sample mean  

[tex]\sigma=1200[/tex] represent the population standard deviation  

[tex]n=64[/tex] sample size  

[tex]\mu_o =800[/tex] represent the value that we want to test  

[tex]\alpha[/tex] represent the significance level for the hypothesis test.  

z would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test (variable of interest)  

2) State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean is higher than 8000, the system of hypothesis are :  

Null hypothesis:[tex]\mu \leq 8000[/tex]  

Alternative hypothesis:[tex]\mu > 8000[/tex]  

Since we know the population deviation, is better apply a z test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]z=\frac{\bar X-\mu_o}{\frac{\sigma}{\sqrt{n}}}[/tex] (1)  

z-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

3) Calculate the statistic  

We can replace in formula (1) the info given like this:  

[tex]z=\frac{8300-8000}{\frac{1200}{\sqrt{64}}}=2[/tex]  

4) P-value  

Since is a one-side upper test the p value would given by:  

[tex]p_v =P(Z>2)=0.0228[/tex]  

5) Conclusion  

If we compare the p value and the significance level assumed, for example [tex]\alpha=0.05[/tex] we see that [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, so we can conclude that the mean is significantly higher than $8000.  

Find the percentages of people who said​ "yes, definitely",​ "yes, probably",​ "no, probably​ not", and​ "no, definitely​ not".

Answers

Answer:

yes,def=(2399/3713)x100=64.61%

yes,probably= (774/3713)x100=20.85%

yes,probably no= (322/3713)x100=8.67%

yes,def.no= (218/3713)x100=5.87%

Step-by-step explanation:

Data given

We assume the following frequency table:

Type                       Frequency

Yes, definitely          2399

Yes, probably            774

No, probably not       322

No, probably not        218

Total                           3713

Solution to the problem

And for this case in order to find the percentages we can use the definition of percentage frequency with the following formula:

[tex] \% = \frac{Number of people with characteristic}{Total} x100[/tex]

And using this formula we can find the percentages like this:

yes,def=(2399/3713)x100=64.61%

yes,probably= (774/3713)x100=20.85%

yes,probably no= (322/3713)x100=8.67%

yes,def.no= (218/3713)x100=5.87%

HELP! I AM BEING TIMED!!!
According to the Fundamental Theorem of Algebra, which polynomial function has exactly 6 roots?

Answers

Answer:

f(x) = 7x⁶ + 3x³ + 12

Step-by-step explanation:

The number of roots a function has corresponds to the highest exponent value.

In the function f(x) = 7x⁶ + 3x³ + 12 ,

the number 7x⁶ has the highest exponent value of 6, so it'll have 6 roots.

Student scores on exams given by a certain instruc-tor have mean 74 and standard deviation 14. Thisinstructor is about to give two exams, one to a classof size 25 and the other to a class of size 64.(a)Approximate the probability that the averagetest score in the class of size 25 exceeds 80.(b)Repeat part (a) for the class of size 64.(c)Approximate the probability that the averagetest score in the larger class exceeds that ofthe other class by over 2.2 points.(d)Approximate the probability that the averagetest score in the smaller class exceeds that ofthe other class by over 2.2 points.

Answers

Answer:

Step-by-step explanation:

Given that Student scores on exams given by a certain instruc-tor have mean 74 and standard deviation 14.

                                      Group I  X             Group II Y

Sample mean                     74                          74

n                                         25                          64

Std error (14/sqrtn)             2.8                        1.75

a) P(X>80) =[tex]1-0.9839\\= 0.0161[/tex]

b) P(Y>80) = [tex]1-0.9997\\=0.0003[/tex]

c) X-Y is Normal with mean = 0 and std deviation = [tex]\sqrt{2.8^2+1.75^2} \\=3.302[/tex]

P(X-Y>2.2) = [tex]1-0.8411\\=0.1589[/tex]

d) [tex]P(\bar x -\bar Y>2.2) = 0.1589[/tex]

A one­sided test of a hypothesis, based on a sample of size 9, yields a P­value of .035. Which of the following best describes the possible range of t values that yields this P­value? .706 < t < .889 1.11 < t < 1.40 1.34 < t < 1.44 2.45 < t < 2.90 1.86 < t < 2.31

Answers

Answer:

1.86 < t < 2.31

Step-by-step explanation:

State the null and alternative hypotheses.  

We need to conduct a hypothesis in order to check if the mean height actually is higher\lower than an specified value, the system of hypothesis would be:  

Null hypothesis:[tex]\mu \leq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu > \mu_o[/tex]

Or like this:

Null hypothesis:[tex]\mu \geq \mu_o[/tex]  

Alternative hypothesis:[tex]\mu < \mu_o[/tex]

If we analyze the size for the sample is < 30 and we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:  

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".  

Calculate the statistic

We don't know on this case the calculated value and with the p value we can find it.

P-value

The first step is calculate the degrees of freedom, on this case:  

[tex]df=n-1=9-1=8[/tex]  

Since is a one side test the p value would be:  

[tex]p_v =P(t_{(8)}>t_o)=0.035[/tex]

And we can find the critical value with the following excel code:

" =T.INV(1-0.035,8)" and we got [tex]t_p =2.09[/tex]

And cannot be a lower tail test since all the options have positive values for the statistic. So on this case the best option is:

1.86 < t < 2.31

A l-meter steel rod is bent into a rectangle so that its length exceeds quadruple its width
by 5 cm. What are the dimensions of the newly formed rectangle?

Answers

Answer:

The dimensions of the newly formed rectangle is length is 41 cm and width is 9 cm.

Step-by-step explanation:

Given,

A 1 meter steel rod is bent into a rectangle.

That means the perimeter of the rectangle is 1 meter.

So, Perimeter = [tex]1\ m=100\ cm[/tex]

Let the width of the rectangle be 'x'.

Now According to question, length exceeds quadruple its width by 5 cm.

Hence framing the above sentence in equation form, we get;

[tex]Length=4x+5[/tex]

Now we use the formula of  perimeter of rectangle,

[tex]Perimeter=2(Length+width)[/tex]

On substituting the values, we get;

[tex]2(4x+5+x)=100\\\\(5x+5)=\frac{100}{2}\\\\5x+5=50\\\\5x=50-5\\\\5x=45\\\\x=\frac{45}{5}=9[/tex]

Now, we substitute the value of x to get the value of length;

[tex]Length=4x+5=4\times9+5=36+5=41\ cm[/tex]

Thus, Width=9 cm    Length=41 cm

Hence the dimensions of the newly formed rectangle is length is 41 cm and width is 9 cm.

Human body temperatures are normally distributed with a mean of 98.20oF and a standard deviation of 0.62oF If 19 people are randomly selected, find the probability that their mean body temperature will be less than 98.50oF. Your answer should be a decimal rounded to the fourth decimal place

Answers

Answer:

Step-by-step explanation:

Since the human body temperatures are normally distributed, the formula for normal distribution is expressed as

z = (x - u)/s

Where

x = human body temperatures

u = mean body temperature

s = standard deviation

From the information given,

u = 98.20oF

s = 0.62oF

We want to find the probability that their mean body temperature will be less than 98.50oF. It is expressed as

P(x lesser than 98.50)

For x = 98.50,

z = (98.50 - 98.20)/0.62 = 0.48

Looking at the normal distribution table, the corresponding probability to the z score is 0.6844

P(x lesser than 98.50) = 0.6844

A prisoner on trial for a felony is presumed innocent until proven guilty. (That is, innocent is the null hypothesis.) Which of the following represents the risk involved in making a Type II error?

a. The prisoner is actually guilty and the jury sends him to jail.

b. The prisoner is actually innocent and the jury sends him to jail.

c. The prisoner is actually innocent and the jury sets him free.

d. The prisoner is actually guilty and the jury sets him free.

e. The prisoner is sent to jail.

Answers

Answer:

Option D) The prisoner is actually guilty and the jury sets him free.

Step-by-step explanation:

We are given the following in the question:

Null Hypothesis:

The null hypothesis states that the prisoner is innocent

Alternate Hypothesis:

The alternate hypothesis states that the prisoner is guilty and not innocent.

Type II error:

It is the type error made when we fail to reject the ll hypothesis when it is actually false.

That is we accept a false null hypothesis.

Thus a type II error in the above scenario will be to accept that the prisoner is innocent (accepting the null hypothesis) when actually he is guilty( the alternate hypothesis)

Thus, type II error would be setting free a guilty prisoner.

Option D) The prisoner is actually guilty and the jury sets him free.

"The prisoner is actually guilty and the jury sets him free" represents the risk involved in making a Type II error. The correct option is d) The prisoner is actually guilty and the jury sets him free.

In statistical hypothesis testing, particularly in the context of a trial, we have two competing hypotheses:

Null Hypothesis (H₀): The prisoner is innocent (presumed innocent until proven guilty).

Alternative Hypothesis (H₁): The prisoner is guilty.

A Type II error, in this scenario, occurs when the jury fails to reject the null hypothesis (fails to convict the prisoner) when the alternative hypothesis is true (the prisoner is actually guilty).

Let's analyze the options in the context of Type II error:

(a) The prisoner is actually guilty and the jury sends him to jail. This is not a Type II error. This describes a correct decision where the jury convicts the guilty prisoner.

(b) The prisoner is actually innocent and the jury sends him to jail. This is a Type I error, where the jury convicts an innocent person (rejects the null hypothesis when it is true).

(c) The prisoner is actually innocent and the jury sets him free. This is the correct outcome when the jury correctly fails to reject the null hypothesis (the prisoner is innocent).

(d) The prisoner is actually guilty and the jury sets him free. This is a Type II error. Here, the jury fails to reject the null hypothesis (prisoner is innocent) when it is false (prisoner is guilty).

(e) The prisoner is sent to jail. This could happen in both correct decisions (prisoner is guilty) and Type I errors (prisoner is innocent but convicted).

Therefore, the answer that represents the risk involved in making a Type II error is d. The prisoner is actually guilty and the jury sets him free.

A sample of 161children was selected from fourth and fifth graders at elementary schools in Philadelphia. In addition to recording the grade level, the researchers determined whether each child had a previously undetected reading disability. Sixty-six children were diagnosed with a reading disability. Of these children, 32 were fourth graders and 34 were fifth graders. Similarly, of the 95 children with normal reading achievement, 55 were fourth graders and 40 were fifth graders.
a. Identify the two qualitative variables (and corresponding levels) measured in the study.
b. From the information provided, form a contigency table.
c. Assuming that the two variables are independent, calculate the expected cell counts.

Answers

Answer:

Step-by-step explanation:

Given that a sample of 161children was selected from fourth and fifth graders at elementary schools in Philadelphia. In addition to recording the grade level, the researchers determined whether each child had a previously undetected reading disability

a) The two qualitative variables are disability and not having disability and secondly the grades of children

b) Contingency table:

Grade                  4                5                      Total

Normal read.       32              34                        66

Not normal read.  23                6                        29  

Total                      55             40                         95

H0: Reading disability is independent of grade.

Ha: There is association between the two

c)  4 5 Total

Nor read 38.21052632 27.78947368 66

Not norm 16.78947368 12.21052632 29

Expected cells are obtained using the formula

row total*col total/grand total

Find the critical value in the t-distribution for a two-tailed hypothesis test in which α = .05 and df = 15 Round your answer to the thousandth decimal place.

Answers

Answer:[tex]\pm2.131[/tex]

Step-by-step explanation:

The critical value in the t-distribution for a two-tailed hypothesis test is the t-value in the students's t-distribution table corresponding to the [tex]\alpha/2[/tex] and df , where [tex]\alpha=[/tex] significance level and df = Degree of freedom.

We are given , [tex]\alpha=0.05[/tex]

Then,  [tex]\alpha/2=0.025[/tex]

df = 15

Now , from the students's t-distribution table

The  critical value in the t-distribution for a two-tailed hypothesis test is [tex]t=\pm2.131449\approx\pm2.131[/tex]

Hence, the required t-value = [tex]\pm2.131[/tex]

The probability of having a girl is 51%. A couple has 5 children, what is the expected number of girls? (round your answer to the nearest tenth)

Answers

Final answer:

The expected number of girls in a family with five children, given a 51% probability of having a girl, is 2.6 when rounded to the nearest tenth.

Explanation:

The question involves calculating the expected number of girls in a family with five children, given that the probability of having a girl is 51%. The expected value in probability theory is calculated by multiplying each possible outcome by its probability and then summing these values. In this case, since there are five children and each child has a 51% chance of being a girl, the expected number of girls can be found using the formula for the expectation:

Expected number of girls = Total number of children × Probability of having a girl

Therefore, the expected number of girls = 5 × 0.51 = 2.55. Rounding this to the nearest tenth, we get 2.6 girls.

A job shop consists of three machines and two repairmen. The amount of time a machine works before breaking down is exponentially distributed with mean 10. If the amount of time it takes a single repairman to fix a machine is exponentially distributed with mean 8, then(a) what is the average number of machines not in use?(b) what proportion of time are both repairmen busy?

Answers

Answer:

Step-by-step explanation:

Let X(t) denote the number of machines breakdown at time t.

The givenn problem follows birth-death process with finite space

S={0, 1, 2, 3} with

[tex] \lambda_0=\frac{3}{10}, \mu_1=\frac{1}{8}\\\\ \lambda_1=\frac{2}{10}, \mu_2=\frac{2}{8}\\\\ \lambda_2=\frac{1}{10}, \mu_3=\frac{2}{8}[/tex]

The birth-death process having balance equations [tex]\lambda_sP_i=\mu_{s+1}P_{i+1},i=0,1,2[/tex]

since, state  rate at which leave = rate at which enter

            0      [tex]\lambda_0P_0=\mu_1P_1[/tex]

             1     [tex](\lambda_1+\mu_1)P_1= \mu_2P_2 + \lambda_0P_0[/tex]

             2   [tex](\lambda_2+\mu_2)P_2= \mu_3P_3 + \lambda_1P_1[/tex]

[tex]P_1=\frac{12}{5}P_0=P_0=\frac{5}{12}P_1\\\\P_2=\frac{48}{25}P_0=P_0=\frac{25}{48}P_2\\\\P_3=\frac{192}{250}P_0=P_0=\frac{250}{192}P_3[/tex]

Since [tex]\sum\limits^3_{i=0} {P_i=1}\\\\p_0=[1+\frac{5}{12}+\frac{48}{25}+\frac{192}{250}]^{-1}=\frac{250}{1522}[/tex]

a)

Average number not in use equals the mean of the stationary distribution [tex]P_1+2P_2+3P_3=\frac{2136}{751}[/tex]

b)

Proportion of time both repairmen are busy [tex]P_2+P_3=\frac{672}{1522}=\frac{336}{761}[/tex]

Final answer:

The average number of machines not in use is 0.5, and the repairmen are both busy 64% of the time. This has been found under the assumption of exponential distribution for both longevity of machines and repair time. The scenario represents a M/M/2 queue in operations research.

Explanation:

In this scenario, the life of the machines and the repair time are governed by exponential distributions. Exponential distribution is often used to model the amount of time until an event occurs, such as machine failure in this case.

(a) To find the average number of machines not in use, we need to consider the rate of machine breakdown and repair. A machine works an average of 10 hours before failure, which translates to a failure rate of 1/10. A single repairman can fix a machine in an average of 8 hours, meaning a rate of 1/8 per repairman, or 1/4 for two repairmen combined. As there are three machines, the average number of machines in use is the ratio of the arrival rate to the service rate: (1/10) / (1/4) = 2.5 machines. This implies that on average, 0.5 machines are not in use.

(b) Both repairmen will be busy when there are at least two machines that require fixing. The proportion of time in which this is the case is obtained by calculating the probability that the number of machines failed is two or more. This is a problem of queueing theory, in particular an M/M/2 queue. The formula for this probability is P(X >= k) = (1 - rho) * rho^(k) / (1 - rho^(c+1)), where rho = arrival rate / service rate, k = 2, and c = 2 (service channels). Substituting rho = 2.5, we obtain P(X >= 2) = 0.64, meaning that the repairmen are both busy 64% of the time.

Learn more about Exponential Distribution here:

https://brainly.com/question/33722848

#SPJ11

Find the point on the line 5x + y = 7 that is closest to the point (−3, 2).

Answers

Final answer:

To find the closest point on a line to another point, convert the problem into finding a minimum of a distance function, then use calculus (derivatives) to find the minimum.

Explanation:

To solve this problem, you need to identify a goal and an approach using calculus. The goal is to find a point (x, y) on the given line 5x + y = 7 that is closest to the point (−3, 2). This translates into minimizing the distance between (x, y) and (-3, 2) with respect to (x, y).

The distance formula between two points (x1, y1) and (x2, y2) is: √[(x2-x1)²+(y2-y1)²]. For our purposes x1 = -3, y1 = 2 and x2 = x, y2 = y. However, since y is from our given line (5x + y = 7), we can substitute for y = 7 - 5x. Thus, our new distance will become a function in terms of x: d(x) = √[(x - -3)²+(7 - 5x - 2)²].

To minimize it, we should take the derivative of this function, and set it equal to zero, which will give an extreme point (either minimum or maximum). Using the chain-rule results in the minimizing x value, and substituting it back to the line gives us the y value. This resultant point (x, y) would be our answer to the problem.

Learn more about Minimum Distance here:

https://brainly.com/question/24618879

#SPJ11

A television network is deciding whether or not to give its newest television show a spot during prime viewing time at night. If this is to happen, it will have to move one of its most viewed shows to another slot. The network conducts a survey asking its viewers which show they would rather watch. The network receives 827 responses, of which 438 indicate that they would like to see the new show in the lineup. The test statistic for this hypothesis would be:

a. 2.05
b. 1.71
c. 2.25
d. 1.01

Answers

Answer:

b. 1.71

[tex]z=\frac{0.5296 -0.5}{\sqrt{\frac{0.5(1-0.5)}{827}}}=1.71[/tex]  

Step-by-step explanation:

1) Data given and notation

n=827 represent the random sample taken

X=438 represent the  people that indicate that they would like to see the new show in the lineup

[tex]\hat p=\frac{438}{827}=0.5296[/tex] estimated proportion of people that indicate that they would like to see the new show in the lineup

[tex]p_o=0.5[/tex] is the value that we want to test

[tex]\alpha[/tex] represent the significance level

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value

2) Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion is higher than 0.5:  

Null hypothesis:[tex]p \leq 0.5[/tex]  

Alternative hypothesis:[tex]p > 0.5[/tex]  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

3) Calculate the statistic

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.5296 -0.5}{\sqrt{\frac{0.5(1-0.5)}{827}}}=1.71[/tex]  

4) Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level assumed is [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is a right tailed test the p value would be:  

[tex]p_v =P(Z>1.71)=0.044[/tex]  

If we compare the p value obtained and the significance level assumed [tex]\alpha=0.05[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 5% of significance the true proportion is higher than 0.5.  

WILL GIVE LARGE REWARD!

Given: Sector BAC with r=8

Radius of inscribed circle O is 2

Find the area of the sector BAC

Answers

Answer:

21.75 square units

Step-by-step explanation:

Draw a radial line from O to the point where AB intersects the circle.  We'll call this point P.

Draw another radial line from O to the point where arc BC intersects the circle.  We'll call this point Q.

OQ is equal to the radius of the circle, 2.  And AQ is equal to the radius of the sector, 8.  Therefore, the length of AO is 6.

Next, OP is equal to the radius of the circle, 2.  Since AB is tangent to the circle, it is perpendicular to OP.

So we have a right triangle with a hypotenuse of 6 and a short leg of 2.  Finding the angle ∠PAO:

sin ∠PAO = 2/6

∠PAO = asin(1/3)

That means the angle ∠BAC is double that:

∠BAC = 2 asin(1/3)

∠BAC ≈ 38.94°

Therefore, the area of the sector is:

A = (θ/360) πr²

A = (38.94/360) π(8)²

A ≈ 21.75

The area of the sector is approximately 21.75 square units.

A factory cans fresh pineapple in sugar syrup. The manager in charge is interested in estimating the average amount of sugar per can to within 2 mg of the true mean. From previous experiments, he knows that the (true) standard deviation of the sugar content is 15 mg. Each test of measuring the amount of sugar in a can costs $5.00. One thousand dollars have been budgeted for this experiment. Does the manager have enough funds to estimate the average amount of sugar per can with 95% confidence

Answers

Answer:

No. He would need $1,080 to perform a test with this error.

Step-by-step explanation:

To answer this question, we have to calculate the sample size. This is the sample size that allow to estimate the average amount of sugar per can with 95% confidence (95% CI).

The difference between the upper and lower limit of the CI have to be equal or less to e=2 mg. The z value for a 95% CI is z=1.96.

[tex]e\leq z\sigma/\sqrt{n}[/tex]

[tex]e=z\sigma/\sqrt{n}\\\\\sqrt{n}=z\sigma/e=\\\\n=(z\sigma/e)^2=(1.96*15/2)^2=14.7^2=216\\\\n=216[/tex]

The minimum sample size needed for this error is 216. At a cost of $5/test, this sample size would cost [tex]n*p=216*5=\$ 1,080[/tex].

This is over the budget for this experiment ($1000).

a one-parameter family of solutions of the de p' = p(1 − p) is given below.

P =
c1et
1 + c1et
Does any solution curve pass through the point (0, 4)? Through the point (0, 1)? (If yes, give the corresponding value of

c1.
If not, enter DNE.)

(0, 4) __________
(0, 1) _______________

Answers

Answer:

A solution curve pass through the point (0,4) when [tex]c_{1} = -\frac{4}{3}[/tex].

There is not a solution curve passing through the point(0,1).

Step-by-step explanation:

We have the following solution:

[tex]P(t) = \frac{c_{1}e^{t}}{1 + c_{1}e^{t}}[/tex]

Does any solution curve pass through the point (0, 4)?

We have to see if P = 4 when t = 0.

[tex]P(t) = \frac{c_{1}e^{t}}{1 + c_{1}e^{t}}[/tex]

[tex]4 = \frac{c_{1}}{1 + c_{1}}[/tex]

[tex]4 + 4c_{1} = c_{1}[/tex]

[tex]c_{1} = -\frac{4}{3}[/tex]

A solution curve pass through the point (0,4) when [tex]c_{1} = -\frac{4}{3}[/tex].

Through the point (0, 1)?

Same thing as above

[tex]P(t) = \frac{c_{1}e^{t}}{1 + c_{1}e^{t}}[/tex]

[tex]1 = \frac{c_{1}}{1 + c_{1}}[/tex]

[tex]1 + c_{1} = c_{1}[/tex]

[tex]0c_{1} = 1[/tex]

No solution.

So there is not a solution curve passing through the point(0,1).

1. Solve for x:
3(2x – 1) – 10 = 8 + 5x
A. -7
B. -3
C. 19
D. 21

Answers

Answer:

(D) 21

Explanation:

3(2x−1)−10=8+5x

Step 1: Simplify both sides of the equation.

3(2x−1)−10=8+5x

(3)(2x)+(3)(−1)+−10=8+5x(Distribute)

6x+−3+−10=8+5x

(6x)+(−3+−10)=5x+8(Combine Like Terms)

6x+−13=5x+8

6x−13=5x+8

Step 2: Subtract 5x from both sides.

6x−13−5x=5x+8−5x

x−13=8

Step 3: Add 13 to both sides.

x−13+13=8+13

x=21

Answer:

D. 21

Step-by-step explanation:

Given equation: [tex]\[3(2x – 1) – 10 = 8 + 5x\] [/tex]

Simplifying:

[tex]\[6x – 3 – 10 = 8 + 5x\] [/tex]

=> [tex]\[6x – 13 = 8 + 5x\] [/tex]

=> [tex]\[6x – 5x = 8 + 13\] [/tex]

=> [tex]\[(6 – 5)x = 21\] [/tex]

=> [tex]\[x = 21\] [/tex]

Verifying by substituting the value of x in the equation:

Left Hand Side: [tex]\[3(2x – 1) – 10\][/tex]

[tex]\[3(2*21 – 1) – 10\][/tex]

= [tex]\[3(42 – 1) – 10\][/tex]

= [tex]\[3(41) – 10\][/tex]

= [tex]\[123 – 10\][/tex]

= [tex]\[113\][/tex]

Right Hand Side: [tex]\[8 + 5x\][/tex]

= [tex]\[8 + 5*21\][/tex]

= [tex]\[8 + 105\][/tex]

= [tex]\[113\][/tex]

So, Left Hand Side = Right Hand Side when x=21.

Other Questions
What is the slope of this line? y = 2x + 4-1/221/2-2 A widened, stretched-out portion of a blood vessel that forms a bulge is called a(n) ______________. PLZ help super fast thanks Which of the following statements about 16th century and early 17th century peasant life strongly supports the position taken by o.Lofgren in this excerpt?a. Marriage was necessary to support the economic underpinning of a typical family. b. Land-holdings and other implements were divided among the male members of the family. c. Individuals increasingly made their own way in the growing market economy found in rural areas. d. Each member of the peasant family shared in the same kind of work. The most important committees in Congress are permanent bodies that possess an expertise resulting from their jurisdiction over certain policy areas. These are known as what kind of committees? Both MyPlate and the Dietary Guidelines for Americans differ significantly from current eating patterns in the United States. Find the Surface Area of a cone with a slant height of 7 and a radius of 2. Leave your answer in terms of LaTeX: \pi.Group of answer choices 14 28/3 i 18 : 56\pi How did King Menelik Il differ from other 19th-century African leaders? g. Which inventory method would you recommend for reporting for income tax purposes to minimize taxable income? Why? 3. The company is operating in an inflationary environment. Which method should the company use to maximize inventory valuation? Why? 4. Looking at the purchasing volume versus demand, what guidance would you offer to the operations manager regarding inventory management and cash flow? PLEASE ANSWER THE TWO QUESTIONS ABOVE (in the picture)Please SHOW YOUR WORK!!If you answer me without showing your work and/or with I dont know the answer or lwjfwlfizlalsjfxsjdfjek Ill report your account. The customer help center in your company receives calls from customers who need help with some of the customized software solutions your company provides. Your company claims that the average waiting time is seven minutes at the busiest times, 8 a.m. to 10 a.m., Monday through Thursday. One of your main clients has recently complained that every time she calls during the busy hours, the waiting time exceeds seven minutes. You conduct a statistical study to determine the average waiting time with a sample of 35 calls for which you obtain an average waiting time of 8.15 minutes. If the value of your test statistic is less than the critical value, the correct decision is to _____. A. increase the sample size B. reduce the sample size C. fail to reject the seven-minute average waiting time claim D. maintain status quo E. reject the seven-minute claim Widget Corp., a technological firm based in the U.S., mainly relies on staffing its employees from the U.S. for its operations. It adopts the same approach in staffing the top positions of its foreign subsidiaries as they have perfect understanding of the norms and cultures of the parent company. In this case, Widget Corp. follows a(n) _______ in staffing. Illustrate the following with supply and demand curves: In March 2015, hogs in the United States were selling for 81 cents per pound, up from 58 cents per pound a year before. This was due primarily to the fact that supply had decreased during the period. Show this change in the figure on the right. 1.) Using the point drawing tool, locate the equilibrium point for 2015 in the U.S. hog market. Label your point 'E'. 2.) Using the line drawingtool, illustrate the change in the U.S. hog market between 2014 and 2015. Properly label your line 'S2015'. (Hint: Perform the steps in the order given.) Carefully follow the instructions above and only draw the required objects. Determine the voltage across a 2000 pF capacitor that is storing 20 microcouloms (20 C) of charge. Jerry the RBT comes to his clients home for his scheduled ABA session. When Jerry gets there, he finds the client yelling and his mother crying in the corner. How can Jerry help with this immediate situation within the boundaries of his role as an RBT?a. Ignore the mother's crying and begin trying to play catch with his client.b. As the mother what happened in order to know what to do with the client. Make sure she is physically OK and start therapy or behavior plan implementationc. Hug the mother and tell her it is going to be OK ignoring his clientd. Walk out immediately and not provide therapy that day write an equation of a line in slope -intercept form thag is parallel to the line 3x-2y=8 What is the value of g on the surface of Saturn? Assume M-Saturn = 5.6810^26 kg and R-Saturn = 5.8210^7 m.Choose the appropriate explanation how such a low value is possible given Saturn's large mass - 100 times that of Earth.A) This low value is possible because the density of Saturn is so low.B) This low value is possible because the magnetic field of Saturn is so weak.C) This low value is possible because the magnetic field of Saturn is so strong.D) This low value is possible because the density of Saturn is so high. What were the differences between the house and the senate during the impeachment of president Clinton? For the line = 36.5 + .48x, how do you interpret the value .48?rnrm.gifA.It's the amount of change in y when x increases by one unit.rnrm.gifB.It's the value of y when x = 0.rnrm.gifC.It's the value of x when y = 0.rnrm.gifD.It's the mean of the distribution for the response variable (y) around the explanatory variable (x).rnrm.gifE.It's the amount of change in x when y increases by one unit. commercial cold packs consist of solid NH4NO3 and water. In a coffee-cup calorimeter, 5.60g NH4NO3 is dissolved in 100g of water at 22.0C; the temperature falls to 17.9C. Assuming that the specific heat capacity of the solution is 4.18 J/(g*K), calculate the enthalpy of dissolution of NH4NO3, in kJ/mol.