RS 3560 becomes RS 4272 in 8 years at S.I. What will be the simple interest on Rs 6480 in 14 years at the same rate of interest?
(Answer with explanation and working)

Answers

Answer 1

Answer:

[tex]RS\ 8,748[/tex]

Step-by-step explanation:

we know that

The simple interest formula is equal to

[tex]A=P(1+rt)[/tex]

where

A is the Final Investment Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

step 1

Find the rate of interest

in this problem we have

[tex]t=8\ years\\ P=RS\ 3,560\\ A=RS\ 4,272\\r=?[/tex]

substitute in the formula above

[tex]4,272=3,560(1+8r)[/tex]

solve for r

[tex]8r=(4,272/3,560)-1[/tex]

[tex]r=[(4,272/3,560)-1]/8[/tex]

[tex]r=0.025[/tex]

convert to percentage

[tex]r=0.025*100=2.5\%[/tex]

step 2

What will be the simple interest on Rs 6480 in 14 years at the same rate of interest?

we have

[tex]t=14\ years\\ P=RS\ 6,480\\ A=?\\r=0.025[/tex]

substitute in the formula above

[tex]A=6,480(1+0.025*14)[/tex]

[tex]A=6,480(1+0.35)[/tex]

[tex]A=RS\ 8,748[/tex]


Related Questions

You have$560 in an account which pays 4.8% compounded annually. If you invest your money for 8 years, then how many dollars of interest will you earn by the end of term

Answers

Answer:

$ 254.85

Step-by-step explanation:

Total amount invested = $ 560

Interest rate = r = 4.8% = 0.048

Time in years = t = 8 years

The formula for compound interest is:

[tex]A =P(1+\frac{r}{n})^{nt}[/tex]

Here,

A is the total amount accumulated after t years. P is the amount invested initially and n is the compounding periods per year. Since in this case compounding is done annually, n will be 1. Using the values in the above formula, we get:

[tex]A=560(1+\frac{0.048}{1})^{8} = \$ 814.85[/tex]

Thus, the total amount accumulated after 8 years will be $ 814.85

The amount of interest earned will be:

Interest = Amount Accumulated - Principal Amount

Interest = $ 814.85 - $ 560 = $ 254.85

By the end of 8 years, $ 254.85 would be earned in interest.

Use the tables to determine which function will eventually exceed the other, and provide your reasoning.


x f(x)
−1 −5
0 −6
1 −5
2 −2

x g(x)
−1 0.166
0 1
1 6
2 36
f(x) will eventually exceed g(x) because f(x) is an exponential function.
f(x) will eventually exceed g(x) because f(x) has a higher rate of change.
g(x) will eventually exceed f(x) because g(x) is an exponential function.
g(x) will eventually exceed f(x) because g(x) has a higher rate of change.

Answers

Answer:

g(x) will eventually exceed f(x) because g(x) is an exponential function.

Step-by-step explanation:

From the first table we can observe the following patterns:

[tex]f( - 1) = {( - 1)}^{2} - 6 = - 5[/tex]

[tex]f(0) = {( 0)}^{2} - 6 = - 6[/tex]

[tex]f( 1) = {( -1)}^{2} - 6 = - 5[/tex]

[tex]f(2) = {( 2)}^{2} - 6 = - 2[/tex]

In general,

[tex]f(x) = {x}^{2} - 6 [/tex]

From the second table we can observe the following pattern:

[tex]g( - 1) = {6}^{ - 1} = \frac{1}{6} [/tex]

[tex]g(0) = {6}^{ 0} = 1[/tex]

[tex]g(1) = {6}^{1} = 6[/tex]

[tex]g(2) = {6}^{2} = 36[/tex]

In general,

[tex]g( x) = {6}^{ x} [/tex]

Conclusion:

Since the f(x) represents a quadratic function and g(x) represents an exponential function, g(x) will eventually overtake f(x).

The correct answer is C.

Answer: C.

Step-by-step explanation:

Go it right on my test

Use the elimination method to solve the system of equations. Choose the
correct ordered pair,
2y = x + 2
x - 3y = -5

Answers

Answer:

x = 4, y = 3 → (4, 3)

Step-by-step explanation:

[tex]\left\{\begin{array}{ccc}2y=x+2&\text{subtract x from both sides}\\x-3y=-5\end{array}\right\\\\\underline{+\left\{\begin{array}{ccc}-x+2y=2\\x-3y=-5\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad-y=-3\qquad\text{change the signs}\\.\qquad\boxed{y=3}\\\\\text{put the value of y to the second equation:}\\\\x-3(3)=-5\\x-9=-5\qquad\text{add 9 to both sides}\\\boxed{x=4}[/tex]

Y is equal to 3
X is equal to 4

The graph shows the solution to a system of inequalities:

Which of the following inequalities is modeled by the graph?

A.
[tex]4x + 3y \leqslant 12;x \geqslant 0[/tex]
B.
[tex]4x + 3y \geqslant 12;x \geqslant 0[/tex]
C.
[tex]4x - 3y \leqslant 12;x \geqslant 0[/tex]
D.
[tex] - 4x - 3y \leqslant 12;x \geqslant 0[/tex]

Answers

Answer:

Option A. [tex]4x+3y\leq 12[/tex] and [tex]x\geq 0[/tex]

Step-by-step explanation:

we know that

The solution of the first inequality is the shaded area below the solid line [tex]4x+3y=12[/tex]

The solid line passes through the points (0,4) and (3,0) (the y and x intercepts)

therefore

The first inequality is

[tex]4x+3y\leq 12[/tex]

The solution of the second inequality is the shaded area to the right of the solid line x=0

therefore

The second inequality is

[tex]x\geq 0[/tex]

The celsius and Fahrenheit scales are related by the equation C=5/9(f-32). What temperature fahrenheit would give a temperature of 5C?

Answers

Answer:

41F

Step-by-step explanation:

41-32=9

9*5/9=5

Answer:

41 degrees F.

Step-by-step explanation:

C = 5/9(f -  32)

5 = 5/9 (f - 32) Multiply both sides by 9/5:

5 * 9/5 = f - 32

9 = f - 32

f = 9 + 32

= 41.

Patrick David's charge account statement shows an unpaid balance of $110. The monthly finance charge is
2% of the unpaid balance. What is the new account balance?

Answers

Answer:

Step-by-step explanation:

You take the upaid balance of $110 and multiply it by 2%

which will give you $2.20. Then you add the two together and you get your answer of $112.20.

$110.00 x 2% = $2.20

$110.00

   +2.20

$112.20

Final answer:

The new balance on the charge account after applying a 2% finance charge to the unpaid balance of $110 is $112.20.

Explanation:

The student is asking about calculating the new balance on a charge account after a monthly finance charge is applied. To find this, we use the original balance and calculate the finance charge based on the given percentage. Since the unpaid balance is $110 and the monthly finance charge is 2%, we compute the finance charge as $110 × 0.02 = $2.20. Adding this to the unpaid balance gives us the new balance: $110 + $2.20 = $112.20.

Learn more about Finance Charge here:

https://brainly.com/question/2588555

#SPJ2

If the Zeros of a quadratic equation are seven and -4 what would be the x intercepts

Answers

Answer:

7, -4

Step-by-step explanation:

The zeros are just another name for the x intercepts

7, -4

in triange ABC, AB=5 and AC=14. Find The measure of angle c to the nearest degree

Answers

Answer:

The answer is C= 20 degree

Step-by-step explanation:

The answer is C= 20 degree

We have given:

AB= 5

AC = 14

and we have to find ∠c to the nearest degree.

So,

We know that:

tan(C)= AB/AC

tan(C)= 5/14

tan(C)= 0.3571

C=20 degree

Thus the answer is ∠C = 20 degree ....

What is the 20th digit after the decimal point of the sum of the decimal equivalents for the fractions 1/7 and 1/3?

Answers

7
You have to first change the numbers so that they have common numbers then add
After that, you divide the numerator by the denominator.
Work is attached


The constraints of a problem are graphed below. What are
vertices of the feasible region?

Answers

Answer:

(0,0),(0,15),(20,25),(40,0)

Step-by-step explanation:

we know that

The feasible region is a quadrilateral

Let

A,B,C and D the vertices of the feasible region

see the attached figure

Observing the graph we have that

The coordinates of point A are (0,0)

The coordinates of point B are (0,15)

The coordinates of point C are (20,25)

The coordinates of point D are (40,0)

therefore

The answer is

(0,0),(0,15),(20,25),(40,0)

Answer:

A

Step-by-step explanation:

(0,0),(0,15),(20,25),(40,0)

Help me with this please

Answers

Answer:

see explanation

Step-by-step explanation:

Given

4(px + 1) = 64 ( divide both sides by 4 )

px + 1 = 16 ( subtract 1 from both sides )

px = 15 ( divide both sides by p )

x = [tex]\frac{15}{p}[/tex]

When p = - 5, then

x = [tex]\frac{15}{-5}[/tex] = - 3

four less than the quotient of a number cubed and seven, increased by three

Answers

Answer:

(a^3/7) - 4 + 3

Step-by-step explanation:

We need to translate the words into equations:

The quotient of a number cubed and seven: (a^3/7)

four less than the quotient of a number cubed and seven: (a^3/7) - 4

four less than the quotient of a number cubed and seven, increased by three:

(a^3/7) - 4 + 3

In triangle ABC, BG = 24 mm. What is the length of segment
GE?
12 mm
24 mm
36 mm
48 mm

Answers

Answer:

A. 12 mm

Step-by-step explanation:

May I have brainliest please? :)

Answer: A: 12 mm

Step-by-step explanation:

^^

What fraction of an hour is 33 minuets in the simplest form

Answers

Ok.

So an hour contains 60 minutes.

The fraction is therefore,

[tex]\dfrac{33}{60}=\boxed{\dfrac{11}{20}}[/tex]

Hope this helps.

r3t40

Answer:

33 minutes is 11/20 of an hour.

Explanation:

So we know that 30 minutes is equal to half an hour. 30÷60 = 0.5

0.5 as a fraction is equal to 1/2.

Now let's use that same method for 33.

33÷60= 0.55.

0.55×100== 55.

55 as a fraction would be 55/100.

Let's convert that to its simplest form.

55÷5 = 11

100÷5 = 20

33 minutes is 11/20 of an hour.

Instructions:Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). The native bird population in a city is decreasing at a rate of 10% per year due to industrialization of the area by humans. The population of native birds was 14,000 before the decrease began. Complete the recursively-defined function to describe this situation. f(1) = f(n) = f(n - 1) · , for n ≥ 2 After 3 years, birds will remain.

Answers

Answer:

The recursive function is;

f(n)=f(n-1)×0.9 for n≥2

After 3 years, 11340 birds will remain.

Step-by-step explanation:

First the native population was 14,000 before decreasing started, hence this is your f(1)

f(1)=14000

⇒A decrease of 10% is similar to multiplying the native value of birds with 90%

New number of birds = native value × 90% ⇒f(1)×0.9

For second year ,  you multiply the value you get after the first decrease by 0.9 to get the new number of birds;

f(2)=f(1)×0.9= 0.9f(1)=0.9×14000=12600

For the 3rd year, the value of the second year,f(2) is then reduced by 10%. This is similar to multiplying value of f(1) by 90%

f(3)=f(2)×0.9=12600×0.9=11340

Apply the same for the 4th year and above, hence for nth year;

f(n)=f(n-1)×0.9 for n≥2

Find an ordered pair to represent t in the equation t=1/2u+v if u=(-1,4) and v=(3,-2)

Answers

Answer:

t=(2.5,0)

Step-by-step explanation:

Given that

[tex]t=\frac{1}{2} u+v[/tex]

and

u=(-1,4)

v=(3,-2)

Then,substitute value of u and v in the equation

[tex]t=\frac{1}{2} (-1)+3=-\frac{1}{2}+ (3)=2.5\\\\\\\\t=\frac{1}{2} (4)+-2=2+-2=0\\\\\\t=(2.5,0)[/tex]

Answer:

The answer on edge is C

Step-by-step explanation:

A 4cm cube is cut into 1 CM cubes. what is the percentage increase in the surface area after such cutting? ​

Answers

Answer:

400%.

Step-by-step explanation:

The surface area of a 4 cm cube = 6 * 4^2

= 96 cm^2.

The number of 1 cm cubes that can be cut from the larger cube is :

16 * 4 = 64.

The surface area of each of these smaller cubes is 6*1 = 6 cm^2.

The increase in surface area  is a factor of  (6*64) / 96

= 4 = 400%.

Find the tenth term of the
geometric sequence, given the
first term and common ratio.
a =4 and r=1/2​

Answers

Answer:

[tex]\frac{1}{128}[/tex]

Step-by-step explanation:

The n th term of a geometric sequence is

[tex]a_{n}[/tex] = a [tex](r)^{n-1}[/tex]

where a is the first term and r the common ratio, hence

[tex]a_{10}[/tex] = 4 × [tex](\frac{1}{2}) ^{9}[/tex] = 4 × [tex]\frac{1}{512}[/tex] = [tex]\frac{1}{128}[/tex]

Final answer:

The tenth term of the geometric sequence with the first term 4 and the common ratio of 1/2 is calculated using the formula for the nth term. Substituting the given values into the formula and simplifying yields the tenth term as 1/128.

Explanation:

To find the tenth term of a geometric sequence, we use the formula for the nth term in a geometric sequence which is an = a1 x r(n-1), where a1 is the first term, r is the common ratio, and n is the term number.

In this case, the first term a1 is given as 4 and the common ratio r is 1/2. To find the tenth term, we substitute n with 10 in the formula:

a10 = 4 x (1/2)(10-1)

This simplifies to:

a10 = 4 x (1/2)9 = 4 x 1/512 = 4/512 = 1/128

Therefore, the tenth term of the geometric sequence is 1/128.

If a = m 2 + 2, what is the value of a when m = -3? -7 -4 8 11

Answers

Given

a = m(2) + 2value of a when m = -3

Substitute m with -3

a = -3*2 + 2

a = -6 + 2

a = -4

Answer

The value of a when m = -3 is -4

Answer:

=11

Step-by-step explanation:

The equation given is a=m²+2

To find a when m= -3 , we substitute for m in the equation.

a=(-3)²+2

=9+2

=11

Therefore a=11 when m is -3

one positive integer is 7 less than another. The product of two integers is 44. what are the integers?

Answers

Answer:

4 and 11

Step-by-step explanation:

Lets call the smallest n

And the other one n+7

Then,

n.(n+7)=44

n²+7n=44

Subtract 44 from both sides.

n²+7n-44=44-44

n²+7n-44=0

Factorize the equation.

n²+11n-4n-44=0

n(n+11)-4(n+11)=0

(n+11)(n-4)=0

n+11=0 , n-4=0

n=-11 , n=4

n=4 is the only positive solution, so the numbers are:

4 and 11....

Answer:

The two integers are: 4 and 11.

Step-by-step explanation:

We are given that one positive integer is 7 less than another. Given that the product of two integers is 44, we are to find the integers.

Assuming [tex]x[/tex] to be one positive integer and [tex]y[/tex] to be the other, we can write it as:

[tex]x=y-7[/tex] --- (1)

[tex]x.y=44[/tex] --- (2)

Substituting x from (1) in (2):

[tex](y-7).y=44[/tex]

[tex]y^2-7y-44=0\\\\y^2-11y+4y-44=0\\\\y(y-11)+4(y-11)[/tex]

y = 11

Substituting y = 11 in (1) to find x:

[tex]x=11-7[/tex]

x = 4

P is a prime number and q is a positive integers such that p + q = 1696 IF P and Q are co primes and their Lcm is 21879 Then find p and q

Answers

Answer:

P = 1 3  

Q = 1 6 8 3

Step-by-step explanation:

through factorization of 21879

one line segment is 5 cm more than four times the length of another the difference in their lengths is 35cm how long are they​

Answers

[tex] \text{Equations}x=4y+5\\x-y=35\\\text{solving}4y+5-y=35\\3y=30\\\boxed{y=10}\\x=4(10)+5\\\boxed{x=45}[/tex]

Answer:

Length of the segments will be 10 cm and 45 cm.

Step-by-step explanation:

Let the length of one segment is x.

Then by the statement of this question,

"one segment is 5 cm more than four times the length of another".

Length of other segment = 4x + 5

(4x + 5) - x = 35

4x + 5 - x = 35

3x + 5 = 35

3x = 35 - 5

3x = 30

x = 10 cm

Length of other segment = 4(10) + 5 = 45 cm

Therefore, two segments are of length 10 cm and 45 cm.

PLEASE HELLPPPPPPPP​

Answers

Answer:

6

Step-by-step explanation:

f(0) means let x=0

In the table when x=0 f(0) =6

The perimeter of a rectangle can be found using the equation P = 2L + 2W, where P is the perimeter, L is the length, and W is the width of the rectangle. Can the perimeter of the rectangle be 60 units when its width is 12 units and its length is 18 units?

A)No. If the rectangle has L = 18 and W = 12, P would not equal 60.
B) No. The rectangle cannot have P = 60 and L = 18 because L + W is less than 24.
C) Yes. The rectangle can have P = 60 and L = 18 because 60 = 24 + 18.
D)Yes. The rectangle can have P = 60 and L = 18 because P = 2(18) + 2(12) would equal 60.

Answers

Answer:

D)Yes. The rectangle can have P = 60 and L = 18 because P = 2(18) + 2(12) would equal 60

Step-by-step explanation:

The formula for the perimeter of a rectangle is [tex]P=2L+2W[/tex].

If the width is [tex]W=12\:units[/tex] and the length is [tex]L=18\:units[/tex], then the perimeter becomes:

 [tex]P=2\times 12+2\times 18[/tex].

 [tex]\implies P=24+36[/tex].

 [tex]\implies P=60[/tex].

Therefore the answer is

D)Yes. The rectangle can have P = 60 and L = 18 because P = 2(18) + 2(12) would equal 60

Answer:

D)Yes. The rectangle can have P = 60 and L = 18 because P = 2(18) + 2(12) would equal 60

Step-by-step explanation:

The formula for the perimeter of a rectangle is .

If the width is  and the length is , then the perimeter becomes:

 .

 .

 .

Therefore the answer is

D)Yes. The rectangle can have P = 60 and L = 18 because P = 2(18) + 2(12) would equal 60

Write the equation of the line in slope-intercept form that has the following points: (2, -1)(5, -3) y = -2x + 1/3 y = -2/3x + 1 y = -2x + 1 y = -2/3x + 1/3

Answers

Answer:

[tex]\large\boxed{y=-\dfrac{2}{3}x+\dfrac{1}{3}}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

===============================================

We have the points (2, -1) and (5, -3). Substitute:

[tex]m=\dfrac{-3-(-1)}{5-2}=\dfrac{-2}{3}=-\dfrac{2}{3}[/tex]

We have the equation:

[tex]y=-\dfrac{2}{3}x+b[/tex]

Put the coordinates of the point (2, -1):

[tex]-1=-\dfrac{2}{3}(2)+b[/tex]

[tex]-1=-\dfrac{4}{3}+b[/tex]     add 4/3 to both sides

[tex]\dfrac{1}{3}=b\to b=\dfrac{1}{3}[/tex]

Finally:

[tex]y=-\dfrac{2}{3}x+\dfrac{1}{3}[/tex]

4. A student is chosen at random from the student body at a given high school. The probability that the

student selects Math as the favorite subject is 1/4. The probability that the student chosen is a junior is

116/459. If the probability that the student selected is a junior or that the student chooses Math as the

favorite subject is 47/108, what is the exact probability that the student selected is a junior whose

favorite subject is Math?

Answers

Answer:

The exact probability that the student selected is a junior whose  favorite subject is Math is [tex]\frac{124}{459}[/tex].

Step-by-step explanation:

Let the following events represents by the alphabets A and B.

A: Student selects Math as the favorite subject

B: Student chosen is a junior

The probability that the  student selects Math as the favorite subject is 1/4.

[tex]P(A)=\frac{1}{4}[/tex]

The probability that the student chosen is a junior is

[tex]P(B)=\frac{116}{459}[/tex]

The probability that the student selected is a junior or that the student chooses Math as the  favorite subject is 47/108.

[tex]P(A\cup B)=\frac{47}{108}[/tex]

[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]

[tex]\frac{47}{108}=\frac{1}{4}+\frac{116}{459}-P(A\cap B)[/tex]

[tex]P(A\cap B)=\frac{1}{4}+\frac{116}{459}-\frac{47}{108}=\frac{31}{459}[/tex]

The exact probability that the student selected is a junior whose  favorite subject is Math is

[tex]P(\frac{B}{A})=\frac{P(A\cap B)}{P(A)}[/tex]

[tex]P(\frac{B}{A})=\frac{\frac{31}{459}}{\frac{1}{4}}=\frac{124}{459}[/tex]

Therefore the exact probability that the student selected is a junior whose  favorite subject is Math is [tex]\frac{124}{459}[/tex].

The exact probability that the student selected is a junior whose favourite subject is maths is 124/459

What is probability?

It is defined as the ratio of the number of favourable outcomes to the total number of outcomes, in other words, the probability is the number that shows the happening of the event.

We have:

The probability that the student selects Maths the favourite subject:

P(A) = 1/4

The probability that the student chosen is a junior:

P(B) = 116/459

The probability that the student selected is a junior or that the student chooses maths the favourite subject:

P(A∪B) = 47/108

We know:

P(A∩B) = P(A) + P(B) _P(A∪B)

P(A∩B) = 1/4 + 116/459 - 47/108

P(A∩B) = 31/459

The exact probability that the student selected is a junior whose favourite subject is maths:

P(B|A) = P(A∩B) /P(A)

= (31/459)/(1/4)

= 124/459

Thus, the exact probability that the student selected is a junior whose favourite subject is maths is 124/459

Learn more about the probability here:

brainly.com/question/11234923

#SPJ2

Find the distance between the points (-3, 2) and (4, -5)

Answers

Answer:

[tex]\large\boxed{7\sqrt2}[/tex]

Step-by-step explanation:

The formula of a distance between two points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

We have the points (-3, 2) and (4, -5). Substitute:

[tex]d=\sqrt{(4-(-3))^2+(-5-2)^2}=\sqrt{7^2+(-7)^2}=\sqrt{49+49}=\sqrt{(49)(2)}\\\\\text{use}\ \sqrt{ab}=\sqrt{a}\cdot\sqrt{b}\\\\=\sqrt{49}\cdot\sqrt2=7\sqrt2[/tex]

For a sequence an=3/n(n+1) what is the value of a 10

Answers

Answer:

[tex]\large\boxed{a_{10}=\dfrac{3}{110}}[/tex]

Step-by-step explanation:

Put n = 10 to the equation [tex]a_n=\dfrac{3}{n(n+1)}[/tex]

[tex]a_{10}=\dfrac{3}{10(10+1)}=\dfrac{3}{10(11)}=\dfrac{3}{110}[/tex]

For this case we have the following sequence:

[tex]a_ {n} = \frac {3} {n (n + 1)}[/tex]

We must find the value of[tex]a_ {10}[/tex], then, substituting [tex]n = 10[/tex] in the formula we have:

[tex]a_ {10} = \frac {3} {10 (10 + 1)}\\a_ {10} = \frac {3} {10 * 11}\\a_ {10} = \frac {3} {110}[/tex]

ANswer:

[tex]a_ {10} = \frac {3} {110}[/tex]

Consider the polynomial p(x)=x^3-9x^2+18x-25, which can be rewritten as p(x)=(x-7)(x^2-2x+4)+3 . The number _[blank 1]_ is the remainder whenp(x) is divided by x-7, and so _[blank 2]_ a factor of p(x)

What is blank 1 and 2?

options:
a)7
b)is
c)is not
d)0
e)3

Answers

Answer:

Blank 1: 3 is the remainder

Blank 2: not a factor

Step-by-step explanation:

If p(x)=(x-7)(x^2-2x+4)+3, then dividing both sides by (x-7) gives:

[tex]\frac{p(x)}{x-7}=(x^2-2x+4)+\frac{3}{x-7}[/tex].

The quotient is [tex](x^2-2x+4)[/tex].

The remainder is [tex]3[/tex].

The divisor is [tex](x-7)[/tex].

The dividend is [tex]p(x)=x^3-9x^2+18x-25[/tex].

It is just like with regular numbers.

[tex]\frac{11}{3}[/tex] as a whole number is [tex]3\frac{2}{3}[/tex].

[tex]3\frac{2}{3}=3+\frac{2}{3}[/tex] where 3 is the quotient and 2 is the remainder when 11 is divided by 3.

 Here is the division just for reminding purposes:

                        3 <--quotient

                      ----

divisor->  3  |   11  <--dividend

                       -9

                        ---

                         2   <---remainder

Anyways just for fun, I would like to verify the given equation of

p(x)=(x-7)(x^2-2x+4)+3.

I would like to do by dividing myself.

I could use long division, but I have a choice to use synthetic division since we are dividing by a linear factor.

Since we are dividing by x-7, 7 goes on the outside:

         x^3-9x^2+18x  -25

7   |    1     -9        18    -25

    |            7       -14     28

     -------------------------------

          1      -2       4         3

We have confirmed what they wrote is totally correct.

The quotient is [tex]x^2-2x+4[/tex] while the remainder is 3.

If p/(x-7) gave a remainder of 0 then we would have said (x-7) was a factor of p.

It didn't so it isn't.

Just like with regular numbers. Is 3 a factor of 6? Yes, because the remainder of dividing 6 by 3 is 0.

Describe an example of an augmented matrix.

Answers

Answer:

Step-by-step explanation:

When we join the columns of two or more matrices having the same number of rows it is known as augmented matrix.

Let A= [tex]\left[\begin{array}{ccc}1&6\\0&3\\\end{array}\right][/tex]

     B= [tex]\left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right][/tex]

Then the augmented matrix is(A|B)

Note that a vertical line is used to separate te columns of A from the columns of B

(A|B) [tex]\left[\begin{array}{ccc}1&6\\0&3\\\end{array}\right | \left\begin{array}{ccc}1&0\\0&1\\\end{array}\right][/tex]

This is a simple example of augmented matrix....

Answer:

An augmented matrix refers to a matrix formed by appending the columns of two matrices.

The perfect example to show this is a linear systems of equations, because there we have a matrix formed by the coeffcients of the variables only, and we have a second matrix formed by the constant terms of the system.

If we have the system

[tex]2x+3y=5\\x-4y=9[/tex]

The two maxtrix involved here are

[tex]\left[\begin{array}{ccc}2&3\\1&-4\end{array}\right] \\\left[\begin{array}{ccc}5\\9\end{array}\right][/tex]

However, to solve the system using matrices, we have to formed an augmented matrix

[tex]\left[\begin{array}{ccc}2&3&5\\1&-4&9\end{array}\right][/tex]

So, as we defined it at the beginning, an augmented matrix is the appending of colums from two matrices to form one.

Other Questions
The sun was going down and looking up along the bank as we drove I saw the Austrian observation balloons above the hills on the other side dark against the sunset. A Farewell to Arms, Ernest Hemingway The image of the observation balloons moving across the sunset is created using .options-no adjectives-few adjectives CORRECT ANSWER-many adjectives how might new technologies create advantages over an enemy Given a String variable named line1 and given a Scanner reference variable stdin that has been assigned a reference to a Scanner object, read the next line from stdin and save it in line1. (Do not concern yourself with any possible exceptions here-- assume they are handled elsewhere.) 8. (8 marks) Prove that for all integers m and n, m + n and m-n are either both even or both odd In "The Story of an Hour," which cultural norm is the story mainly addressing?the cultural expectation of honesty over lyingthe advantages of marriageequality of women in the workplacethe role of women in society NEED HELP WITH THIS ASAP Write and solve an equation using the constant of proportionality to answer each question.The ratio between the number of children (c) on a field trip and number of teachers (t) on the trips is 14/3. There are 70 children on the field trip.how many teachers are on the trip? Who sang for audrey hepburn in my fair lady What is the determinant of 1518154 For certain workers, the mean wage is $5.00/hr, with a standard deviation of $0.25. If a worker is chosen at random, what is the probability that the workers wage is between $4.25-$5.75. Assume a normal distribution of wages. Map 11. Describe the location of Greek homeland (including Macedonia) before 334 BCE.2. How did Alexander gain control of all of Greece?Map 23. By 332 BCE, which regions had fallen to Alexanders army?Map 34. Why was the Battle of Gaugamela an important turning point in Alexanders conquest of the Persian Empire?5. After Gaugamela, what were the main Persian cities on Alexanders route?Map 46. How far east did Alexanders empire reach? How does this compare to the previous map?Follow Up Questions7. How did Alexanders attempt to make his empire secure help lead to the Hellenistic Age?8. How did the geography of the world change during the period of Alexanders rule? Which statement best describes a long-term consequence of the policy ofisolation enforced by the Ming and Qing dynasties?OA. China was unable to maintain its traditions or culture.OB. China was able to rapidly advance shipbuilding and militarytechnology.OC. China could not prevent the Mongol Empire from regaining controlover the country.OD. China experienced limited economic growth. Today this is a bustling port city. But it was once home to one of the Seven Wonders of the World! Which city is it? What was the major economy of the middle colonies? 5O POINTS! URGENT! I need some help with these questions:1. Is forced impeachment a legal punishment?Yes/ No2. Do personnel have the right to court?Yes/No/Unsure3. How long is the statute of limitations for a murder case? *7 days3 weeks1 monthUnsure4. what is the equation of a line that contains the points 5,0 and 5, -2x=5x=0y=0y=5 "In the past few years, McDonalds has made a lot of changes to its menu, adding more healthy choices and more higher-priced items, such as those offered in McCaf (e.g., premium roast coffee, antibiotic-free chicken, and fruit smoothies), and has also enhanced its in-restaurant services (e.g., free, unlimited Wi-Fi; upgraded interiors). Did McDonalds new prioritiesin terms of a broader, healthier menu and an improved in-restaurant experiencerequire changes to its traditional value chain activities? If so, how? Try to be as specific as possible in comparing the McDonalds from the recent past (focusing on low-cost burgers) to the McDonalds of today." Cul de las siguientes palabras tiene dos usos, un masculino y otro femenino?A) SistemaB) ArtistaC) LlaveD) Tnel Which of the following is a function of a signal peptide? A) To bind RNA polymerase to DNA and initiate transcription B) To direct mRNA molecules into the cisternal space of the ER C) To terminate translation of the messenger RNA D) To translocate polypeptides across the ER membrane Solve this inequality