Sodium is produced by electrolysis of molten sodium chloride. what are the products at the anode and cathode, respectively?

Answers

Answer 1

Answer is: chlorine and sodium.

Molten sodium chloride is separeted::
2NaCl(l) → 2Na(l) + Cl₂(g), 
but first ionic bonds in this salt are separeted because of heat: 
NaCl(l) → Na⁺(l) + Cl⁻(l).

Reaction of reduction at cathode(-): Na⁺(l) + e⁻ → Na⁰(l) /×2.

2Na⁺(l) + 2e⁻ → 2Na(l)

Reaction of oxidation at anode(+): 2Cl⁻(l) → Cl₂(g) + 2e⁻.

The anode is positive and the cathode is negative.

Answer 2
Final answer:

In electrolysis of molten sodium chloride, sodium metal is produced at the negatively charged cathode and chlorine gas is produced at the positively charged anode.

Explanation:

The process of producing sodium via the electrolysis of molten sodium chloride involves a Downs cell. In this setup, sodium ions migrate to the negatively charged cathode, pick up electrons, and are reduced to sodium metal. Chloride ions, meanwhile, migrate to the positively charged anode, lose electrons, and undergo oxidation to form chlorine gas. Therefore, at the cathode, the product is sodium metal and at the anode it is chlorine gas.

Learn more about Electrolysis of Sodium Chloride here:

https://brainly.com/question/24358068

#SPJ3


Related Questions

Classify these solids as molecular, ionic, or atomic. co2 c cacl2 c6h12o6 kbr pbs

Answers

Explanation:

Molecular compounds :  Molecular compounds are formed by the sharing of electrons with each elements.

Ionic compound : When compounds are formed by the transfer of electrons, they are called Ionic compounds.

Atomic species : Species comprised of only atom.

Co2 -- Molecular

C --     Atomic

CaCl2  -- Ionic

C6H12O6 --- Molecular

KBr  ---  Ionic

PbS  ---- Ionic

The above compounds can be classified as;

CO₂- Molecular compound

C - Atomic compound

CaCl₂ - ionic compound

C₆H₁₂O₆ - Molecular compound

KBr - Ionic compound

PbS - Ionic compound

Further Explanation:A compound  A compound is a substances that contains two or more different atoms that are bonded together.When the atoms are similar the substance is known as a molecule, therefore not all molecules are compounds.Types of compounds Ionic compounds Ionic compounds are compounds that contain ions. They are as a result of ionic bonding between a metal atom and a non-metal atom.During ionic bonding formation the metallic atom looses electrons while the non-metallic atom gains electrons.Ionic compounds contains both negatively charged ion(anion) and positively charged ion (cation).Examples of ionic compounds, NaCl, LiF, KCl, Cs2S, KBr, PbS etc.

Molecular compounds

Molecular compounds are covalent compounds that are formed when atoms of elements share electrons in a covalent bond to form molecules.Molecular covalent compounds are formed between non-metal atoms as a result of covalent bond between non-metal atoms.These compounds are electrically neutral.Examples of molecular compounds include; CO₂, H₂O, NO, SF₆, etc.

Atomic covalent compounds

Atomic compounds are also an example of covalent compounds that result from sharing of electrons between non-metal atoms in a covalent bond.Usually atoms of the same element such as carbon are joined together by a covalent bond.Examples of such compounds are, diamond and graphite.

Keywords: Compound, types of compounds, ionic compounds, molecular compounds, atomic compounds

Learn more about:

A compound: https://brainly.com/question/2272966Types of compounds: https://brainly.com/question/861309Ionic compound: https://brainly.com/question/2450458Examples of ionic compounds: https://brainly.com/question/2450458Molecular compound; https://brainly.com/question/8129823

Level : High school

Subject: Chemistry

Topic: Structure and bonding

Sub-topic: Types of structures and compounds

The voltage generated by the zinc concentration cell described by the line notation zn(s) ∣∣ zn2+(aq,0.100 m) ∥∥ zn2+(aq,? m) ∣∣ zn(s) is 14.0 mv at 25 °c. calculate the concentration of the zn2+(aq) ion at the cathode.

Answers

Answer: The concentration of [tex]Zn^{2+}[/tex] ion at cathode is 0.295 M

Explanation:

The half reactions for the cell is:

Oxidation half reaction (anode):  [tex]Zn(s)\rightarrow Zn^{2+}(0.100M,aq.)+2e^-[/tex]

Reduction half reaction (cathode):  [tex]Zn^{2+}(?M,aq.)+2e^-\rightarrow Zn(s)[/tex]

In this case, the cathode and anode both are same. So, [tex]E^o_{cell}[/tex] will be equal to zero.

To calculate cell potential of the cell, we use the equation given by Nernst, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Zn^{2+}]_{anode}}{[Zn^{2+}]_{cathode}}[/tex]

where,

n = number of electrons in oxidation-reduction reaction = 2

[tex]E_{cell}[/tex] = 14.0 mV = 0.014 V    (Conversion factor:  1 V = 1000 mV)

[tex][Zn^{2+}]_{anode}[/tex] = 0.100 M

[tex][Zn^{2+}]_{cathode}[/tex] = ? M

Putting values in above equation, we get:

[tex]0.014=0-\frac{0.0592}{2}\log \frac{0.100M}{[Zn^{2+}]_{cathode}}[/tex]

[tex][Zn^{2+}]_{cathode}=0.295M[/tex]

Hence, the concentration of [tex]Zn^{2+}[/tex] ion at cathode is 0.295 M

The concentration of Zn²⁺  ion at cathode is 0.295 M

Redox half equations

The redox half equations are those of oxidation and reduction

Oxidation half reaction: Zn(s) ---> Zn²⁺ + 2 e⁻ [Zn⁺] = 0.100 M

reduction half reaction: Zn²⁺ (aq) + 2 e⁻ ----> Zn (s)  [Zn⁺] = y

The Ecell = 14.0mV = 0.014 V

Using the Nernst equation:

Ecell = E°cell - 0.0592/n * log([Zn⁺]anode/[Zn⁺]cathode)since it is a concentration cell, E°cell = 0

where n is number moles; n = 2

0.014 =  0 - 0.0592/2 * log (0.1/y)

y = 0.295 M

Therefore, the concentration of Zn²⁺  ion at cathode is 0.295 M

Learn more about concentration cells at: https://brainly.com/question/15394851

Methanol (ch3oh) can be made by the reaction of co with h2: co(g)+2h2(g)⇌ch3oh(g) to maximize the equilibrium yield of methanol, would you use a high or low temperature?

Answers

The enthalpy of the creation of Methanol is negative. This means heat is released when the reaction proceeds. You would want to use a low temperature.

Vanillin, c8h8o3 (m = 152 g/mol), is the molecule responsible for the vanilla flavor in food. how many oxygen atoms are present in a 45.0 mg sample of vanillin?

Answers

Molecular weight of vanillin = 152 g/mol

Futher molecular formula of vanillin is C8H8O3

Atomic weight of oxygen = 16 g/mol

Thus, 152 g of vanillin contains 16 g of oxygen
∴   0.045 g  (45 mg) of vanillin contains [tex] \frac{16X0.045}{152} [/tex] = 0.00473 g

Also, number of moles of vanillin in 0.045 g sample = [tex] \frac{weight}{molecular.weight} = \frac{0.045}{152} = 2.96X10^{-4} [/tex]
Now, 1  mole = 6.023 X 10^23 molecules
∴    2.96 X 10^-4 mole = 1.78 X 10^20 molecules

From molecular formula, it can be seen that 1 molecule of vanallin contain 3 atoms of oxygen
∴1.78 X 10^20 molecules contain 3 X 1.78 X 10^20 = 5.34 X 10^20 oxygen atoms
Final answer:

In a 45.0 mg sample of vanillin, there are approximately 5.36 x 10^20 oxygen atoms. The calculation involves converting the mass of the sample to grams, calculating the number of moles, and using Avogadro's number to determine the number of oxygen atoms.

Explanation:

The question is asking how many oxygen atoms are present in a 45.0 mg sample of vanillin, which is a molecule responsible for the vanilla flavor in food. The molecular formula of vanillin is C8H8O3 and its molar mass is 152 g/mol.

First, we have to convert the mass of the sample from milligrams (mg) to grams (g) because the molar mass is in grams. Therefore, 45.0 mg equals 0.045 g.

Next, we calculate the number of moles of vanillin in the sample using the equation:

Number of moles = Mass / Molar mass

Substituting the given values:

Number of moles = 0.045 g / 152 g/mol = 2.96 x 10^-4 moles.

Each molecule of vanillin contains 3 oxygen atoms. Therefore, in one mole of vanillin, there are 3 moles of oxygen atoms. From the concept of Avogadro's number, we know that one mole of any substance contains 6.02 x 10^23 entities (atoms, molecules, ions etc.).

Therefore, in 2.96 x 10^-4 moles of vanillin, we have (3 moles O atoms / mole of vanillin) x (2.96 x 10^-4 moles of vanillin) x (6.02 x 10^23 O atoms / mole of O atoms) = 5.36 x 10^20 oxygen atoms.

Learn more about Oxygen atoms in vanillin here:

https://brainly.com/question/10070220

#SPJ3

The presence of which magnetic feature best explains why a magnet can act at a distance on other magnets or on objects containing certain metals?

Answers

The magnetic forces exerted by the magnet can act at a distance on other magnets or on objects containing certain metals. The magnetic fields showcase the presence of magnetic forces. The magnetic forces arise due to attraction and repulsion of the poles inside the material. Opposite poles attract each other while similar poles repel each other.

Answer:

Magnetic fields.

Explanation:

Hello,

The presence of a magnetic fields best explains why a permanent magnet can act on another magnetic objects when are separated by a certain distance. There exist magnetic field lines which are emanated from the north pole to the south pole whose path is curved. Now, take into account that the longer the distance between the objects, the lower the magnetic field or force.

Best regards.

What is the effect of removing some so3 from a system initially at equilibrium?

Answers

The reaction is as follow,

                             2 SO₂(g) + O₂ (g)     ⇄     2 SO₃ (g)

According to Le Chatelier's Principle," when a system at equilibrium is subjected to any external stress (like changing temperature, pressure or concentration) the system will tend to adjust itself in such a way to minimize the effect of that stress.

In given reaction, when the equilibrium is disturbed by removing SO₃ from the system then the equilibrium will shift in the forward direction resulting in consumption of more reactants. Or if the Oxygen gas is in excess then the concentration of SO₂ will decrease more.

Answer:

Right

Left

Left

Right

Explanation:

For the equilibrium system described by this equation, what will happen if SO3 is removed?

The equilibrium shifts to the

✔ right

What will happen if NO is added?

The equilibrium shifts to the  

✔ left

.For the equilibrium system described by this equation, what will happen if SO2 is removed?

The equilibrium shifts to the  

✔ left

.

What will happen if NO2 is added?

The equilibrium shifts to the  

✔ right

When water reaches its boiling point and turns into water vapor what happens to the molecules structure

Answers

Answer:
            The molecular structure will remain the same.

Explanation:
                   When water is heated, the heat supplied breaks down the intermolecular interactions (Hydrogen bondings) between the water molecules. This results in conversion of liquid state to gas state and water vapors evaporate. 
                    While the molecular structure keeps intact. It is not changed. Hence, when the heat is removed the vapors of water condense back to liquid state and releases the heat which was absorbed during vaporization.

Which of these do not obey the octet rule? select all that apply. select all that apply. clo clo− clo2− clo3− clo4−?

Answers

[tex]\boxed{{\text{ClO,ClO}}_{\text{2}}^ - {\text{,ClO}}_{\text{3}}^ - {\text{,ClO}}_{\text{4}}^ - }[/tex] does not follow the octet rule.

Further Explanation:

Octet rule: states that for the stability of any element it must have a valence shell of eight electrons (octet means a group of eight). This rule is given by Kossel and Lewis.

Atoms of same or different elements with an incomplete electronic configuration that is having electrons less than 8 are unstable and they combine together to form stable molecules with a complete octet. They can combine by sharing of electrons or loss or gain of electrons.

In [tex]{\mathbf{ClO}}[/tex], Chlorine (Cl) has 7 electrons in its outer shell and oxygen  has 6 electrons in its outer shell. So chlorine and oxygen share 2 electrons each to complete their octet and attain stability. Chlorine atom in the compound has ten electrons in its outer shell so it doesn’t follow the octet rule.

In [tex]{\mathbf{Cl}}{{\mathbf{O}}^ - }[/tex], Chlorine(Cl) has 7 electrons in its outer shell and oxygen has a unit negative charge on it [tex]\left( {{{\text{O}}^ - }} \right)[/tex] so, it has 7 electrons also in its outer shell. So chlorine and oxygen share one electron each to complete their octet and attain stability. All the atoms have eight electrons in their outer shell so they follow the octet rule.

In [tex]{\mathbf{ClO}}_2^ -[/tex], Chlorine (Cl) has 7 electrons in its outer shell and there is 2 oxygen attached to Cl. One has a unit negative charge on it [tex]\left( {{{\text{O}}^ - }} \right)[/tex] and the other is neutral. So, chlorine and neutral oxygen share 2 electrons each to get a stable octet and form a double bond. Similarly, chlorine shares 1 electron with oxygen ion with a negative charge on it forming a single bond with it. A chlorine atom has ten electrons in its outer shell so the compound doesn’t follow the octet rule.

In [tex]{\mathbf{ClO}}_3^ -[/tex], Chlorine (Cl) has 7 electrons in its outer shell and there is 3 oxygen attached to Cl. One has a unit negative charge on it [tex]\left( {{{\text{O}}^ - }} \right)[/tex] and the other two are neutral. So, chlorine and both neutral oxygen share 2 electrons to get a stable octet and form a double bond. Similarly, chlorine shares 1 electron with oxygen ion with a negative charge on it, forming a single bond with it. Here, Cl has ten electrons in its outer shell, so it doesn’t follow the octet rule.

In [tex]{\mathbf{ClO}}_4^ -[/tex] , Chlorine (Cl) has 7 electrons in its outer shell and there is 4 oxygen attached to Cl. One has a unit negative charge [tex]\left( {{{\text{O}}^ - }} \right)[/tex]on it and the other three are neutral. So, chlorine and both neutral oxygen share 2 electrons to get a stable octet and form a double bond. Similarly, chlorine shares 1 electron with oxygen ion with a negative charge on it, forming a single bond with it.  

Here, Cl has fourteen electrons in its outer shell, so it doesn’t follow the octet rule.

Learn more:

1. The octet rule states that:https://brainly.com/question/1601832

2. How many covalent bond nitrogen forms: https://brainly.com/question/5974553

Answer details:

Grade: Secondary School

Subject: Chemistry

Chapter: Chemical Bonding

Keywords: octet rule, stability, oxygen, chlorine, covalent, sharing, ClO2-, ClO3-, ClO4-, ClO-and ClO.

The species that do not obey the octet rule are; ClO, ClO2^-, ClO3^-, ClO4^-.

The octet rule states that atoms must have eight electrons in their outermost shell in order to attain stability. Hence, stable molecules, ions and atoms are expected to contain atoms that obey the octet rule.

However, in some chemical species, atoms of elements do not obey the octet rule. For instance, in ClO, chlorine has seven valence electrons and oxygen has six electrons. The octet rule is clearly violated in this case.

Again, chlorine is able to expand its octet (contain more than eight valence electrons). This is seen in the ions; ClO2^- and ClO3^- in which chlorine contains ten valence electrons  and  ClO4^- in which chlorine contains fourteen valence electrons.

Learn more: brainly.com/question/1601832

In a lead-acid storage battery, pbo2 is reduced to

Answers

Lead-Acid storage battery is a secondary cell which can be recharged by passing current through it in the opposite direction.

Following is the overall chemical reaction operative during discharging of lead-acid battery:
Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)

From above reaction, it can be seen that oxidation state of lead in PbO2 and PbSO4 is +4 and +2 respectively.  Thus, upon discharging lead oxide is reduced to lead sulphate in lead-acid storage battery. 

Give the oxidation state of the metal species in each complex. ru(cn)(co)4 -

Answers

The given complex ion is as follow,

                                              [Ru (CN) (CO)₄]⁻

Where;
            [ ]  =  Coordination Sphere

            Ru  =  Central Metal Atom  =  Ruthenium

            CN  =  Cyanide Ligand

            CO  =  Carbonyl Ligand

The charge on Ru is calculated as follow,

                               Ru + (CN) + (CO)₄  =  -1
Where;
            -1  =  overall charge on sphere

             0  =  Charge on neutral CO

            -1  =  Charge on CN

So, Putting values,


                               Ru + (-1) + (0)₄  =  -1

                               Ru - 1 + 0  =  -1

                               Ru - 1  =  -1

                               Ru  =  -1 + 1

                               Ru  =  0
Result:
          Oxidation state of the metal species in each complex [Ru(CN)(CO)₄]⁻ is zero.

The oxidation state of the Ru metal in the complex [tex]{\left[{{\text{Ru}}\left({{\text{CN}}}\right){{\left({{\text{CO}}}\right)}_4}}\right]^-}[/tex] is [tex]\boxed{{\text{zero}}}[/tex] .

Further explanation:

Oxidation number:

The oxidation number is used to represent the formal charge on an atom. It also shows that gain or loss of electrons by the atom. Oxidation number can be a positive or negative number but cannot be fractional.

The rules to identify the oxidation state:

(1) The oxidation state of an atom in the elemental form is zero.

(2) The total charge on the species is equal to the sum of the oxidation state of individual atoms.

(3) The oxidation state of halides is -1. For example, fluorine, chlorine, bromine, iodine have -1 oxidation state.

(4)Hydrogen has a +1 oxidation state.

(5) Oxygen has an oxidation state -2.

(6) In a coordination compound, neutral ligands have zero oxidation state and negative ligands such as CN have -1 oxidation.

The given compound is [tex]{\left[{{\text{Ru}}\left({{\text{CN}}}\right){{\left({{\text{CO}}}\right)}_4}}\right]^-}[/tex]

Here, CN is a negative ligand thus oxidation state is -1 and CO is a neutral ligand thus it has 0 oxidation state. Also, the complex has -1 negative charge.

The expression to calculate the oxidation state in [tex]{\left[{{\text{Ru}}\left({{\text{CN}}}\right){{\left({{\text{CO}}}\right)}_4}}\right]^-}[/tex] is,

[tex]\left[{\left({{\text{oxidation state of Ru}}}\right)+\left({{\text{oxidation state of CN}}}\right)+4\left({{\text{oxidation state of CO}}}\right)}\right]=-1[/tex]

…… (1)

Rearrange equation (1) for the oxidation state of Ru.

[tex]{\text{Oxidation state of Ru}}=\left[{-\left({{\text{oxidation state of CN}}}\right)-4\left({{\text{oxidation state of CO}}}\right)-1}\right][/tex]

…… (2)  

Substitute -1for the oxidation [tex]{\text{state}}[/tex]  of CN and 0 for the oxidation state of CO in equation (2).

[tex]\begin{aligned}{\text{Oxidation state of Ru}}&=\left[{-\left({-{\text{1}}}\right)-4\left({\text{0}}\right)-1}\right]\\&=0\\\end{aligned}[/tex]

The oxidation state of Ru is zero.

Learn more:

1. General statement that is not applied on metals: https://brainly.com/question/2474874

2. The neutral element represented by the excited state electronic configuration: https://brainly.com/question/9616334

Answer details:

Grade: Senior school

Subject: Chemistry

Chapter: Coordination complex

Keywords: Oxidation state, metal complex, ru(cn)(co)4-, formal charge, cynide, carbonyl, zero, hydrogen, oxygen, 0 and -1.

How many structural and geometrical isomers are there of chloropropene?

Answers

I think there might be just 4 or 5 chloropropene. 

What is the emf of a cell consisting of a pb2+ / pb half-cell and a pt / h+ / h2 half-cell if [pb2+] = 0.83 m, [h+] = 0.064 m and ph2 = 1.0 atm ?

Answers

Following is correct representation of electrochemical cell of interest
Pb/[tex] PB^{2+} [/tex] // [tex] H_{2} [/tex]/ [tex] H_{2} [/tex]

The standard reduction potential of [tex] PB^{2+} [/tex]/ Pb and [tex] H_{2} [/tex]/[tex] H_{2} [/tex] is -0.126 v and 0.0 v respectively.

Now, in present cell using Nernst Eq. we have
Ecell = [tex] E^{0}cell - \frac{0.059}{n}log \frac{1}{[Pb^2^+]X[H^+]^2} [/tex]
where n = number of eletrons = 2 (in present case) 
Also, for present cell, [tex] E^{0}cell = 0.126 v

∴Ecell = 0.126 - \frac{0.059}{2}log \frac{1}{[0.83]X[0.064]^2} [/tex]
           = 0.0532 v

The emf of the electrochemical cell has been calculated to be 0.0532 V.

The emf has been the potential of the cell in the reaction with the change in the electrons in the reaction. The emf of the cell has been given by the Nernst equation as;

[tex]emf=E^\circ _{cell}-\dfrac{0.059}{n}\;log\;\dfrac{1}{\rm concentration} [/tex]

Computation for the emf of the cell

The given cell has the number of electrons transfer, [tex]n=2[/tex]

The concentration of [tex]\rm Pb^2^+=0.83\;M[/tex]

The concentration of [tex]\rm H^+=0.064\;M[/tex]

The cell potential of the reaction has been, [tex]E^\circ =-0.126\;\text V[/tex]

Substituting the values for the emf of the cell:

[tex]emf=-0.126\;-\dfrac{0.059}{2}\;\times\;log\;\dfrac{1}{[0.83]\;\times\;[0.064]^2}\\ emf=0.0532\;\text V [/tex]

The emf of the electrochemical cell has been calculated to be 0.0532 V.

Learn more about emf of the cell, here:

https://brainly.com/question/10162133


Carbon tetrachloride will have which shape?
A) bent
B) linear
C) tetrahedral
D) triangular

Answers

Your answer should be A
I believe the answer is C) tetrahedral. I hope this helps! :)

What element is found in all organic compounds?
a.carbon?

Answers

The element that is found in all organic compounds is Carbon

Marshall determines that a gas has a gage pressure of 276 kPa what's the absolute pressure of this gas

Answers

To determine the absolute pressure of this gas, all you need to do is to add the value of atmospheric pressure and the value of gage pressure.

Atmospheric pressure is equivalent to 100 kPa. 
Gage pressure is 276 kPa.

Then, we add both values. 

N = 100 kPa + 276 kPa
N =  376 kPa

The absolute pressure of this gas is 376 kPa.

Hope this helps :)

And object has a mass of 120 KG’s on the moon what is the force of gravity acting on the object of the moon

Identify the lowest energy lewis structure for nitrogen oxide

Answers

Below attachment shows the four possible lewis structures of Nitrogen Oxide (Nitrous Oxide).

Answer:
              Among given Lewis structures, Structure-C has the lowest energy.

Explanation:
                     The greater the stability of any compound the lesser will be its energy. Among different Lewis structures of N₂O or any other compound, the one which comprises of less number of formal charges will be having lesser energy. I have selected structure-C but not Structure-B (as both have same number of formal charges) because in structure-C oxygen has a formal charge of -1. Being more electronegative oxygen tends to attract electrons toward itself. While, in structure-B one of the Nitrogen atom is having -1 charge which is not feasible and makes the structure energetically high.

Note:
        Formula for calculating formal charge is as follow,

Formal Charge  =  # of Valence e⁻s - [e⁻s in lone pairs + 1/2 bonding e⁻s]

A gas sample contains 4.00g of CH4 and 2.00g of He. What is the volume of the sample at STP?

Answers

As we know that 1 mole of any gas when acting perfectly / ideally occupies 22.4 L of volume.

It means that in order to calculate volume occupied both by CH₄ and He, we must calculate their moles.

Hence,
Moles are given as,
                                     Moles  =  Mass / Mass

Moles of CH₄;
                                     Mole-CH₄  =  4 g / 16 g.mol⁻¹

                                     Mole-CH₄  =  0.25 mol

Moles of He;
                                     Mole-He  =  2 g / 4 g.mol⁻¹

                                     Mole-He  =  0.5 mol

Now adding moles of both gases,
          
                                     =  0.25 + 0.5

                                     =  0.75 mol

Therefore, when,

                          1 mole of gas occupy  =  22.4 L of Volume

Then,

                            0.75 mol will occupy  =  X L of Volume

Solving for X,
                                   X  =  (0.75 mol × 22.4 L) ÷ 1 mole

                                   X  =  16.8 L
Final answer:

To calculate the volume of the gas sample at standard temperature and pressure (STP), we find the moles of each gas (CH4 and He) using their molar masses and then multiply by the molar volume (22.4 L/mol) to get their individual volumes at STP. Adding these volumes together gives us the total volume of the gas sample, which is 16.8 L.

Explanation:

To calculate the volume of a gas sample at standard temperature and pressure (STP), we can use the molar volume concept where one mole of any gas occupies 22.4 liters at STP. Methane (CH4) has a molar mass of 16.00 g/mol, and helium (He) has a molar mass of 4.00 g/mol.

To find the moles of CH4, we divide 4.00 g by its molar mass, 16.00 g/mol, which gives us 0.250 moles. Similarly, for He, we divide 2.00 g by its molar mass, 4.00 g/mol, which gives us 0.500 moles. To find the total volume, we sum the volumes of CH4 and He after multiplying their mole quantities by the molar volume (22.4 L/mol).

Total volume of CH4 = 0.250 moles × 22.4 L/mol = 5.60 L

Total volume of He = 0.500 moles × 22.4 L/mol = 11.2 L

Therefore, the total volume of the gas sample at STP is 5.60 L + 11.2 L = 16.8 L.

What is the molarity of a solution which contains 58.4 g of sodium chloride dissolved in of solution?

Answers

Final answer:

The molarity of a solution is calculated by the formula: Molarity = moles of solute divided by volume of solution in liters. For the mentioned solution, we have roughly 1 mole of sodium chloride. The molarity can be obtained by dividing this number by the volume of the solution in liters.

Explanation:

The molarity of a solution is given by the formula: Molarity (M) = moles of solute / volume of solution in liters.

Via the provided information, we know that one mole of sodium chloride (NaCl) weighs 58.44 g, and we have 58.4 g NaCl in our solution, roughly equivalent to 1 mole. The volume of the solution unfortunately is not given in the question. If this missing value can be retrieved, the molarity can be calculated by dividing the number of moles (which is 1 in this case) by the volume of the solution in liters.

Assuming a 1 L solution for simplicity, the molarity will be: 1 mol NaCl / 1 L solution = 1 M NaCl solution.

Learn more about Molarity here:

https://brainly.com/question/8732513

#SPJ3

Calculate the molarity of a solution that contains 0.175 mol of zncl2 n exactly 150 ml of solution.

Answers

Molarity = mol/L

0.175 mol
0.15 L (1000 mL = 1 L)

Molarity = 0.175 mol/0.15 L = 1.1666667 M

Explanation:

Molarity is the number of moles present in liter of a solution.

Mathematically,    Molarity = [tex]\frac{\text{no. of moles}}{\text{volume in liter}}[/tex]

It is given that no. of moles present into the solution are 0.175 mol and volume is 150 ml.

As 1 ml = 0.001 L. So, 150 ml will be equal to 0.15 L.

Hence, calculate the molarity as follows.

    Molarity = [tex]\frac{\text{no. of moles}}{\text{volume in liter}}[/tex]

                  = [tex]\frac{0.175 mol}{0.15 L}[/tex]                

                  = 1.16 M

Thus, we can conclude that molarity of the given solution is 1.16 M.

Click to select the correct answers. Click again to unselect answers. Leave the incorrect answers unselected.



Nuclear fission and fusion both affect the nucleus of an atom. Choose all of the items below that are correct.


The final products of fission and fusion are elements that are different than the original


Fusion involves the splitting apart of large atoms into smaller ones


Fission occurs mostly with elements heavier than lead on the periodic table


Two hydrogen atoms can go through fission to form helium

Fusion and fission involve a loss or gain of electrons

Answers

Correct answers:
Nuclear fission and fusion both affect the nucleus of an atom. 

The final products of fission and fusion are elements that are different than the original.

Fission occurs mostly with elements heavier than lead on the periodic table.

The answer options about a nuclear reaction which are correct include the following:

A. Nuclear fission and fusion both affect the nucleus of an atom.

B. The final products of fission and fusion are elements that are different than the original.

D. Fission occurs mostly with elements heavier than lead on the periodic table.

A nuclear reaction refers to a reaction in which the nucleus of an atom is transformed or transmuted by either joining (fusion) or splitting (fission) the nucleus of another atom of a radioactive element. Also, a nuclear reaction is always accompanied by a release of energy.

Generally, the two (2) main types of nuclear reaction are:

Nuclear fusion: it involves the joining of two smaller nuclei of atoms to form a single massive or heavier nucleus with the release of energy. Nuclear fission: it involves the collision of a heavy atomic nucleus with a neutron, thereby causing a split and release of energy.

From the above, we can deduce the following about a nuclear reaction:

I. The nucleus of an atom is affected by both nuclear fission and fusion.

II. The final products of both nuclear fission and fusion are chemical elements that are different than the original radioactive chemical elements.

III. Nuclear fission occurs mostly with chemical elements heavier than lead (Pb) on the periodic table because the nuclear force holding their atoms together is lesser than the electromagnetic force pushing the nucleus apart.

Read more: https://brainly.com/question/24040465

Magnesium hydroxide (Mg(OH)2): g/mol Iron(III) oxide (Fe2O3): g/mol

Answers

Answer:

Magnesium hydroxide (Mg(OH)2): 58.33 g/mol

Iron(III) oxide (Fe2O3): 159.70 g/mol

Explanation:

To find the molar masses of both magnesium hydroxide and iron(III) oxide, add each  molar mass in each compound.

Solving:

[tex]\section*{Molar Mass of Magnesium Hydroxide (Mg(OH)_2):}\textbf{Identify Atomic Masses}\begin{itemize} \item Magnesium (Mg): 24.31 g/mol \item Oxygen (O): 16.00 g/mol (2 oxygen atoms) \item Hydrogen (H): 1.01 g/mol (2 hydrogen atoms)\end{itemize}[/tex]

[tex]\textbf{Calculate Molar Mass:}\[\text{Molar mass of Mg(OH)}_2 = \text{Mg} + 2 \times (\text{O} + \text{H})\]\[= 24.31 \, \text{g/mol} + 2 \times (16.00 \, \text{g/mol} + 1.01 \, \text{g/mol})\]\\\[= 24.31 \, \text{g/mol} + 2 \times 17.01 \, \text{g/mol}\]\[= 24.31 \, \text{g/mol} + 34.02 \, \text{g/mol} = \boxed{58.33 \, \text{g/mol}}\][/tex]

[tex]\hrulefill[/tex]

[tex]\section*{Molar Mass of Iron(III) Oxide (Fe_2\text{O}_3):}\textbf{Identify Atomic Masses}\begin{itemize} \item Iron (Fe): 55.85 g/mol (2 iron atoms) \item Oxygen (O): 16.00 g/mol (3 oxygen atoms)\end{itemize}[/tex]

[tex]\textbf{Calculate Molar Mass:}\[\text{Molar mass of Fe}_2\text{O}_3 = 2 \times \text{Fe} + 3 \times \text{O}\]\\\[= 2 \times 55.85 \, \text{g/mol} + 3 \times 16.00 \, \text{g/mol}\]\\\[= 111.70 \, \text{g/mol} + 48.00 \, \text{g/mol} = \boxed{159.70 \, \text{g/mol}}\][/tex]

[tex]\hrulefill[/tex]

Determine the amount of heat(in Joules) needed to boil 5.25 grams of ice. (Assume standard conditions - the ice exists at zero degrees Celsius, melts at zero degrees Celsius, and boils at 100 degrees Celsius. Remember that you need to take into account three changes: melting ice, heating water, and vaporizing the water.)

Answers

Following are important constant that used in present calculations
Heat of fusion of H2O = 334 J/g 
Heat of vaporization of H2O = 2257 J/g 
Heat capacity of H2O = 4.18 J/gK 

Now, energy required for melting of ICE =   334 X 5.25 = 1753.5 J .......(1)
Energy required for raising the temperature water from 0 oC to 100 oC =  4.18 X 5.25 X 100 = 2195.18 J .............. (2)
Lastly, energy required for boiling water =   2257X 5.25 = 11849.25 J ......(3)

Thus, total heat energy required for entire process = (1) + (2)  + (3)
                                                                        = 1753.5 + 2195.18 + 11849.25
                                                                        = 15797.93 J 
                                                                        = 15.8 kJ
Thus, 15797.93 J of energy is needed to boil 5.25 grams of ice.

The amount of heat needed to boil 5.25 grams of ice when we take into account three changes as melting, heating and vaporizing the water is  15797.93 J.

How do we calculate total heat?

Total heat for the given condition will be calculated by the addition of the heat of fusion, heat of vaporization and specific heat of water.

In the question it is given that,

mass of ice = 5.25 grams

Change in temperature = 100 - 0 = 100 degree celsius

For the melting of ice:

We know that heat of fusion of water = 334 J/g

Required heat for the melting of ice = 334 × 5.25 = 1753.5 J

For heating water:

Amount of heat will be used by using the formula as,

Q = mcΔT, where

c = specific heat of water = 4.18 J/gK

Required heat for heating of water = 4.18 × 5.25 × 100 = 2195.18 J

For vaporization of water:

We know that heat of vaporization of water = 2257 J/g

Required heat for vaporization of ice = 2257 × 5.25 = 11849.25 J

Total amount of heat involved = 1753.5 + 2195.18 + 11849.25 = 15797.93 J

Hence total amount of heat is 15797.93 J.

To know more about heat absorbed, visit the below link:
https://brainly.com/question/488376

What is the mass occupied by 44.8 l of nitrogen (n2​)​ at standard​ conditions?

Answers

Data Given:
                  Volume  =  V  =  44.8 L

                  Standard Pressure  =  P  =  1 atm

                  Standard Temperature  =  T  =  273 K

According to Ideal Gas Equation,

                            P V  =  n R T

Solving for n,

                            n  =  P V / R T

Putting values,

                            n  =  (1 atm × 44.8 L) ÷ (0.0821 atm.L.mol⁻¹.K⁻¹ × 273 K)

                            n  =  1.99 mol

Now, calculating for mass,

                            n  =  Mass / M.mass
Or,
                            Mass  =  n × M.mass

                            Mass  =  1.99 mol × 28 g.mol⁻¹

                            Mass  =  55.72 grams

AlCl3 + Na NaCl + Al Did Cl change oxidation number?

Answers

Yes. If this is the balanced equation:

AlCl3 + 3Na —— 3NaCl + Al

then Al was reduced from a 3+ oxidation (to neutralize the 3- from the chlorine) to a 0 oxidation (elemental ground state).

Answer : There is no change takes place in the oxidation number of Cl.

Explanation :

The given chemical reaction is,

[tex]AlCl_3+Na\rightarrow NaCl+Al[/tex]

This reaction is an unbalanced reaction because the chlorine atoms are not balanced.

In order to balance the chemical reaction, the coefficient 3 is put before the Na and NaCl.

The balanced chemical reaction will be,

[tex]AlCl_3+3Na\rightarrow 3NaCl+Al[/tex]

Now we have to calculate the oxidation number of all the elements.

In [tex]AlCl_3[/tex], the oxidation number of Al and Cl are, (+3) and (-1) respectively.

The oxidation number Na and Al are, zero (0)

In [tex]NaCl[/tex], the oxidation number of Na and Cl are, (+1) and (-1) respectively.

From this we conclude that the oxidation number of Cl changes from (-1) to (-1) that means remains same.

Therefore, there is no change takes place in the oxidation number of Cl.

The electron dot structure for CI is

A. Cl (w/ a dot above the C)

B. Cl (w/ a dot above, to the left of, and under the C, as well as 2 dots to the right of the 1)

C. Cl (w/ 2 dots above and to the left of the C, 1 underneath, and 2 dots to the right of the 1)

D. Cl (w/ 2 dots above, to the left of, and under the C, as well as 2 dots to the right of the 1)


The electron dot structure for Cl is ... (P.S. The l in Cl is a lowercase "L", for Chlorine, in case anyone else may have been confused.)

Answers

Final answer:

The electron dot structure for Cl is B. Cl (w/ a dot above, to the left of, and under the C, as well as 2 dots to the right of the 1).

Explanation:

The electron dot structure for Cl is B. Cl (w/ a dot above, to the left of, and under the C, as well as 2 dots to the right of the 1). The Lewis structure indicates that each Cl atom has three pairs of electrons that are not used in bonding (called lone pairs) and one shared pair of electrons (written between the atoms). A dash (or line) is sometimes used to indicate a shared pair of electrons.

The theoretical yield for the reaction above was 2.78 grams silver (Ag). The experimental yield was 2.55 grams. Calculate the percent yield

Answers

Percent yield =(Experimental)/(Theoretical) x 100 = 2.55 g/ 2.78 g x 100 = 91.7%

To calculate the percent yield of silver, divide the experimental yield (2.55 g) by the theoretical yield (2.78 g) and multiply by 100, resulting in a percent yield of 91.73%.

The concept of percent yield is a key aspect of laboratory work in chemistry that compares what was actually obtained from a reaction to what could be obtained based on stoichiometry. The percent yield is calculated using a simple formula: (actual yield/theoretical yield)  imes 100. In the student's experiment where the theoretical yield was 2.78 grams of silver and the experimental yield was 2.55 grams, we calculate the percent yield by dividing 2.55 by 2.78 and then multiplying by 100.

Therefore, the calculation is:
(2.55 g / 2.78 g) imes 100 = 91.73%

So, the percent yield for the reaction is 91.73%.

Ydrogen and fluorine combine according to the equation h2(g) + f2(g) → 2 hf(g) if 5.00 g of hydrogen gas are combined with 38.0 g of fluorine gas, the maximum mass of hydrogen fluoride that could be produced is

Answers

 Molar mass (H2)=2*1.0=2.0 g/mol
Molar mass (F2)=2*19.0=38.0 g/mol
Molar mass (HF)=1.0+19.0=20.0 g/mol

5.00 g H2 * 1mol H2 /2 g H2=2.50 mol H2 
38.0 g F2*1mol F2/38.0 g F2=1.00 mol F2

                                   H2(g) + F2(g) → 2 HF(g)
From reaction        1 mol      1 mol
From problem      2.50 mol   1 .00mol

We can see that  excess of H2, and that F2 is a limiting reactant.
So, the amount of HF is limited by the amount of F2.

                                 H2(g) + F2(g) → 2 HF(g)
From reaction                      1 mol       2  mol
From problem                      1.00 mol  2.00mol

2.00 mol HF can be formed.

2.00 mol HF*20.0g HF/1mol HF=40.0 g HF can be formed

What is the final step in the scientific method

Answers

Conclusion
 
Hope this helps!
Once a hypothesis has been formed, it must be tested. This is done by conducting a carefully designed and controlled experiment. The experiment is one of the most important steps in the scientific method, as it is used to prove a hypothesis right or wrong, and to formulate scientific theories.

What is the mass of a 4.50-μci 146c source? the half-life of 146c is 5730 yr.
express your answer to three significant figures and include the appropriate units?

Answers

The activity of the sample is:
R₀ = 4.5 x 10⁻⁶ Ci (3.70 x 10¹⁰ decays/s / 1 Ci)
     = 166500 decays / s

The number of nuclei is:
N₀ = (166500 decays/s) / (5730 yr * 3.154 x 10⁷s /1yr)  = 9.2 x 10⁻⁷

The mass of a ₆C¹⁴ source is:
m = N₀m₀ = (9.2 x 10⁻⁷) * (2.34 x 10⁻²⁶) = 2.16 x 10⁻³² kg

Fill in the missing blank 2C4H6 + _______ → 8CO2 + 6H2O

Answers

 the  missing blank is filled by 11 O2
that is
= 2C4H6 + 11O2 = 8 CO2 + 6H2O

C4H6 reacted with oxygen (O2 )through the process of combustion to form carbon iv oxide (CO2)  and water (H2O) . 11 infront  of  O2 is to make sure the molecules of O2 is balanced in both reactant side and the  product side
Other Questions
If AD=2/3 AB , the ratio of the length BC of to the length of DE is . Complete the analogy benefit :advantage :: gradual: A father is giving his child a 30-inch long softball bat for her birthday.He has a rectangular box that has the dimensions of 5 inches by 6 inches by 25 inches. Will the bat fit in the box ? Explain Peter is working for an hourly wage of 12$ if he worked for 20 hours last week what is his gross pay Scientists discovered fossil evidence of mesohippus, an ancestor of the modern horse. Mesohippus lived in North America about 40 million years ago. Mesohippus was about two feet tall, ran on hooves with three toes, and had large, grinding teeth. It is believed that these early horses lived in the thick forests. What may have helped horses change over the last 40 million years? (05.07 mc) mandy needs to paint all the faces and the base of a model pyramid she made for her history project. the dimensions of the pyramid are shown here. what is the total surface area of the pyramid? a square pyramid is shown. the side of the square is 10 inches. the height of the triangular faces is 9 inches. Which planetary model allows a scientist to predict the exact positions of the planets in the night sky over many years?A) The planets' orbits are circles in a geocentric modelB) The planets' orbits are circles in a heliocentric modelC) The planets' orbits are ellipses in a geocentric modelD) The planets' orbits are ellipses in a heliocentric model In a '20% off' sale, a coat was 220. Work out the original price. the charter of the United Nations was adopted A) immediately following the last session of the League of Nations B) in the year after world war 11 endedC) after the Cold War began D) at the beginning of world war 11 Read the text and answer the following question. In ancient literature, the genre which most closely approximates the novel is the epic. Works such as Homers Iliad and Odyssey as well as Virgils Aeneid, though poetry, are long narratives centered around certain key events and characters with heroic or cowardly actions that determine, not only their own fates, but also those of the nations which they led. The novel carries this tradition on, but in a reduced scope. The novel is much more localized, centering on characters in local settings, whose actions affect themselves and perhaps a few members of their local community. What is the main idea in the text? Epic poems are greater in scope than novels. Epic poetry was a precursor to the novel. Epic poetry is poetry; novels are prose. A batch of cookies requires 3/8 cup of butter. Butter can be purchased in boxes, each containing 4 sticks, with 1 stick equivalent to 1/2 cup of butter. If Monica is to bake 15 batches of cookies, which of the following is the best estimate for the total number of boxes of butter she needs to buy? A saving account pays 3.6% per annum simple interest Heidi puts 400 into the account, how much will she have in the account after 5 years? A plane can fly 300 miles in the same time as it takes a car to go 150 miles. if the car travels 90 mph slower than the plane, find the speed of the plane. when is periodic data useful? give examples to support your answer please a season ticket for bolton f.c. this season cost 410 it is to go up by 34% next season how.much will a season ticket cost next season? For the oxidationreduction reaction equation 2na+s na2s indicate how many electrons are transferred in the formation of one formula unit of product. NEED HELP ASAP!!! Susan makes $5 per hour babysitting and $7 per hour as a life guard. Her goal is to make at least $140. which of the following represents three possible solutions to the problem? what does it mean if the quotient times the divisor does not equal the dividend? What should you do? Out of the 180 students at a summer camp, 72 signed up for canoeing. There were 23 students who signed up for trekking, and 13 of those students also signed up for canoeing.Use a two-way table to organize the information and answer the following question:Approximately what percentage of students signed up for neither canoeing nor trekking? 72% 40% 54% 98% what does the monster mean when he says that "stories are the wildest things of all ...