Solve the congruence 9x 17 (mod 26).

Answers

Answer 1

We have [tex]17\equiv-9\pmod{26}[/tex], so that [tex]x\equiv-1\pmod{26}[/tex], so [tex]x\equiv25\pmod{26}[/tex], and any solution of the form [tex]x=25+26n[/tex] satisfies the congruence, where [tex]n[/tex] is any integer.

Answer 2
Final answer:

The question involves solving a congruence equation. Given the equation 9x + 17 ≡ 0 (mod 26), we would typically isolate x to find the solution. However, the question seems to be missing an operator. Hence, an explicit answer cannot be provided.

Explanation:

The question involves solving a congruence. To solve the accord 9x ≡ 17 (mod 26), you must find an integer x such that 9x leaves a remainder of 17 when divided by 26.

This unity can be rewritten as 9x - 17 = 26k, where k is an integer. Our task is to solve for x given these parameters.

Given the nature of the question, I cannot provide a direct solution because it is missing an operator between 9x and 17. Assuming the operator is '+', the congruence will be 9x + 17 ≡ 0 (mod 26).

The steps to solve a congruence equation can vary, but generally, the goal is to isolate x on one side of the equation. However, it's easier to proceed with this congruence with explicit details.

Learn more about Congruence here:

https://brainly.com/question/31992651

#SPJ3


Related Questions

Samantha wants to sort her greetin cards into boxes that hold 24 cards each she has 312 greeting cards how many boxes will she need?

Answers

Answer:

Samantha will need 13 boxes.

Step-by-step explanation:

Samantha wants to sort her greeting cards in boxes.

Each box can hold 24 cards.

Samantha has 312 greeting cards.

To calculate the number of boxes she need we have to divide total number of greeting cards to 24.

Therefore, = [tex]\frac{312}{24}[/tex]

                 = 13 boxes

Samantha will need 13 boxes.

Write an equation of the circle with center (-4, -9) and diameter 10.

Answers

Answer:

[tex](x+4)^2+(y+9)^2=25[/tex]

Step-by-step explanation:

The equation of a circle with center (h,k) and radius r is

[tex](x-h)^2+(y-k)^2=r^2[/tex].

You are given (h,k)=(-4,-9) and the radius=(diameter)/2=10/2=5.

Plug in the information and you will have your equation:

[tex](x-(-4))^2+(y-(-9))^2=(5)^2[/tex].

Simplify:

A clinical trial tests a method designed to increase the probability of conceiving a girl. In the study 390 babies were​ born, and 312 of them were girls. Use the sample data to construct a 99​% confidence interval estimate of the percentage of girls born. Based on the​ result, does the method appear to be​ effective?

Answers

Answer:Yes

Step-by-step explanation:

Given

n=390 x=312

[tex]\hat{p}=\frac{312}{390}=0.8[/tex]

Confidence level=99 %

[tex] Z_{\frac{\alpha }{2}}=2.575[/tex]

Standard error(S.E.)=[tex]\sqrt{\frac{\hat{p}\left ( 1-\hat{p}\right )}{n}}[/tex]

S.E.=[tex]\sqrt{\frac{0.8\times 0.2}{390}}[/tex]

S.E.=0.0202

Confidence interval

[tex]p\pm \left [ z_{\frac{\alpha }{2}}\cdot S.E.\right ][/tex]

[tex]0.8 \pm 0.0521[/tex]

[tex]\left ( 0.7479,0.8521 \right )[/tex]

Since 0.5 does not lie in interval therefore method appear to be effective


If you have an 18% solution, how many milligrams is in each milliliter of solution?


A. 18 mg
B. 180 mg
C. 1.8 mg
D. 1800 mg

Answers

Answer:

B. 180 mg

Step-by-step explanation:

In order to answer the given problem we need to be aware that:

1000 milligrams = 1 milliliter

The above means that in 1 milliliter a 100% solution means 1000 milligrams. Because we have 18% solution, then:

(1000 milligrams / 1 milliliter) * 18% =

(1000 milligrams / 1 milliliter) * (18/100) =

(1000*18/100) milligrams/milliliter =

180 milligrams/milliliter

In conclusion, the answer is B. 180 mg.

Find the probability that a person is not qualified if he or she was approved by the manager. certain job, 85% are qualified and 15% are not. The personnel manager claims that she approves qualified people 85% of the time; she approves unqualified people 40% of the time. The probability is 0.15 (Type an integer or decimal rounded to four decimal places as needed.)

Answers

Answer: The probability that a person is not qualified if a person was approved by the manager is 0.0766.

Step-by-step explanation:

Since we have given that

Probability that a person approves qualified = 0.85× 0.85 = 0.7225

Probability that a person does not approve qualified = 0.85 × 0.15 = 0.1275

Probability that a person approves unqualified = 0.40 × 0.15 = 0.06

Probability that a person does not approve unqualified = 0.60 × 0.15 = 0.009

so, using the conditional probability, we get that [tex]p(unqualified\mid approved)=\dfrac{0.06}{0.7225+0.06}=\dfrac{0.06}{0.7825}=0.0766[/tex]

Hence, the probability that a person is not qualified if a person was approved by the manager is 0.0766.

Without using a calculator and with a simple approach, explain how to use reasoning and mental arithmetic to determine which of the following is a better deal: Cereal A: 15oz for $2.95 or Cereal B: 32oz for $5.95

Answers

Answer:

Cereal B

Step-by-step explanation:

Given are two different rates for cereals A and B.

as Cereal A: 15oz for $2.95 or Cereal B: 32oz for $5.95

As such we cannot compare unless we make it unit rate for same number of units

Let us find unit oz rates

Cereal A per oz= [tex]\frac{2.95}{15} =0.1967[/tex]dollars

Cereal B per oz = [tex]\frac{5.95}{32} =0.1859[/tex]dollars

Comparing unit rates per ounce,

we find that Cereal B per oz is lower.

Answer is Cereal B.

According to the American Lung Association 7% of the population has lung disease. Of the people having lung disease 90% are smokers. Of the people not having lung disease 20% are smokers. What are the chances that a smoker has lung disease?

Answers

Answer:

The chances that a smoker has lung disease 25.30%.

Step-by-step explanation:

Let L is the event of the lung disease and S is the event of being smoker,

According to the question,

The probability of lung disease, P(L) = 7 % = 0.07,

⇒ The probability of not having lung disease, P(L') = 100 % - 7 % =  93 % = 0.93,

The probability of the people having lung disease who are smokers,

P(L∩S) = 90% of 0.07 = 6.3% = 0.063,

The probability of the people not having lung disease who are smokers,

P(L'∩S) = 20% of 0.93 = 18.60% = 0.186,

Thus, the total probability of being smoker, P(S) = P(L∩S) + P(L'∩S) = 0.063 + 0.186 = 0.249,

Hence, the probability that a smoker has lung disease,

[tex]P(\frac{L}{S})=\frac{P(L\cap S)}{P(S)}[/tex]

[tex]=\frac{0.063}{0.249}[/tex]

[tex]=0.253012048193[/tex]

[tex]=25.3012048193\%[/tex]

[tex]\approx 25.30\%[/tex]

Final answer:

To find the chances that a smoker has lung disease, we need to use conditional probability. Assuming a total population of 100, the chances are 25.2%.

Explanation:

To find the chances that a smoker has lung disease, we need to use conditional probability. Let's assume the total population is 100. According to the American Lung Association, 7% of the population has lung disease, so the number of people with lung disease is 7.

Of these 7 people with lung disease, 90% are smokers. So, the number of smokers with lung disease is 7 * 0.9 = 6.3.

Out of the remaining people (100 - 7 = 93) without lung disease, 20% are smokers. So, the number of smokers without lung disease is 93 * 0.2 = 18.6.

Therefore, the total number of smokers is 6.3 + 18.6 = 24.9.

Hence, the chances that a smoker has lung disease is 6.3 / 24.9 = 0.252 (rounded to three decimal places) or 25.2% (rounded to the nearest percent).

A researcher wants to know if the average time in jail for robbery has increased from what it was several years ago when the average sentence was 7 years. He obtains data on 400 more recent robberies and finds an average time served of 7.5 years. If we assume the standard deviation is 3 years, a 95% confidence interval for the average time served is:

Answers

Answer:

The interval is : (7.206 , 7.794)

Step-by-step explanation:

The mean is = 7.5

Standard deviation = 3

n = 400

At 95% confidence interval, the z score is 1.96

[tex]7.5+1.96(\frac{3}{\sqrt{400} } )[/tex]

And [tex]7.5-1.96(\frac{3}{\sqrt{400} } )[/tex]

[tex]7.5+0.294[/tex] and [tex]7.5-0.294[/tex]

So, the interval is : (7.206 , 7.794)

You have 144 feet of fencing to enclose a rectangular region. What is the maximum area? a) 5184 square feet b) 1292 square feet c) 1296 square feet d) 20.736 square feet e) none

Answers

Final answer:

The maximum area that can be enclosed with 144 feet of fencing is when the enclosure is a square. Calculating the side length as 36 feet results in a maximum area of 1296 square feet.

Explanation:

Maximizing the Area of a Rectangular Region with a Given Perimeter:

To find the maximum area that can be enclosed with 144 feet of fencing in a rectangular shape, we can use the knowledge that for a given perimeter, a rectangle with equal length and width (a square) will have the maximum possible area. Let's denote the length of the rectangle as L and the width as W. Since the perimeter is twice the sum of the length and width, we have 2L + 2W = 144 feet. To form a square, which gives the maximum area, L equals W, making 4L = 144 feet or L = 36 feet. The maximum area is L squared, which is 36 feet by 36 feet, equaling 1296 square feet.

The maximum area that can be enclosed with 144 feet of fencing is 1296 square feet, which corresponds to option c) 1296 square feet.

To maximize the area enclosed by a fixed perimeter, we look to geometry, which tells us that of all the rectangles with a given perimeter, the square has the highest area.
Let's denote the perimeter of the square as P and the length of each side of the square as s. Since the square has four equal sides, we have:
P = 4s
We are given that P is 144 feet, so we can find the length of each side s by dividing the total perimeter by 4:
s = P/4 = 144/4 = 36 feet
The area A of a square is given by the formula A = s^2, where s is the length of a side of the square. We calculated above that s = 36 feet, so:
A = s^2 = (36 feet)^2 = 1296 square feet
This is the maximum area that can be enclosed by 144 feet of fencing when arranged in a square. Matching our result with the provided options, the correct answer is:
c) 1296 square feet

An experiment consists of tossing 4 coins successively. The number of sample points in this experiment is

a. 16

b. 8

c. 4

d. 2

Answers

Final answer:

The number of sample points in this experiment is 16.

Explanation:

The number of sample points in this experiment can be found by multiplying the number of possible outcomes for each coin toss. Since there are 2 possible outcomes for each coin toss, and we have 4 coin tosses, the total number of sample points is 2 x 2 x 2 x 2 = 16.

Therefore, option a, 16, is the correct answer.

The number of sample points for tossing 4 coins successively is a. 16, calculated using the formula 2⁴. Each coin flip has 2 possible outcomes, and for 4 coins, this results in 2⁴ = 16 outcomes.

When tossing 4 coins successively, each coin has 2 possible outcomes: heads (H) or tails (T). The total number of sample points in such an experiment can be calculated as follows:

Step-by-Step Explanation:

Each coin flip is an independent event with 2 possible outcomes.For 4 coin flips, the number of sample points is given by the formula 2n, where n is the number of coins.In this case, n = 4, so the number of sample points is 2⁴ = 16.

Therefore, the number of sample points in this experiment is 16.

We have three coins: one with heads on both faces, the second with tails on both faces, and the third a regular one. We choose one at random, toss it, and the outcome is heads. What is the probability that the opposite face of the tossed coin is tails?

Answers

Answer:

Probability: [tex]\frac{1}{2}[/tex] = 0.5 = 50%

Step-by-step explanation:

Based on the question one coin is chosen at random and tossed. That coin then lands and is heads. Since the coin landed on heads we can eliminate the possibility of the coin that was chosen being the coin with double tails.

The following possibilities are that the coin has double heads or is a regular coin with both tails and heads. Seeing as the coin landed on heads, there are only two possible out comes for the other side of the coin

The other side is either Heads or Tails. That gives us a 50% chance of the other side being tails.

[tex]\frac{1}{2}[/tex] = 0.5 = 50%

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.


A ball is thrown vertically upward. After t seconds, its height h (in feet) is given by the function h(t) = 52t - 16t^2 . What is the maximum height that the ball will reach?
Do not round your answer.

Answers

Answer: 42.25 feet

Step-by-step explanation:

We know that after "t" seconds, its height "h" in feet is given by this function:

[tex]h(t) = 52t -16t^2[/tex]

The maximum height is the y-coordinate of the vertex of the parabola. Then, we can use the following formula to find the corresponding value of "t" (which is the x-coordinate of the vertex):

[tex]x=t=\frac{-b}{2a}[/tex]

In this case:

[tex]a=-16\\b=52[/tex]

Substituting values, we get :

[tex]t=\frac{-52}{2(-16)}\\\\t=1.625[/tex]

Substituting this value into the function to find the maximum height the ball will reach, we get:

[tex]h(1.625) = 52(1.625) -16(1.625)^2\\\\h(1.625) =42.25\ ft[/tex]

Answer:

42.25 feet

Step-by-step explanation:

The maximum of a quadratic can be found by finding the vertex of the parabola that the quadratic creates visually on a graph.

So first step to find the maximum height is to find the x-coordinate of the vertex.

After you find the x-coordinate of the vertex, you will want to find the y that corresponds by using the given equation, [tex]y=52x-16x^2[/tex]. The y-coordinate we will get will be the maximum height.

Let's start.

The x-coordinate of the vertex is [tex]\frac{-b}{2a}[/tex].

[tex]y=52x-16x^2[/tex] compare to [tex]y=ax^2+bx+c[/tex].

We have that [tex]a=-16,b=52,c=0[/tex].

Let's plug into  [tex]\frac{-b}{2a}[/tex] with those values.

[tex]\frac{-b}{2a}[/tex] with [tex]a=-16,b=52,c=0[/tex]

[tex]\frac{-52}{2(-16)}=\frac{52}{32}=\frac{26}{16}=\frac{13}{8}[/tex].

The vertex's x-coordinate is 13/8.

Now to find the corresponding y-coordinate.

[tex]y=52(\frac{13}{8})-16(\frac{13}{8})^2[/tex]

I'm going to just put this in the calculator:

[tex]y=\frac{169}{4} \text{ or } 42.25[/tex]

So the maximum is 42.25 feet.

Find parametric equations for the line. (Use the parameter t.) The line through the origin and the point (2, 6, −1) (x(t), y(t), z(t)) Find the symmetric equations.

Answers

The symmetric equations of the line are: x/(-2) = y/(-6) = z/1 and the x(t) = 2t, y(t) = 6t and z(t) = -t are the parametric equations.

What is Parametric Equation?

a parametric equation defines a group of quantities as functions of one or more independent variables called parameters.

To find the parametric equations for the line through the origin and the point (2, 6, -1), we can use the vector equation of a line:

r(t) = r₀ + tv

where r(t) = (x(t), y(t), z(t)) is the position vector of a point on the line,

r₀ = (0, 0, 0) is the position vector of the origin,

t is a parameter, and v is the direction vector

v = (2, 6, -1) - (0, 0, 0) = (2, 6, -1)

Now r(t) = (0, 0, 0) + t(2, 6, -1) = (2t, 6t, -t)

Therefore, the parametric equations of the line are:

x(t) = 2t

y(t) = 6t

z(t) = -t

To find the symmetric equations of the line, we can eliminate the parameter t from the parametric equations.

t = -z

Substituting this into the x(t) and y(t) equations, we get:

x = 2t = -2z

y = 6t = -6z

Therefore, the symmetric equations of the line are:

x/(-2) = y/(-6) = z/1

Hence, the symmetric equations of the line are: x/(-2) = y/(-6) = z/1

To learn more on Parametric equation click:

https://brainly.com/question/27959049

#SPJ2

Final answer:

Parametric equations for a line passing through the origin and a point are found by using the components of the point as coefficients for the parameter t. Symmetric equations are obtained by equating the ratios of each component to their corresponding coefficients in the direction vector.

Explanation:

To find the parametric equations for the line passing through the origin (0,0,0) and the point (2, 6, −1), we can use the position vector of the point (2,6,−1) and multiply it by the parameter t. This gives us the parametric equations:

x(t) = 2ty(t) = 6tz(t) = -t

The symmetric equations of the line can be obtained by eliminating the parameter t. Since t = x/2 = y/6 = z/(−1), the symmetric equations are:

x/2 = y/6 = z/(−1).

1 kilogram (kg) is about 2.2 times as heavy as 1 pound (lb). Suppose the function f determines Emanuel's weight (in lbs), f ( t ) , given the number of days t since the beginning of 2017. The function g determines Emanuel's weight (in kg), g ( t ) , given the number of days t since the beginning of 2017. a Suppose f(35) 171. What is the value of g(35)?b. Write a formula for g using the function f.

Answers

Final answer:

To convert Emanuel's weight from pounds to kilograms on the 35th day, multiply 171 lbs by 0.4536 to get 77.52 kg. The general formula for converting function f(t) to g(t) is g(t) = f(t) × 0.4536.

Explanation:

If Emanuel's weight in pounds on the 35th day since the beginning of 2017 is 171 lbs ( f(35) = 171 ), we can find his weight in kilograms ( g(35) ) using the conversion factor from pounds to kilograms. Since 1 pound is equivalent to approximately 0.4536 kilograms on Earth, we can calculate g(35) by multiplying Emanuel's weight in pounds by this conversion factor:

g(35) = 171 lbs × 0.4536 kg/lb

This results in g(35) = 77.5156 kg. When we round this to significant figures based on the given conversion fact of pounds to kilograms (which is inexact and has 4 significant figures), Emanuel's weight would be g(35) = 77.52 kg (to 4 SFs).

The formula for g using the function f is:

g(t) = f(t) × 0.4536

The Centers for Disease Control reported the percentage of people 18 years of age and older who smoke (CDC website, December 14, 2014). Suppose that a study designed to collect new data on smokers and nonsmokers uses a preliminary estimate of the proportion who smoke of .31. a. How large a sample should be taken to estimate the proportion of smokers in the population with a margin of error of .02 (to the nearest whole number)? Use 95% confidence.

Answers

Final answer:

To estimate the proportion of smokers with a margin of error, use the formula n = (Z^2 * p * (1-p)) / E^2, where n is the sample size, Z is the Z-value for the desired confidence level, p is the preliminary estimate of the proportion who smoke, and E is the margin of error. Plugging in the values from the question, the sample size should be 753.

Explanation:

To estimate the proportion of smokers in the population with a margin of error of 0.02 and a 95% confidence level, we can use the formula:

n = (Z^2 * p * (1-p)) / E^2

Where:

n is the sample sizeZ is the Z-value for the desired confidence level (1.96 for 95% confidence)p is the preliminary estimate of the proportion who smoke (0.31)E is the margin of error (0.02)

Plugging in the values, we get:

n = (1.96^2 * 0.31 * (1-0.31)) / 0.02^2 = 752.34

Rounding up to the nearest whole number, the sample size should be 753.

Lane French has a bad credit rating and went to a local cash center. He took out a $100 loan payable in two weeks at $113.50. What is the percent of interest paid on this loan?

Answers

Answer: Percent of interest paid on this loan annually = 351% p.a

Step-by-step explanation:

Given that,

principal amount = $100(loan)

time period =  14 days

interest amount (SI) = $13.50

we have to calculate the rate of interest (i),

Simple interest(SI) = principal amount × rate of interest (i) × time period

13.50 = 100 × i × [tex]\frac{14}{365}[/tex]

i = [tex]\frac{4927.5}{1400}[/tex]

i = 3.51

i = 351% p.a.

Final answer:

The student paid a 13.5% interest on the $100 loan from the local cash center.

Explanation:

Percent of interest paid:

Initial loan amount: $100

Amount to be repaid: $113.50

Interest paid: $113.50 - $100 = $13.50

Percent interest paid = (Interest paid / Initial loan amount) * 100%

Percent interest paid = ($13.50 / $100) * 100% = 13.5%

PLEASE HELP!!!

Write equations for the horizontal and vertical lines passing through the point (4, -6)

Answers

Answer:

So you have the vertical line passing through is x=4 and the horizontal line passing through is y=-6.

Step-by-step explanation:

In general the horizontal line passing through (a,b) is y=b and the vertical line passing through (a,b) is x=a.

So you have the vertical line passing through is x=4 and the horizontal line passing through is y=-6.

A BOX OF 7 ITEMS COSTS $20.79. FIND THE COST OF EACH ITEMS,

A.$0.30

B.$6

C.$0.03

D.$3

Answers

Answer:

D. $3.

Step-by-step explanation:

We have been given that a box of 7 items costs $20.79. We are asked to find the cost of each item.

To find the cost of each item, we will divide total cost by total number of items.

[tex]\text{Cost of each item}=\frac{\$20.79}{7}[/tex]

[tex]\text{Cost of each item}=\$2.94142857[/tex]

Upon rounding our answer to nearest dollar, we will get:

[tex]\text{Cost of each item}\approx\$3[/tex]

Therefore, the cost of each item will be approximately $3 and option D is the correct choice.

Of the films Empty Set Studios released last year, 60% were comedies and the rest were horror films. 75% of the comedies were profitable, but 75% of the horror moves were unprofitable. If the studio made a total of 40 films, and broke even on none of them, how many of their films were profitable?

Answers

Answer: There are 22.5 films were profitable.

Step-by-step explanation:

Since we have given that

Number of total films = 40

Percentage of comedies = 60%

Number of comedies is given by

[tex]0.6\times 40\\\\=24[/tex]

Percentage of horror films = 40%

Number of horror films is given by

[tex]0.4\times 40\\\\=16[/tex]

Percentage of comedies were profitable = 75%

Number of profitable comedies is given by

[tex]0.75\times 24=18[/tex]

Percentage of horror were unprofitable = 75%

Percentage of horror were profitable = 25%

Number of profitable horror films is given by

[tex]0.25\times 18\\\\=4.5[/tex]

So, Total number of profitable films were

[tex]18+4.5=22.5[/tex]

Hence, there are 22.5 films were profitable.

If you roll two fair dice (one black die and one white die), in how many ways can you obtain a 1 on the white die? A 1 on the white die can be obtained in different ways. (u) More Enter your answer in the answer box and then click Check Answer. All parts showing Clear All

Answers

Answer:

6

Step-by-step explanation:

Sample space of the experiment

first number in the bracket is white die and second number in the bracket is black

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

As it can be seen that the first numbers in the bracket are (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

∴1 on the white die can be obtained in 6 ways

In the case of rolling two dice and trying to obtain a 1 on the white die, there are 6 ways to accomplish this because the black die outcome is irrelevant and it can show any number from 1 to 6 while pairing with a 1 on the white die.

The question asks about the probability of getting a specific result when rolling two fair dice, which is a problem in the realm of simple probability within mathematics.

Specifically, the question is focused on finding the number of ways to obtain a 1 on the white die.

When rolling two dice, there are a total of 6 different possible outcomes for the black die (since a standard die has 6 faces), and 1 specific outcome we're looking for on the white die, which is a 1.

Each outcome on the black die can be paired with a 1 on the white die, resulting in the combinations (1,1), (2,1), (3,1), (4,1), (5,1), and (6,1).

This gives us a total of 6 ways to achieve a 1 on the white die, regardless of what the black die shows.

(1 point) The random variables X and Y have the joint density: fX,Y(x,y)={2−x−y00

Answers

Answer:

. Let fX,Y(x,y) = 10xy^2 for 0 < x < y < 1 be the joint density function of the random pair (X, Y). (a) Obtain the marginal density f(y) of Y. (b) Obtain the conditional density fx|y(x|y) of X given Y = y. (c) Evaluate the conditional expectation of X, given Y=y

Y = y.

Step-by-step explanation:

please help, its formula manipulation, only respond if u know how to get the answer, thank you​

Answers

Answer:

Problem 1:

[tex]r=\frac{3V}{2 \pi h^2}[/tex]

Problem 2:

[tex]h=\frac{3V}{b^2}[/tex]

Problem 3:

The radius is [tex]\frac{25}{\pi}[/tex] cm.

Problem 4:

The width is 15 cm.

Step-by-step explanation:

Problem 1:

We want to solve [tex]V=\frac{2\pi rh^2}{3}[/tex] for [tex]r[/tex].

[tex]V=\frac{2\pi rh^2}{3}[/tex]

Multiply both sides by 3:

[tex]3V=2\pi r h^2[/tex]

Rearrange the multiplication using commutative property:

[tex]3V=2\pi h^2 \cdot r[/tex]

We want to get [tex]r[/tex] by itself so divide both sides by what [tex]r[/tex] is being multiplied by which is [tex]2\pi h^2[/tex].

[tex]\frac{3V}{2 \pi h^2}=r[/tex]

[tex]r=\frac{3V}{2 \pi h^2}[/tex]

Problem 2:

We want to solve for [tex]h[/tex] in [tex]V=\frac{b^2h}{3}[/tex].

Multiply both sides by 3:

[tex]3V=b^2h[/tex]

We want [tex]h[/tex] by itself so divide both sides by what [tex]h[/tex] is being multiply by; that is divide both sides by [tex]b^2[/tex].

[tex]\frac{3V}{b^2}=h[/tex]

[tex]h=\frac{3V}{b^2}[/tex]

Problem 3:

The circumference formula for a circle is [tex]2\pi r[/tex]. We are asked to solve for the radius when the circumference is [tex]50[/tex] cm.

[tex]2\pi r=50[/tex]

Divide both sides by what r is being multiply by; that is divide both sides by [tex]2\pi[/tex]:

[tex]r=\frac{50}{2\pi}[/tex]

Reduce fraction:

[tex]r=\frac{25}{\pi}[/tex]

The radius is [tex]\frac{25}{\pi}[/tex] cm.

Problem 4:  

The perimeter of a rectangle is [tex]2w+2L[/tex] where [tex]w[/tex] is the width and [tex]L[/tex] is the length.

We are asked to find w, the width, for when L, the length, is 5, and the perimeter is 40.

So we have this equation to solve for w:

[tex]40=2w+2(5)[/tex]

Simplify the 2(5) part:

[tex]40=2w+10[/tex]

Subtract both sides by 10:

[tex]30=2w[/tex]

Divide both sides by 2:

[tex]\frac{30}{2}=w[/tex]

Simplify the fraction:

[tex]15=w[/tex]

The width is 15 cm.

Find a vector equation and parametric equations for the line. (Use the parameter t.) The line through the point (1, 0, 9) and perpendicular to the plane x + 2y + z = 7

Answers

Answer:

r=<1,0,9>+t<1,2,1>

and

x=1+t

y=2t

z=9+t

Step-by-step explanation:

A vector perpendicular to the plane :

[tex]ax+by+cz+d=0[/tex]

is given by (a,b,c)

So a vector perpendicular to given plane will have :

(1,2,1)

[tex]The\ parametric\ equation\ of\ a\ line\ through\ (1,0,9)\ and\ parallel\ to\ vector\ (a,b,c) is\ given\ by:\\x=x_0+ta\\y=y_0+tb\\z=z_0+tb\\x=1+t(1)\\x=1+t\\y=0+t(2)\\y=2t\\z=9+t(1)\\z=9+t\\The\ vector\ form\ is:\\r=<1,0,9>+t<1,2,1>[/tex] ..

The vector equation r(t) is (1, 0, 9) + t(1, 2, 1) and the parametric equations are x = 1 + t, y = 2t, z = 9 + t.

To find the vector equation and parametric equations for the line that passes through the point (1, 0, 9) and is perpendicular to the plane given by x + 2y + z = 7, follow these steps :

1. Find the Normal Vector to the Plane :

The normal vector of the plane x + 2y + z = 7 is given by the coefficients of x, y, and z in the plane equation. Therefore, the normal vector n is (1, 2, 1).

2. Vector Equation of the Line :

A line passing through point (1, 0, 9) in the direction of normal vector (1, 2, 1) can be written in vector form as :r(t) = (1, 0, 9) + t(1, 2, 1) where t is the parameter.

3. Parametric Equations :

Extract the parametric equations from the vector equation :

x(t) = 1 + ty(t) = 0 + 2tz(t) = 9 + t

Thus, the parametric equations for the line are :

x = 1 + ty = 2tz = 9 + t

M1Q8.) Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate.

Answers

Rating plays on Broadway, Poor, good, or excellent would be a type of Ordinal measurement.

You can think or ordinal like order, which could be listing something from best to worst.

The answer is Ordinal.

Ordinal measurement can shown by name, group, or rank. Poor, good, and excellent shows the ratings of the play by "rank", in other words, by order. Thus proves our answer.

Best of Luck!

Find parametric equations for the path of a particle that moves along the circle x2 + (y − 1)2 = 4 in the manner described. (Enter your answer as a comma-separated list of equations. Let x and y be in terms of t.) (a) Once around clockwise, starting at (2, 1). 0 ≤ t ≤ 2π

Answers

Answer:

[tex]x=2\cos(t)[/tex] and [tex]y=-2\sin(t)+1[/tex]

Step-by-step explanation:

[tex](x-h)^2+(y-k)^2=r^2[/tex] has parametric equations:

[tex](x-h)=r\cos(t) \text{ and } (y-k)=r\sin(t)[/tex].

Let's solve these for x and y  respectively.

[tex]x-h=r\cos(t)[/tex] can be solved for x by adding h on both sides:

[tex]x=r\cos(t)+h[/tex].

[tex]y-k=r \sin(t)[/tex] can be solve for y by adding k on both sides:

[tex]y=r\sin(t)+k[/tex].

We can verify this works by plugging these back in for x and y respectively.

Let's do that:

[tex](r\cos(t)+h-h)^2+(r\sin(t)+k-k)^2[/tex]

[tex](r\cos(t))^2+(r\sin(t))^2[/tex]

[tex]r^2\cos^2(t)+r^2\sin^2(t)[/tex]

[tex]r^2(\cos^2(t)+\sin^2(t))[/tex]

[tex]r^2(1)[/tex] By a Pythagorean Identity.

[tex]r^2[/tex] which is what we had on the right hand side.

We have confirmed our parametric equations are correct.

Now here your h=0 while your k=1 and r=2.

So we are going to play with these parametric equations:

[tex]x=2\cos(t)[/tex] and [tex]y=2\sin(t)+1[/tex]

We want to travel clockwise so we need to put -t and instead of t.

If we were going counterclockwise it would be just the t.

[tex]x=2\cos(-t)[/tex] and [tex]y=2\sin(-t)+1[/tex]

Now cosine is even function while sine is an odd function so you could simplify this and say:

[tex]x=2\cos(t)[/tex] and [tex]y=-2\sin(t)+1[/tex].

We want to find [tex]\theta[/tex] such that

[tex]2\cos(t-\theta_1)=2 \text{ while } -2\sin(t-\theta_2)+1=1[/tex] when t=0.

Let's start with the first equation:

[tex]2\cos(t-\theta_1)=2[/tex]

Divide both sides by 2:

[tex]\cos(t-\theta_1)=1[/tex]

We wanted to find [tex]\theta_1[/tex] for when [tex]t=0[/tex]

[tex]\cos(-\theta_1)=1[/tex]

Cosine is an even function:

[tex]\cos(\theta_1)=1[/tex]

This happens when [tex]\theta_1=2n\pi[/tex] where n is an integer.

Let's do the second equation:

[tex]-2\sin(t-\theta_2)+1=1[/tex]

Subtract 2 on both sides:

[tex]-2\sin(t-\theta_2)=0[/tex]

Divide both sides by -2:

[tex]\sin(t-\theta_2)=0[/tex]

Recall we are trying to find what [tex]\theta_2[/tex] is when t=0:

[tex]\sin(0-\theta_2)=0[/tex]

[tex]\sin(-\theta_2)=0[/tex]

Recall sine is an odd function:

[tex]-\sin(\theta_2)=0[/tex]

Divide both sides by -1:

[tex]\sin(\theta_2)=0[/tex]

[tex]\theta_2=n\pi[/tex]

So this means we don't have to shift the cosine parametric equation at all because we can choose n=0 which means [tex]\theta_1=2n\pi=2(0)\pi=0[/tex].

We also don't have to shift the sine parametric equation either since at n=0, we have [tex]\theta_2=n\pi=0(\pi)=0[/tex].

So let's see what our equations look like now:

[tex]x=2\cos(t)[/tex] and [tex]y=-2\sin(t)+1[/tex]

Let's verify these still work in our original equation:

[tex]x^2+(y-1)^2[/tex]

[tex](2\cos(t))^2+(-2\sin(t))^2[/tex]

[tex]2^2\cos^2(t)+(-2)^2\sin^2(t)[/tex]

[tex]4\cos^2(t)+4\sin^2(t)[/tex]

[tex]4(\cos^2(t)+\sin^2(t))[/tex]

[tex]4(1)[/tex]

[tex]4[/tex]

It still works.

Now let's see if we are being moving around the circle once around for values of t between [tex]0[/tex] and [tex]2\pi[/tex].

This first table will be the first half of the rotation.

t                  0                      pi/4                pi/2               3pi/4               pi  

x                  2                     sqrt(2)             0                  -sqrt(2)            -2

y                  1                    -sqrt(2)+1          -1                  -sqrt(2)+1            1

Ok this is the fist half of the rotation.  Are we moving clockwise from (2,1)?

If we are moving clockwise around a circle with radius 2 and center (0,1) starting at (2,1) our x's should be decreasing and our y's should be decreasing at the beginning we should see a 4th of a circle from the point (x,y)=(2,1) and the point (x,y)=(0,-1).

Now after that 4th, the x's will still decrease until we make half a rotation but the y's will increase as you can see from point (x,y)=(0,-1) to (x,y)=(-2,1).  We have now made half a rotation around the circle whose center is (0,1) and radius is 2.

Let's look at the other half of the circle:

t                pi               5pi/4                  3pi/2            7pi/4                     2pi

x               -2              -sqrt(2)                0                 sqrt(2)                      2

y                1                sqrt(2)+1             3                  sqrt(2)+1                   1

So now for the talk half going clockwise we should see the x's increase since we are moving right for them.  The y's increase after the half rotation but decrease after the 3/4th rotation.

We also stopped where we ended at the point (2,1).

Final answer:

The parametric equations for the path of a particle moving along the circle x^2 + (y - 1)^2 = 4 in a clockwise direction, starting at (2, 1), are x = 2 + 2sin(-t) and y = 1 + 2cos(-t).

Explanation:

The parametric equations for the path of a particle moving along the circle x2 + (y - 1)2 = 4 in a clockwise direction, starting at (2, 1), can be found using trigonometric functions. From the given equation of the circle, we can determine that the center of the circle is (0, 1) and the radius is 2. Therefore, the parametric equations are:

x = 2 + 2sin(-t) y = 1 + 2cos(-t)

.

Learn more about Parametric equations here:

https://brainly.com/question/29187193

#SPJ2

1. A dad holds five coins in his hand. He tells his son that if he can guess the amount of money he is holding within 5% error, he can have the money. The son guesses that dad is holding 81 cents. The dad opens his hand and displays 90 cents. Did the son guess close enough to get the money?

Answers

The dad had 90 cents.

Multiply the 90 cents by 5%:

90 x 0.05 = 4.5 cents.

Subtract that from 90:

90 - 4.5 = 85.5 cents.

The lowest guess the son could say was 86 cents to be within 5%

Since the son guessed lower than that he did not get the money.

1. A dad holds five coins in his hand. He tells his son that if he can guess the amount of money he is holding within 5% error, he can have the money. The son guesses that dad is holding 81 cents. The dad opens his hand and displays 90 cents. Did the son guess close enough to get the money?

yes

A car manufacturer is reducing the number of incidents with the transmission by issuing a voluntary recall. During week 3 of the recall, the manufacturer fixed 391 cars. In week 13, the manufacturer fixed 361 cars. Assume that the reduction in the number of cars each week is linear. Write an equation in function form to show the number of cars seen each week by the mechanic.

Answers

Final answer:

To find the equation in function form for the number of cars fixed each week by the mechanic, we can use the slope-intercept form of a linear equation. The equation is y = -3x + 400, where x represents the week number and y represents the number of cars fixed.

Explanation:

To write an equation in function form to show the number of cars seen each week by the mechanic, we can let the variable x represent the week number and y represent the number of cars fixed. We know that the reduction in the number of cars each week is linear, so we can use the slope-intercept form of a linear equation, y = mx + b. To find the slope, we can use the formula m = (y2 - y1) / (x2 - x1), where (x1, y1) and (x2, y2) are two points on the line. Let's use the points (3, 391) and (13, 361) to find the slope. Plugging these values into the formula gives us m = (361 - 391) / (13 - 3) = -3. Therefore, the equation in function form is y = -3x + b. To find the y-intercept b, we can use one of the points on the line. Let's use the point (3, 391): 391 = -3(3) + b. Solving for b gives us b = 400. Therefore, the equation in function form is y = -3x + 400, where x represents the week number and y represents the number of cars fixed.

Learn more about Equation in function form here:

https://brainly.com/question/29275893

#SPJ12

Final answer:

The equation in function form to show the number of cars seen each week by the mechanic is y = -3x + 400, where x represents the week and y represents the number of cars fixed by the mechanic.

Explanation:

To write an equation in function form to show the number of cars seen each week by the mechanic, we can use the given information that the reduction in the number of cars each week is linear. Let's assume the number of cars fixed in week 3 as y = 391 and in week 13 as y = 361. We can use the formula for the equation of a line, y = mx + b, where m is the slope and b is the y-intercept.

Using the slope formula, m = (y2 - y1) / (x2 - x1), where (x1, y1) = (3, 391) and (x2, y2) = (13, 361), we find m = (361 - 391) / (13 - 3) = -3.

Therefore, the equation in function form to show the number of cars seen each week by the mechanic is y = -3x + b. To find the y-intercept, we can substitute the coordinates of one of the points (x, y) = (3, 391) into the equation, 391 = -3(3) + b. Solving for b gives b = 400.

Thus, the equation in function form is y = -3x + 400, where x represents the week and y represents the number of cars fixed by the mechanic.

Learn more about Equation of a line here:

https://brainly.com/question/21511618

#SPJ12

The exact value of 400 comma 000 times 200 is 8000000. ​(Use scientific notation. Use the multiplication symbol in the math palette as​ needed.)

Answers

Answer:

The scientific notation of 8,000,000 is 8 × 10^6

Step-by-step explanation:

* Lets explain the meaning of the scientific notation

- Scientific notation is a way of writing very large or very small numbers

- A number is written in scientific notation when a number between 1

 and 10 is multiplied by a power of 10

- Ex:  650,000,000 can be written in scientific notation as

        6.5 × 10^8

- We put a decimal points to make the number between 1 and 10 and

 then count how many places from right to left until the decimal point

 The decimal point between 6 and 5 to make the number 6.5 and

 there are 8 places from the last zero to the decimal point

* Lets solve the problem

∵ The exact value of 400,000 × 200 = 8,000,000

- Put the decimal point before 8 and count how many places from

 the last zero to the decimal point

∵ There are six places from last zero to the decimal point

∴ The scientific notation of 8,000,000 is 8 × 10^6

Which type of data in an Enterprise System occasionally changes?

Master data

Date and Time data

Organizational data

Transaction data

Answers

Answer:

the correct answer is master data

Step-by-step explanation:

Enterprise system is a information system which provides a company with a wide integration and coordination regarding the important business processes  and also helps in providing seamless flow of information through out the company.

Master data  is a type of data in the enterprise system which is changed only occasionally , as this data includes all the information related to the customers like name, contact etc which helps a firm in analyzing their behavior and conduct high level research.

Determine the validity of the following argument. If one of the arguments is listed in the text, please name it: If n is a real number such that n > 2, then n^2 > 4. Suppose that n^2 <= 4. Then n ? 2. Which rule of inference, if any, is being used?

Answers

Answer:

Step-by-step explanation:this is confusing for me oof

Other Questions
What did Federalists do at the end of the their term in order to retain control of the judiciary A superball and a clay ball are dropped from a height of 10cm above a tabletop. They have the same mass 0.05kg and the same size. The superball bounces off the table and rises back to the same height. The clay ball sticks to the table. For the superball in the previous question, if it was in contact with the table for 34.3ms, calculate the average force exerted on the ball by the table. Hint: First calculate the momentum before and after hitting the table. Don't forget the gravitational force. A myocardial infarction may result in decreased cardiac output?a. True b. False You are laying 1.200 ft of pipe. After doing 900 ft. your vendor has run out of $15 pipe, and you have to buy more pipe at the store for $25 per foot. How much will it cost you in materials to install the 1,200 ft of pipe? Next How does Wiesel begin his speech?OA. By explaining the rage he feels about what happened to himOB. By recounting an experience he went through as a childOc. By offering an explanation for the HolocaustOD. By thanking the soldiers that freed him from the campsSUBMIT Write an equation (a) in slope intercept form and (b) in standard form for the line passing through (1,9) and perpendicular to 3x+5y=1. Sometimes, based on the electron configurations of the elements involved, a possible chemical formula for a compound can be predicted. Elements A ([core]ns2) and B ([core]ns2np5) react to form ionic compound AxBy. Select the false statement below : A) element A serves as the reducing agent in the reaction to form AxBy B)the x and y in AxBy must reflect the lowest whole number ratio of moles of A to moles of B C)x + y = 3 D)the first ionization energy (IE1) of B is most probably lower than the first ionization energy (IE1) of A E)the B in AxBy has a 1 oxidation state It costs Sheffield Corp. $12 of variable and $5 of fixed costs to produce one bathroom scale which normally sells for $35. A foreign wholesaler offers to purchase 2000 scales at $15 each. Sheffield would incur special shipping costs of $1 per scale if the order were accepted. Sheffield has sufficient unused capacity to produce the 2000 scales. If the special order is accepted, what will be the effect on net income? French I Grammar Questions urgent help please!!!!!!!!!!!!!!!!!! You purchase 100 shares of stock for $40 a share. The stock pays a $2 per share dividend at year-end. a. What is the rate of return on your investment if the end-of-year stock price is (i) $38; (ii) $40; (iii) $42? (Leave no cells blank - be certain to enter "0" wherever required. Enter your answers as a whole percent.) Help me plz. Havent been able to answer this problem. Even my TEACHER is stumped. (Mark brainliest) Jonathan borrowed $475 at a simple annual interest rate of 2%. How many years will it take him to repay the loan if he wants to pay $38 in interest? A. 4 B. 5 C. 6 D. 7 ture or false; in the muslim world, the tropical foresst are found in central africa along the equator , and i n south-east asia A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 431 gram setting. It is believed that the machine is underfilling the bags. A 23 bag sample had a mean of 430 grams with a standard deviation of 24. A level of significance of 0.025 will be used. Assume the population distribution is approximately normal. State the null and alternative hypotheses. what is a plant root an example of _______On what basis composites are classified a)- shape of dispersed phase b)-matrix materials c)-chemistry of dispersed phase d)-a & b Water reabsorption, the absorption of vitamins produced by normal bacteria, and packing and compacting waste products for elimination takes place in _____________. Describe ways that water pollution occurs. Substances A and B, initially at different temperatures, come in contact with each other and reach thermal equilibrium. The mass of substance A is twice the mass of substance B. The specific heat capacity of substance B is twice the specific heat capacity of substance A.Which statement is true about the final temperature of the two substances once thermal equilibrium is reached?1) The final temperature will be closer to the initial temperature of substance B than substance A.2) The final temperature will be exactly midway between the initial temperatures of substances A and B.3) The final temperature will be closer to the initial temperature of substance A than substance B.