Solve the given equation. (Enter your answers as a comma-separated list. Let k be any integer. Round terms to three decimal places where appropriate. If there is no solution, enter NO SOLUTION.) 5 sin(2θ) − 2 sin(θ) = 0

Answers

Answer 1

Answer:

  x = {kπ, arccos(1/5) +2kπ, 2kπ -arccos(1/5)}

Step-by-step explanation:

The double-angle trig identity for sine is useful:

  5(2sin(θ)cos(θ)) -2sin(θ) = 0

  2sin(θ)(5cos(θ) -1) = 0

This has solutions that make the factors zero:

  θ = arcsin(0) =

and ...

  cos(θ) = 1/5

  θ = arccos(1/5) +2kπ . . . . or . . . . 2kπ -arccos(1/5)

_____

Some numerical values are shown on the graph attached. values for multiples of pi are ...

  {..., -12.566, -9.425, -6.283, -3.142, 0, 3.142, 6.283, 9.425, 12.566, ...}

Solve The Given Equation. (Enter Your Answers As A Comma-separated List. Let K Be Any Integer. Round

Related Questions

2. Let a, b, cE Z such that ged(a, c)d for some integer d. Prove that if a | bc then a | bd. [3

Answers

Answer with explanation:

It is given that, a, b and c belong to the set of integers.

→ gcd(a,c)=d

→GCD=Greatest Common Divisor

→The greatest number which divides both a and c is d.

It means d divides a, and d divides c.

 a=d k, for some integer k.-------(1)

  c= d m, for some integer m.-------(2)

Now, it is given that, a divides bc.

So,→ 'a' will divide "bdm".--------[using 2, as c=d m]

It shows that, a divides bd, that is a| bd.

Hence proved

Suppose that the inflation rate is 2.5% and the real terminal value of an investment is expected to be $20,000 in 2 years. Calculate the nominal terminal value of the investment at the end of year 2.

Answers

Answer:

  $21012.50

Step-by-step explanation:

$20,000 today will be inflated to $20,000·(1.025)^2 ≈ $21012.50 in 2 years. We presume this is the nominal terminal value you want.

The U.S. Center for Disease Control reports that the mean life expectancy was 47.6 years for whites born in 1900 and 33.0 years for nonwhites. Suppose that you randomly survey death records for people born in 1900 in a certain county. Of the 124 whites, the mean life span was 45.3 years with a standard deviation of 12.7 years. Of the 82 nonwhites, the mean life span was 34.1 years with a standard deviation of 15.6 years. Conduct a hypothesis test to see if the mean life spans in the county were the same for whites and nonwhites.

Answers

The correct option is to reject the null hypothesis. The mean life spans for whites and non-whites born in 1900 in the certain county are not the same.

To conduct the hypothesis test, we will use a two-sample z-test for the difference in two means. The null hypothesis (H0) states that there is no difference in the mean life spans between whites and non-whites, while the alternative hypothesis (Ha) states that there is a difference.

The formula for the z-test statistic is:

[tex]\[ z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \][/tex]

where:

- [tex]\(\bar{x}_1\)[/tex] and [tex]\(\bar{x}_2\)[/tex] are the sample means for whites and non-whites, respectively.

- [tex]\(\mu_1\)[/tex] and [tex]\(\mu_2\)[/tex] are the population means for whites and non-whites, respectively.

- [tex]\(\sigma_1\)[/tex] and [tex]\(\sigma_2\)[/tex] are the population standard deviations for whites and non-whites, respectively.

- [tex]\(n_1\)[/tex] and [tex]\(n_2\)[/tex] are the sample sizes for whites and non-whites, respectively.

Given:

- [tex]\(\bar{x}_1 = 45.3\) years, \(s_1 = 12.7\) years, \(n_1 = 124\)[/tex] (for whites)

- [tex]\(\bar{x}_2 = 34.1\)[/tex] years, [tex]\(s_2 = 15.6\) years, \(n_2 = 82\)[/tex] (for non-whites)

- [tex]\(\mu_1 = 47.6\)[/tex] years (for whites)

- [tex]\(\mu_2 = 33.0\)[/tex] years (for non-whites)

Since we do not have the population standard deviations, we will use the sample standard deviations as an estimate. This is appropriate given the sample sizes are large enough (generally [tex]\(n > 30\)[/tex] is considered sufficient).

First, we calculate the standard error (SE) of the difference in means:

[tex]\[ SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{12.7^2}{124} + \frac{15.6^2}{82}} \][/tex]

[tex]\[ SE = \sqrt{\frac{161.29}{124} + \frac{243.36}{82}} \][/tex]

[tex]\[ SE = \sqrt{1.299 + 2.968} \][/tex]

[tex]\[ SE = \sqrt{4.267} \][/tex]

[tex]\[ SE \approx 2.066 \][/tex]

Now, we calculate the z-statistic:

[tex]\[ z = \frac{(45.3 - 34.1) - (47.6 - 33.0)}{2.066} \][/tex]

[tex]\[ z = \frac{11.2 - 14.6}{2.066} \][/tex]

[tex]\[ z = \frac{-3.4}{2.066} \][/tex]

[tex]\[ z \approx -1.646 \][/tex]

Next, we find the p-value for this z-statistic. Since we are conducting a two-tailed test, we will look at the probability of a z-score being less than -1.646 or greater than 1.646. Using a standard normal distribution table or a calculator, we find that the p-value is approximately 0.100.

Finally, we compare the p-value to our significance level (commonly denoted as [tex]\(\alpha\))[/tex]. If the p-value is less than [tex]\(\alpha\)[/tex], we reject the null hypothesis. If we choose [tex]\(\alpha = 0.05\)[/tex], then since [tex]\(0.100 > 0.05\)[/tex], we fail to reject the null hypothesis.

However, if we choose a significance level of [tex]\(\alpha = 0.10\)[/tex], then since [tex]\(0.100 \leq 0.10\)[/tex], we would reject the null hypothesis, indicating that there is a statistically significant difference in the mean life spans between whites and non-whites in the county.

Given the p-value is on the boundary of common significance levels, the conclusion may vary depending on the chosen level of significance. However, the correct option based on the provided conversation is to reject the null hypothesis, suggesting that the mean life spans are not the same for whites and non-whites in the county.

If f(x) = 2x - 1 and g(x) = x^2 - 2, find [g · f](x)

please show me how to do this

Answers

Answer:

(x² -7)/(2x + 1)

Step-by-step explanation:

f(x) = 2x+1 and g(x) = x² -7

thus: (g/f)(x) = g(x)/f(x) = x² -7/2x + 1

Hello!

The answer is:

[tex](g \circ f)(x)=4x^{2}-4x-1[/tex]

Why?

To solve the problem, we need to remember that composing functions means evaluate a function into another different function.

Also, we need to remember how to solve the following notable product:

[tex](a-b)^{2}=a^{2}-2ab+b^{2}[/tex]

We have that:

[tex](g \circ f)(x)=g(f(x))[/tex]

Now, we are given the equations:

[tex]f(x)=2x-1\\g(x)=x^{2}-2[/tex]

So, composing we have:

[tex](g \circ f)(x)=g(f(x))[/tex]

[tex](g \circ f)(x)=(2x-1)^{2}-2[/tex]

Now, we have to solve the notable product:

[tex](g \circ f)(x)=((2x)^{2}-2(2x*1)+1^{2})-2[/tex]

[tex](g \circ f)(x)=4x^{2}-4x+1-2[/tex]

Hence, we have that:

[tex](g \circ f)(x)=4x^{2}-4x-1[/tex]

Have a nice day!

Raul received a score of 77 on a history test for which the class mean was 70 with a standard deviation of 6. He received a score of 79 on a biology test for which the class mean was 70 with standard deviation 4. On which test did he do better relative to the rest of the class?

Answers

Answer:

He did better on biology test.

Step-by-step explanation:

For comparing the scores we need to find z-scores for both subjects,

We know that,

z-score or standard score for x is,

[tex]z=\frac{x-\mu}{\sigma}[/tex]

Where, [tex]\mu[/tex] is mean,

[tex]\sigma[/tex] is standard deviation,

In history test,

[tex]x=77[/tex]

[tex]\mu=70[/tex]

[tex]\sigma = 6[/tex]

Thus, the z-score would be,

[tex]z_1=\frac{77-70}{6}[/tex]

[tex]\approx 1.167[/tex]

In biology test,

[tex]x=79[/tex]

[tex]\mu = 70[/tex]

[tex]\sigma = 4[/tex],

Thus, the z-score would be,

[tex]z_2=\frac{79-70}{4}[/tex]

[tex]= 2.25[/tex]

∵ [tex]z_2>z_1[/tex]

Hence, he did better on biology test.

A brand name has a 40​% recognition rate. If the owner of the brand wants to verify that rate by beginning with a small sample of 5 randomly selected​ consumers, find the probability that exactly 2 of the 5 consumers recognize the brand name. Also find the probability that the number who recognize the brand name is not 2.

Answers

Answer:

1) 0.3456

2) 0.6544.

Step-by-step explanation:

Let X represents the event of recognizing the brand,

Given,

The probability of recognizing the brand, p = 40​% = 0.40,

Thus, the probability of not recognizing the brand, q = 1 - 0.40 = 0.60,

Since, the binomial distribution formula,

[tex]P(x) = ^nC_r (p)^r(q)^{n-r}[/tex]

Where,

[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

1) Thus, the probability that exactly 2 of the 5 consumers recognize the brand name is,

[tex]P(X=2)=^5C_2 (0.40)^2 (0.60)^{5-2}[/tex]

[tex]=10 (0.40)^2 (0.60)^3[/tex]

[tex]=0.3456[/tex]

2) Also, the probability that the number who recognize the brand name is not 2 = 1 - P(X=2) = 1 - 0.3456 = 0.6544.

Find the directional derivative of f(x,y,z)=2z2x+y3f(x,y,z)=2z2x+y3 at the point (−1,4,3)(−1,4,3) in the direction of the vector 15–√i+25–√j15i+25j. (Use symbolic notation and fractions where needed.)

Answers

[tex]f(x,y,z)=2z^2x+y^3[/tex]

[tex]f[/tex] has gradient

[tex]\nabla f(x,y,z)=2z^2\,\vec\imath+3y^2\,\vec\jmath+4xz\,\vec k[/tex]

which at the point (-1, 4, 3) has a value of

[tex]\nabla f(-1,4,3)=18\,\vec\imath+48\,\vec\jmath-12\,\vec k[/tex]

I'm not sure what the given direction vector is supposed to be, but my best guess is that it's intended to say [tex]\vec u=15\,\vec\imath+25\,\vec\jmath[/tex], in which case we have

[tex]\|\vec u\|=\sqrt{15^2+25^2}=5\sqrt{34}[/tex]

Then the derivative of [tex]f[/tex] at (-1, 4, 3) in the direction of [tex]\vec u[/tex] is

[tex]D_{\vec u}f(-1,4,3)=\nabla f(-1,4,3)\cdot\dfrac{\vec u}{\|\vec u\|}=\boxed{\dfrac{294}{\sqrt{34}}}[/tex]

Final answer:

To find the directional derivative, we need to find the gradient of the function and dot product it with the given direction vector.

Explanation:

To find the directional derivative, we need to find the gradient of the function and dot product it with the given direction vector. The gradient of the function f(x, y, z) = 2z^2x + y^3 is (∂f/∂x, ∂f/∂y, ∂f/∂z) = (4zx, 3y^2, 4xz). The directional derivative in the direction of the vector (15-√i + 25-√j) is given by the dot product of the gradient and the direction vector: (4(-1)(15-√) + 3(4^2)(25-√) + 4(3)(-1)(15-√))/√((15-√)^2 + (25-√)^2). Simplifying this expression gives the directional derivative.

Learn more about Directional derivative here:

https://brainly.com/question/32589894

#SPJ11


1. Solve the equation x = (2x+ 3)1/2

2. Consider f1(x) = ln(x + 1) + ln (x-1) and f2(x) = ln(x^2-1).

a) State domains and ranges of f1 and f2.

b) Sketch the curves y = f1(x) and y = f2(x).

Answers

Answer:

1.  [tex]x=3[/tex]; 2. Domain:  [tex]x>1[/tex]  Range: all real numbers

Step-by-step explanation:

Let's find the solutions.

1. Solve the equation [tex]x=\sqrt{2x+3}[/tex] so:

[tex](x)^2=(\sqrt{2x+3})^2[/tex]

[tex]x^2=2x+3[/tex]

[tex]x^2-2x-3=0[/tex]

[tex]x1=\frac{-b+\sqrt{b^{2}-4ac}}{2a}[/tex]

[tex]x1=\frac{2+\sqrt{(-2)^{2}-(4*1*(-3))}}{2*1}[/tex]

[tex]x1=3[/tex]

[tex]x2=\frac{-b-\sqrt{b^{2}-4ac}}{2a}[/tex]

[tex]x2=\frac{2-\sqrt{(-2)^{2}-(4*1*(-3))}}{2*1}[/tex]

[tex]x2=-1[/tex]

Although we have two answers, remember that from the original equation the result of [tex]\sqrt{2x+3} > 0[/tex] is never negative. So -1 do not solve the equation.

In conlcusion, the equation is solved by x=3.

2A. Domains and ranges of f1(x) and f2(x)

[tex]f1(x)=ln(x+1)+ln(x-1)[/tex]

Using logarithmic property [tex]ln(a)+ln(b)=ln(a*b)[/tex] we have:

[tex]f1(x)=ln(x^2-1)[/tex] because:

[tex]ln(x)[/tex] is defined by  [tex]x>0[/tex] then:

[tex]x^2-1>0[/tex]

[tex]x>\sqrt{1}[/tex] so the domain of f1(x) is [tex]x>1[/tex]

Now for the range:

[tex]f1(x)=ln(x+1)+ln(x-1)[/tex]

[tex]y=ln(x^2-1)[/tex]

[tex]e^y=x^2-1[/tex]

[tex]\sqrt{e^y+1}=x^2-1[/tex] notice that [tex]e^y+1[/tex] is always positive, so the range of f1(x) is all real numbers.

Be aware that although point number two of the problem mentioned two equations, f1(x)=f2(x) by logarithmic properties, so their domains and ranges are the same.

2B. Graph of f1(x) is attached. Because f1(x)=f2(x) both functions plot equal.

Suppose that replacement times for washing machines are normally distributed with a mean of 9.3 years and a standard deviation of 1.1 years. Find the probability that 70 randomly selected washing machines will have a mean replacement time less than 9.1 years. Your answer should be a decimal rounded to the fourth decimal place.

Answers

Answer:

The probability is 0.0643

Step-by-step explanation:

* Lets revise some definition to solve the problem

- The standard deviation of the distribution of sample means is called σM

- σM = σ/√n , where σ is the standard deviation and n is the sample size

- z-score = (M - μ)/σM, where M is the mean of the sample , μ is the mean

 of the population  

* Lets solve the problem

- The mean of the washing machine is 9.3 years

μ = 9.3

- The standard deviation is 1.1 years

σ = 1.1

- There are 70 washing machines randomly selected

n = 70

- The mean replacement time less than 9.1 years

M = 9.1

- Lets calculate z-score

∵ σM = σ/√n

σM = 1.1/√70 = 0.1315

∵ z-score = (M - μ)/σM

z-score = (9.1 - 9.3)/0.1315 = - 1.5209

- Use the normal distribution table of z to find P(z < -1.5209)

∴ P(z < -1.5209) = 0.06426

∵ P(M < 9.1) = P(z < -1.5209)

∴ P(M < 9.1) = 0.0643

* The probability is 0.0643

For f(x) = 2|x+3| – 5, name the type of function and describe each of the three
transformations from the parent function f(x) = |x|

Answers

Type of function: Absolute value function
Transformation 1: Stretch vertically by a factor of 2
Transformation 2: Translate left by 3 units
Transformation 3: Translate down by 5 units

Answer:

There are three transformation i.e. vertically stretch, downward and towards left.            

Step-by-step explanation:

Given : Parent function [tex]f(x)=|x|[/tex] and transformed function [tex]f(x)=2|x+3|-5[/tex]

To find : Name the type of function and describe each of the three transformations?

Solution :

Parent function [tex]f(x)=|x|[/tex] get transformed into [tex]f(x)=2|x+3|-5[/tex]

The transformations are as follow :

1) The function is multiplied by 2 which means there is a transformation vertically by a stretch factor '2'.

2) The function is subtracted by 5 which means there is a transformation downward by a factor '5'.

3) The function inside x value get added by 3 which means there is a transformation left by a factor '3'.

Therefore, There are three transformation i.e. vertically stretch, downward and towards left.

A father wishes to give his son P200, 000 ten years from now. What amount should he invest if it will earn interest at 10% compounded quarterly during the first five years and 12% compounded annually during the next five years? A. P68,757.82 B. P62,852.23 C. P69,256.82 D. P67,238.54

Answers

Answer:

C. P69,256.82

Step-by-step explanation:

We know that,

The amount formula in compound interest is,

[tex]A=P(1+\frac{r_1}{n_1})^{n_1t_1} (1+\frac{r_2}{n_2})^{n_2t_2}.......[/tex]

Where, P is the principal amount,

[tex]r_1, r_2....[/tex] are the annual rate for the different periods,

[tex]t_1, t_2,.....[/tex] are the number of year for different periods,

[tex]n_1, n_2, n_3...[/tex] are the number of periods,

Given,

A = P 200,000,

[tex]r_1=10%=0.1[/tex], [tex]n_1=4[/tex], [tex]t_1=5[/tex],[tex]r_2=12%=0.12[/tex], [tex]n_2=1[/tex], [tex]t_2=5[/tex]

Thus, by the above formula the final amount would be,

[tex]200000=P(1+\frac{0.1}{4})^{4\times 5}(1+\frac{0.12}{1})^{1\times 5}[/tex]

[tex]200000=P(1+0.025)^{20}(1+0.12)^5[/tex]

[tex]200000=P(1.025)^{20}(1.12)^5[/tex]

[tex]\implies P=69,256.824\approx 69,256.82[/tex]

Option C is correct.

The correct option is C. P69,256.82. The father should invest approximately P69,256.82 today to ensure his son receives P200,000 in ten years.

To determine the amount the father needs to invest today to give his son P200,000 ten years from now, we will break the problem into two phases due to different interest rates and compounding periods.

Phase 1: First Five Years (10% compounded quarterly)

→ Future Value (FV) needed after 10 years: P200,000

→ Future Value (FV) after first five years at 12% annual interest for the next five years:

Let's use the formula for compound interest to calculate amount required after the first five years.

Here,

→ n is the number of times the interest is compounded per year

→ t is time in years.

→ [tex]FV = PV*(1 + r/n)^{(nt)[/tex]

After the first five years, the amount needs to grow at 12% compounded annually for 5 years to reach P200,000.

We can calculate the present value (PV) at the end of the first five years needed to achieve P200,000 after next 5 years.

→ P200,000 = [tex]PV * (1 + 0.12/1)^{(1*5)[/tex]

→ P200,000 = [tex]PV * (1.12)^5[/tex]

Calculating PV:

→ PV = P200,000 / (1.7623)

        ≈ P113,477.57

Phase 2: First Five Years Investment Calculation

Now, we need to find out the amount the father should invest today to reach P113,477.57 after five years with 10% interest compounded quarterly.

Here,

→ r is the quarterly rate,

→ nt is the total number of quarters.

We use the same compound interest formula:

→ [tex]FV = PV * (1 + r/n)^{(nt)[/tex]

→ P113,477.57 = [tex]PV * (1 + 0.10/4)^{(4*5)[/tex]

→ P113,477.57 = [tex]PV * (1.025)^{20[/tex]

→ [tex](1.025)^{20} \approx 1.6386[/tex]

Calculating PV:

→ PV = P113,477.57 / 1.6386

        ≈ P69,256.82

So, the father needs to invest approximately P69,256.82 today.

Find the angle between the given vectors to the nearest tenth of a degree.

u = <6, -1>, v = <7, -4>

Answers

Answer:

A

Step-by-step explanation:

Given

u = <6, -1>

u = 6i-j

and

v=<7,-4>

v=7i-4j

The formula for angle is:

Let x be the angle

[tex]cos\ x = \frac{u.v}{||u||.||v||}[/tex]

where ||u|| is the length and u.v is the dot product or scalar product of both vectors

So,

[tex]||u|| = \sqrt{(6)^2+(-1)^2}\\ = \sqrt{36+1}\\ = \sqrt{37}\\ ||v||=\sqrt{(7)^2+(-4)^2}\\ = \sqrt{49+16}\\ = \sqrt{65}\\[/tex]

[tex]u.v = u_1u_2+v_1v_2\\= (6)(7)+(-1)(-4)\\=42+4\\=46[/tex]

[tex]cos\ x=\frac{46}{\sqrt{37}\sqrt{65}} \\= \frac{46}{\sqrt{2405} }\\Can\ also\ be\ written\ as:\\= \frac{46}{\sqrt{2405} } * \frac{\sqrt{2405} }{\sqrt{2405}} \\=\frac{46\sqrt{2405} }{2405}[/tex]

The calculated angle will be in radians. To find the angle in degrees:

[tex]x = \frac{180}{\pi} cos^{-1} (\frac{46\sqrt{2405} }{2405})\\x = 20.282\\x= 20.3\\[/tex]

Hence Option A is correct ..

Consider the region satisfying the inequalities.y ≤ e−x, y ≥ 0, x ≥ 0a) Find area of regionb) Find the volume of the solid generated by revolving the region about the x-axis.c) Find the volume of the solid generated by revolving the region about the y-axis.

Answers

Revolving about the [tex]x[/tex]-axis:

Using the disk method, the volume is

[tex]\displaystyle\pi\int_0^\infty e^{-2x}\,\mathrm dx=\boxed{\frac\pi2}[/tex]

Alternatively, using the shell method, the volume is

[tex]\displaystyle2\pi\int_0^1y(-\ln y)\,\mathrm dy=\frac\pi2[/tex]

Revolving about the [tex]y[/tex]-axis:

Using the shell method, the volume is

[tex]\displaystyle2\pi\int_0^\infty xe^{-x}\,\mathrm dx=\boxed{2\pi}[/tex]

Alternatively, using the disk method, the volume is

[tex]\displaystyle\pi\int_0^1(-\ln x)^2\,\mathrm dx=2\pi[/tex]

Final answer:

The area of the region is 1 square unit. The volume of the solid generated by revolving the region about the x-axis can be found by integrating π(y^2) dx from x = 0 to x = ∞.

Explanation:

To find the area of the region, we need to find the intersection points between the two curves. In this case, the curves are y = e^(-x) and y = 0. Since y ≥ 0, the region will lie between the x-axis and the curve y = e^(-x). The intersection point is where y = 0, which occurs at x = 0. To find the area, we integrate y = e^(-x) from x = 0 to x = ∞:

A = ∫0∞ e^(-x) dx = [-e^(-x)]0∞ = -[e^0 - 0]
               = -[1 - 0] = 1

The area of the region is 1 square unit.

To find the volume of the solid generated by revolving the region about the x-axis, we use the disk method. The radius of each disk is given by y = e^(-x), and the height of each disk is given by dx. The volume can be found by integrating π(y^2) dx from x = 0 to x = ∞:

V = π∫0∞ (e^(-x))^2 dx = π∫0∞ e^(-2x) dx

We are doing a study on shampoo buyers in Walmart stores across the US and we send them online surveys. Based on past studies, we know that of the people who start the survey, 80% qualify for the study, and only 40% of these people who do qualify actually complete the survey. Of the people who complete the survey, 10% of respondents are removed due to invalid or low quality answers. If we want 1000 valid responses for this particular study, how many people do we need to have start the survey?

Answers

Answer:

2500

Step-by-step explanation:

They tell you that only 40% of the total complete the quality test, and you want to know how many represent 100%.

If this 40% is 1000 valid responses use cross multiplication to know how many people are the total.

40%-----1000 valid responses

100%----x=

[tex]\frac{100*1000}{40} =X\\2500=X[/tex]

So, you can tell they need at least 2500 persons to have 1000 valid responses.

Answer:

Number of people = 3473

Step-by-step explanation:

Probability is typically the rate at which an event or occurrence is likely to happen. Whenever we're not so sure about an event outcome, we can then deliberate about the probabilities or possibility of certain outcomes that is how likely they are to happen.

Probability of success, =0.8×0.4×0.9 =0.288

Expected, E=1000

Expected = np

1000=n×0.288

n=​0.288​​1000​​≈34

Round each of the following, using front-end rounding. [1.1] 4. 50,987 5. 851,004

Answers

Answer:

4) 50,000

5) 900,000

Step-by-step explanation:

In Front end rounding what we do is we focus on first two digit of the number if the second digit number is greater than or equal to 5 we add the first digit by 1.

4) 50,987

here we can clearly see that the first two digit is 50 and second digit is not equal to 5 then rounding will be equal to 50,000.

5) 851,004

here we can clearly see that the first two digit is 85 and second digit is equal to 5 then we will round it  8+1=9

hence rounded number will be 900,000

Final answer:

Front-end rounding of 50,987 is 50,000 and for 851,004 it's 900,000, based on the most significant digits, using zeros as placeholders after rounding.

Explanation:

Front-end rounding involves rounding numbers based on the most significant digits. Let's apply this method to the numbers provided.

50,987 rounded to the nearest ten thousand would be 50,000.For 851,004, rounded to the nearest hundred thousand would be 900,000.

When rounding, if the digit immediately after the place you are rounding to is 5 or greater, you round up. Otherwise, you round down. Placeholder zeros are used to maintain the value's place in the number system.

Prove that the set of all odd positive integers is countable.

Answers

Answer:

See below.

Step-by-step explanation:

The set of  all positive integers N is countable so we need to show that there is a 1 to 1 correspondence between the elements in N  with the set of all odd positive integers. This is the case as shown below:

1 2 3 4 5 6 ...

|  |  |   |   |  | ....

1 3 5 7 9 11....

Two particles travel along the space curves r1(t) = t, t2, t3 r2(t) = 1 + 2t, 1 + 6t, 1 + 14t . Find the points at which their paths intersect. (If an answer does not exist, enter DNE.)

Answers

Answer:

DNE

Step-by-step explanation:

Given that two particles travel along the space curves

[tex]r_1(t) = (t, t^2, t^3)\\ r_2(t) = (1 + 2t, 1 + 6t, 1 + 14t )[/tex]

To find the points of intersection:

At points of intersection both coordinates should be equal.

i.e. r1 =r2

Equate corresponding coordinates

[tex]t=1+2t\\t^2=1+6t\\t^3=1+14t[/tex]

I equation gives t =-1

Substitute in II equation to get [tex]t^2 = -5[/tex]

i.e. t cannot be real

Hence no point of intersection

DNE

You manage an ice cream factory that makes two flavors: Creamy Vanilla and Continental Mocha. Into each quart of Creamy Vanilla go 2 eggs and 3 cups of cream. Into each quart of Continental Mocha go 1 egg and 3 cups of cream. You have in stock 700 eggs and 1500 cups of cream. How many quarts of each flavor should you make in order to use up all the eggs and cream? HINT [See Example 5.]

Answers

Answer:

200 Creamy Vanilla

300 Continental Mocha

Step-by-step explanation:

3 cups cream for each:

500 Quarts total

Creamy Vanilla requires 400 eggs

Continental Mocha requres 300 eggs for a total of 700 eggs

The answer is:

[tex]\[ \boxed{V = 200, M = 300} \][/tex]

To solve this problem, we need to set up a system of equations based on the given information and then solve for the number of quarts of each flavour of ice cream that should be made.

Let [tex]\( V \)[/tex] represent the number of quarts of Creamy Vanilla ice cream and [tex]\( M \)[/tex] represent the number of quarts of Continental Mocha ice cream.

From the information given, we can derive the following equations:

For the eggs:

Each quart of Creamy Vanilla requires 2 eggs, so [tex]\( 2V \)[/tex] eggs are used for Creamy Vanilla.

Each quart of Continental Mocha requires 1 egg, so [tex]\( M \)[/tex] eggs are used for Continental Mocha.

Since there are 700 eggs in total, we have the equation:

[tex]\[ 2V + M = 700 \][/tex]

For the cream:

Each quart of Creamy Vanilla requires 3 cups of cream, so [tex]\( 3V \)[/tex] cups of cream are used for Creamy Vanilla.

Each quart of Continental Mocha also requires 3 cups of cream, so [tex]\( 3M \)[/tex] cups of cream are used for Continental Mocha.

Since there are 1500 cups of cream in total, we have the equation:

[tex]\[ 3V + 3M = 1500 \][/tex]

Now we have a system of two equations with two variables:

[tex]\[ \begin{cases} 2V + M = 700 \\ 3V + 3M = 1500 \end{cases} \][/tex]

To solve this system, we can simplify the second equation by dividing every term by 3:

[tex]\[ V + M = 500 \][/tex]

Now we have a simpler system:

[tex]\[ \begin{cases} 2V + M = 700 \\ V + M = 500 \end{cases} \][/tex]

We can subtract the second equation from the first to eliminate [tex]\( M \)[/tex] and solve for [tex]\( V \)[/tex] :

[tex]\[ (2V + M) - (V + M) = 700 - 500 \][/tex]

[tex]\[ V = 200 \][/tex]

Now that we have the value of [tex]\( V \)[/tex], we can substitute it back into the simplified second equation to find [tex]\( M \)[/tex]:

[tex]\[ 200 + M = 500 \][/tex]

[tex]\[ M = 500 - 200 \][/tex]

[tex]\[ M = 300 \][/tex]

Therefore, the factory should make 200 quarts of Creamy Vanilla and 300 quarts of Continental Mocha to use up all the eggs and cream.

The final answer is:

[tex]\[ \boxed{V = 200, M = 300} \][/tex]

A tank holds 300 gallons of water and 100 pounds of salt. A saline solution with concentration 1 lb salt/gal is added at a rate of 4 gal/min. Simultaneously, the tank is emptying at a rate of 1 gal/min. Find the specific solution Q(t) for the quantity of salt in the tank at a given time t.

Answers

The amount of salt in the tank changes with rate according to

[tex]Q'(t)=\left(1\dfrac{\rm lb}{\rm gal}\right)\left(4\dfrac{\rm gal}{\rm min}\right)-\left(\dfrac{Q(t)}{300+(4-1)t}\dfrac{\rm lb}{\rm gal}\right)\left(1\dfrac{\rm gal}{\rm min}\right)[/tex]

[tex]\implies Q'+\dfrac Q{300+3t}=4[/tex]

which is a linear ODE in [tex]Q(t)[/tex]. Multiplying both sides by [tex](300+3t)^{1/3}[/tex] gives

[tex](300+3t)^{1/3}Q'+(300+3t)^{-2/3}Q=4(300+3t)^{1/3}[/tex]

so that the left side condenses into the derivative of a product,

[tex]\big((300+3t)^{1/3}Q\big)'=4(300+3t)^{1/3}[/tex]

Integrate both sides and solve for [tex]Q(t)[/tex] to get

[tex](300+3t)^{1/3}Q=(300+3t)^{4/3}+C[/tex]

[tex]\implies Q(t)=300+3t+C(300+3t)^{-1/3}[/tex]

Given that [tex]Q(0)=100[/tex], we find

[tex]100=300+C\cdot300^{-1/3}\implies C=-200\cdot300^{1/3}[/tex]

and we get the particular solution

[tex]Q(t)=300+3t-200\cdot300^{1/3}(300+3t)^{-1/3}[/tex]

[tex]\boxed{Q(t)=300+3t-2\cdot100^{4/3}(100+t)^{-1/3}}[/tex]

You deposit $100 in an account earning 4% interest compounded annually. How much will you have in the account in 10 years? Round your answer to the nearest penny

Answers

Answer:

$148.02

Step-by-step explanation:

In the question

Principal = $100, rate(R) = 4% compounded annually, time(T)= 10 years

we know that the formula for compound interest

A=[tex]P\times_(1+\frac{R}{100} )^{T}[/tex]   where A is amount

now putting values in the above formula we get

A=[tex]100\times_(1+\frac{4}{100} )^{10}[/tex]

therefore A= $148.024428

rounding off to the nearest penny we get amount as $148.02 and compound interest will be $48.02

Doing research for insurance rates, it is found that those aged 30 to 49 drive an average of 38.7 miles per day with a standard deviation of 6.7 miles. These distances are normally distributed. If a group of 60 drivers in that age group are randomly selected, what is the probability that the mean distance traveled each day is between 32.5 miles and 40.5 miles?

Answers

Answer: 0.4302

Step-by-step explanation:

Given : Mean : [tex]\mu=\text{38.7 miles }[/tex]

Standard deviation : [tex]\sigma=\text{6.7 miles }[/tex]

Sample size : [tex]n=60[/tex]

Also, these distances are normally distributed.

Then , the formula to calculate the z-score is given by :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x=32.5

[tex]\\\\ z=\dfrac{32.5-38.7}{6.7}=-0.925373134\approx-0.93[/tex]

For x=40.5

[tex]\\\\ z=\dfrac{40.5-38.7}{6.7}=0.268656\approx0.27[/tex]

The p-value = [tex]P(-0.93<z<0.27)[/tex]

[tex]=P(0.27)-P(-0.93)=0.6064198- 0.1761855=0.4302343\approx0.4302[/tex]

Hence, the required probability :-0.4302

A) In 2000, the population of a country was approximately 5.82 million and by 2040 it is projected to grow to 9 million. Use the exponential growth model A=A0e^kt, in which t is the number of years after 2000 and A0 is in millions, to find an exponential growth function that models the data.
B) By which year will the population be 15 million?

Answers

Answer:

By 2086

Step-by-step explanation:

The provided equation is:

[tex]A=A0*e^{k*t}[/tex] , where:

A=total of population after t years

A0=initial population

k= rate of growth

t= time in years

Given information:

The final population will be 15 million, then A=15.

We start in 2000 with a 5.82 million population, then A0=5.82.

Missing information:

Although k is not given, we can calculate k by using the following statement, from 2000 to 2040 (within 40 years) population is proyected to grow to 9 million, which means a passage from 5.8 to 9 million (3.2 million increament).

Then we can use the same expression to calculate k:

[tex]A=A0*e^{k*t}[/tex]

[tex]9=5.8*e^{40*k}[/tex]

[tex]ln(9/5.8)/40=k[/tex]

[tex]0.010984166494596147=k[/tex]

[tex]0.011=k[/tex]

Now that we have k=0.011, we can find the time (t) by which population will be 15 million:

[tex]A=A0*e^{k*t}[/tex]

[tex]15=5.8*e^{0.011t}[/tex]

[tex]ln(15/5.8)/0.011=t[/tex]

[tex]86.38111668634878=t[/tex]

[tex]86.38=t[/tex]

Because the starting year is 2000, and we need 86.38 years for increasing the population from 5.8 to 15 million, then by 2086 the population will be 15 million.

The range of for y = 4/5 sin x for pi [tex]\leq[/tex] x [tex]\leq[/tex] 3pi/2 is

Choices:
4/5 [tex]\leq[/tex] y [tex]\leq[/tex] 1
-1 [tex]\leq[/tex] y[tex]\leq[/tex] 4/5
-4/5[tex]\leq[/tex] y [tex]\leq[/tex] 0
-4/5 [tex]\leq[/tex] y[tex]\leq[/tex] 4/5

Answers

Answer:

see attachment

Step-by-step explanation:

The range of [tex]\(y = \frac{4}{5}\sin x\)[/tex] for [tex]\(\pi \leq x \leq \frac{3\pi}{2}\)[/tex] is [tex]\(-\frac{4}{5} \leq y \leq 0\)[/tex] ( Option C).

To find the range of [tex]\(y = \frac{4}{5}\sin x\)[/tex] for [tex]\(\pi \leq x \leq \frac{3\pi}{2}\)[/tex], we need to determine the minimum and maximum values of sin x in the given interval and then scale them using [tex]\(\frac{4}{5}\)[/tex].

In the interval [tex]\(\pi \leq x \leq \frac{3\pi}{2}\)[/tex], the sine function is negative since it corresponds to the third and fourth quadrants on the unit circle. The minimum value of sin x in this interval is -1, and the maximum value is 0.

Now, scale these values using [tex]\(\frac{4}{5}\)[/tex]:

[tex]\(-1 \times \frac{4}{5} = -\frac{4}{5}\) (minimum)\\\\\(0 \times \frac{4}{5} = 0\) (maximum)[/tex]

Therefore, the range of [tex]\(y = \frac{4}{5}\sin x\) for \(\pi \leq x \leq \frac{3\pi}{2}\)[/tex] is [tex]\(-\frac{4}{5} \leq y \leq 0\)[/tex]. The correct choice is:

-4/5 <= y <= 0

To know more about range, refer here:

https://brainly.com/question/17440903

#SPJ2

4x^2 y+8xy'+y=x, y(1)= 9, y'(1)=25

Answers

Answer with explanation:

[tex]\rightarrow 4x^2y+8x y'+y=x\\\\\rightarrow 8xy'+y(1+4x^2)=x\\\\\rightarrow y'+y\times\frac{1+4x^2}{8x}=\frac{1}{8}[/tex]

--------------------------------------------------------Dividing both sides by 8 x

This Integration is of the form ⇒y'+p y=q,which is Linear differential equation.

Integrating Factor

 [tex]=e^{\int \frac{1+4x^2}{8x} dx}\\\\e^{\log x^{\frac{1}{8}+\frac{x^2}{2}}\\\\=x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}[/tex]

Multiplying both sides by Integrating Factor  

[tex]x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\times [y'+y\times\frac{1+4x^2}{8x}]=\frac{1}{8}\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}\\\\ \text{Integrating both sides}\\\\y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\frac{1}{8}\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx \\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=\int {x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}} \, dx\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=-[x^{\frac{9}{8}}]\times\frac{ \Gamma(0.5625, -x^2)}{(-x^2)^{\frac{9}{16}}}\\\\8y\times x^{\frac{1}{8}}\times e^{\frac{x^2}{2}}=(-1)^{\frac{-1}{8}}[ \Gamma(0.5625, -x^2)]+C-----(1)[/tex]

When , x=1, gives , y=9.

Evaluate the value of C and substitute in the equation 1.

A company that makes cola drinks states that the mean caffeine content per​ 12-ounce bottle of cola is 40 milligrams. You want to test this claim. During your​ tests, you find that a random sample of thirty​ 12-ounce bottles of cola has a mean caffeine content of 42.3 milligrams. Assume the population is normally distributed and the population standard deviation is 7.1 milligrams. At alphaequals0.04​, can you reject the​ company's claim

Answers

Answer:

Step-by-step explanation:

Put hypotheses as:

[tex]H_0: mu =40 mg\\H_a: mu \neq 40 mg.[/tex]

(Two tailed test at 4%)

Since population std deviation is  given we can do Z test.

[tex]Sample size n =30\\Sample mean = 42.3 mg\\Mean diff = 2.3 mg\\Std error of sample = \frac{7.1}{\sqrt{30} } =1.296[/tex]

Test statistic t = mean diff/se = [tex]\frac{2.3}{1.296} =1.775[/tex]

p value=0.075

Since p >0.04 our alpha, we accept null hypothesis.

At alphaequals0.04​, we cannot reject the​ company's claim

Step-by-step explanation:

Put hypotheses as:

\begin{gathered}H_0: mu =40 mg\\H_a: mu \neq 40 mg.\end{gathered}

H

0

:mu=40mg

H

a

:mu

=40mg.

(Two tailed test at 4%)

Since population std deviation is given we can do Z test.

\begin{gathered}Sample size n =30\\Sample mean = 42.3 mg\\Mean diff = 2.3 mg\\Std error of sample = \frac{7.1}{\sqrt{30} } =1.296\end{gathered}

Samplesizen=30

Samplemean=42.3mg

Meandiff=2.3mg

Stderrorofsample=

30

7.1

=1.296

Test statistic t = mean diff/se = \frac{2.3}{1.296} =1.775

1.296

2.3

=1.775

p value=0.075

Since p >0.04 our alpha, we accept null hypothesis.

At alphaequals0.04, we cannot reject the company's claim

The three sides of a triangle measure 9, 20, and n. What is the range of possible lengths of n?
9 < n < 20
6 < n < 29
11 < n < 29
11 < n < 20

Answers

Answer:

11 < n < 29

Step-by-step explanation:

The  smallest the third side can be is just bigger than the difference of the other two sides

20-9 < n

11<n

The largest the third side can be is just smaller than the sum of the other two sides

20+9 > n

29 >n

Putting this together

11<n<29

3. Let U and V be subspaces of a vector space W. Prove that their intersection UnV is also a subspace of W

Answers

Answer:  The proof is done below.

Step-by-step explanation:  Given that U and V are subspaces of a vector space W.

We are to prove that the intersection U ∩ V is also a subspace of W.

(a) Since U and V are subspaces of the vector space W, so we must have

0 ∈ U and 0 ∈ V.

Then, 0 ∈ U ∩ V.

That is, zero vector is in the intersection of U and V.

(b) Now, let x, y ∈ U ∩ V.

This implies that x ∈ U, x ∈ V, y ∈ U and y ∈ V.

Since U and V are subspaces of U and V, so we get

x + y ∈ U  and  x + y ∈ V.

This implies that x + y ∈ U ∩ V.

(c) Also, for a ∈ R (a real number), we have

ax ∈ U and ax ∈ V (since U and V are subspaces of W).

So, ax ∈ U∩ V.

Therefore, 0 ∈ U ∩ V and for x, y ∈ U ∩ V, a ∈ R, we have

x + y and ax ∈ U ∩ V.

Thus, U ∩ V is also a subspace of W.

Hence proved.

Jayanta is raising money for the​ homeless, and discovers each church group requires 2 hr of letter writing and 1 hr of​ follow-up calls, while each labor union needs 2 hr of letter writing and 3 hr of ​follow-up. She can raise ​$125 from each church group and ​$175 from each union. She has a maximum of 20 hours of letter writing and 14 hours of ​follow-up available each month. Determine the most profitable mixture of groups she should contact and the most money she can raise in a month.

Answers

Answer:

8 churches, 2 unions; $1350 per month

Step-by-step explanation:

Let x and y represent the numbers of churches and unions contacted in the month, respectively. Then Jayanta's limit on letter writing hours is ...

  2x +2y ≤ 20

and her limit on follow-up call hours is ...

  x + 3y ≤ 14

Graphing these inequalities (see below) results in a feasible region with vertices at (x, y) = (0, 4 2/3), (8, 2), and (10, 0). Of these, the mixture of groups producing the most money is ...

  8 churches and 2 unions.

The money she can raise from that mixture is ...

  8×$125 +2×$175 = $1350 in a month

Answer:

Sqdancefan's answer is correct.

Step-by-step explanation:

I  misread the question.

Find the equation of the following line and graph. Through (3,-10) perpendicular to 5x-y=9

Answers

bearing in mind that perpendicular lines have negative reciprocal slopes, let's find the slope of 5x -  y = 9 then.

[tex]\bf 5x-y=9\implies -y=-5x+9\implies y=\stackrel{\stackrel{m}{\downarrow }}{5}x-9\leftarrow \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{5\implies \cfrac{5}{1}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{1}{5}}\qquad \stackrel{negative~reciprocal}{-\cfrac{1}{5}}}[/tex]

so then, we're really looking for the equation of a line whose slope is -1/5 and runs through (3,-10).

[tex]\bf (\stackrel{x_1}{3}~,~\stackrel{y_1}{-10})~\hspace{10em} slope = m\implies -\cfrac{1}{5} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-10)=-\cfrac{1}{5}(x-3)\implies y+10=-\cfrac{1}{5}x+\cfrac{3}{5} \\\\\\ y=-\cfrac{1}{5}x+\cfrac{3}{5}-10\implies y=-\cfrac{1}{5}x+\cfrac{53}{5}[/tex]

and it looks like the one in the picture below.

Assuming that in a box there are 10 black socks and 12 blue socks, calculate the maximum number of socks needed to be drawn from the box before a pair of the same color can be made. Using the pigeonhole principle

Answers

Answer:

Step-by-step explanation:

The pigeonhole principal states that if n items are put into m containers, with n > m then at least one container must contain more than one item.

In other words, to find the case where maximum attempts are required, we eliminate all the cases where our criterion is not met and we will be left with the desired result.

For this case, the box has 10 black socks and 12 blue socks.

10 black socks = 5 left foot ones and  5 right foot ones

12 blue socks = 6 left foot ones and 6 right foot ones

If we draw all left foot or right foot ones then we will not have a pair till 11 draws have been made.

The next socks drawn will be a right foot one of blue or black color and a pair will be made.

Therefore, the maximum number of socks needed to be drawn from the box are 12.

Other Questions
A positive point charge Q1 = 2.5 x 10-5 C is fixed at the origin of coordinates, and a negative point charge Q2 = -5.0 x 10-6 C is fixed to the x axis at x = +2.0 m. Find the location of the place(s) along the x axis where the electric field due to these two charges is zero. 2 PointsWhat was a Democratic Party argument against the building of transportationsystems by the federal government?OA. The plan would result in the loss of farming jobs.OB. The plan would result in the loss of city jobs.OC. The plan would result in domination of the country by specialinterests.OD. Only state governments could afford the large costs of the plan.S The vertex form of the equation of a parabola is y=(x-3)^2+35 what is the standard form of the equation In Online Data Extraction data is extracteddirectly from the ------ system itself.o Hosto Destinationo Sourceo Terminal A collection of closely related animals or plants that share a similar genetic evolutionary history but cannot necessarily interbreed to produce fertile offspring is referred to as a _____. species genus tetraploid polyploid diploid Question 1 with 1 blank Marcos y Gustavo (enojarse) con Javier. Question 2 with 1 blank Mariela (sentirse) feliz. Question 3 with 1 blank (yo) (acostarse) temprano porque tengo clase por la maana. Question 4 with 1 blank Los jugadores (secarse) con toallas nuevas. Question 5 with 1 blank (t) (preocuparse) por tu novio porque siempre pierde las cosas. Question 6 with 1 blank Usted (lavarse) la cara con un jabn especial. Question 7 with 1 blank Mi mam (ponerse) muy contenta cuando llego temprano a casa. 3 unitsV13 units2 unitsIn this right triangle, the length of the hypotenuse, BC, is units: 1. What limits do common names have?They depend on geography.They often use multiple words.They are non-descriptive of the organism.They are descriptive of the organism.They can be in different languages.None of the above 5. You deposit P1000 into a 9% account today. At the end of two years, you will deposit another P3,000. In five years, you plan a P4000 purchase. How much is left in the account one year after the purchase? Read the following line from "The September of My Years."One day you turn around and it's summer/Next day you turn around and it's fall.What makes this line an example of hyperbole? A. It uses seasons to represent phases of life. B. It gives human characteristics to the seasons. C. It compares two seasons that are very different. D. It exaggerates how quickly summer turns to fall. When an electron enters a magnetic field, it will accelerate up the field. True OR False Does the United Nations Convention on Contracts for the International Sale of Goods (CISG) apply to the contract between Onyx Advertising and Jalapenos Unlimited? a. No, because the United States has not signed the CISG. b. Yes, because the CISG applies to commercial sales of goods between two states that have ratified the treaty. c. Yes, because the CISG applies to all sales of goods between two states that have ratified the treaty. d. No, because Mexico has not signed the CISG. Solve |y-2| A triangle contains angles of 95 and 35. what is the measure of the third angle of the triangle ? 9x9y=0 3x4y=10 solve by elimination 1. Which equation represents a linear function?A. y = x - 4B. y = x + 4C. x = (y - 2)2D. y = x + 7 Jeremy, can you possibly give me a ride to the airport this Sunday?" your friend Ben asks.Not thinking that this is a big deal, you agree to do this favor for Ben. "Oh, that's great! Thanks so much. And by the way, I forgot that the plane leaves at 8:30 a.m., so I'll have to be at the airport by 6:30 a.m. Pick me up at 6:00. See you then," Ben adds. You are still likely to do the favor for Ben because you have just been a victim of the _____________a.foot-in-the-doorb.norm of reciprocityc. door-in-the-faced.d. obedience A pop quiz consists of three truefalse questions and three multiple choice questions. Each multiple choice question has five possible answers. If a student blindly guesses the answer to every question, what is the probability that the student will correctly answer all six questions? (Round your answer to 3 decimal places.) Probability Work done by a system during a process can be considered as a property of the system. a)True b) False Jessica has three sports cards, one for football (F), one for baseball (B), and one for soccer (S). She picks one card, replaces it, and then picks another card. The sample space for this compound event is listed.