Answer:
a. x = -5, y = 8Step-by-step explanation:
[tex]\left\{\begin{array}{ccc}3x=-31+2y&\text{subtract}\ 2y\ \text{from both sides}\\5x+6y=23\end{array}\right\\\\\left\{\begin{array}{ccc}3x-2y=-31&\text{multiply both sides by 3}\\5x+6y=23\end{array}\right\\\\\underline{+\left\{\begin{array}{ccc}9x-6y=-93\\5x+6y=23\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad14x=-70\qquad\text{divide both sides by 14}\\.\qquad x=-5\\\\\text{Put it to the second equation:}\\\\5(-5)+6y=23\\-25+6y=23\qquad\text{add 25 to both sides}\\6y=48\qquad\text{divide both sides by 6}\\y=8[/tex]
Apple trees cost $ 30 each, and cherry trees cost $ 40 each. Rohan has $ 600 to spend on fruit trees.
a) Let x represent the number of apple trees purchased, and let y represent the number of cherry trees purchased.
b) Write an equation that illustrates the different ways Rohan can purchase apple trees and cherry trees and spend exactly $ 600 .
Equation:
Answer:
A) Apples: $30x
Cherry: $40y
B) ($30x)+($40y)=600
Choose the correct absolute value inequality and graph for the solution -1.2≤x≤2
options:
|5x-2|>=8
|5x-2|<=8
Answer:
[tex]\large\boxed{|5x-2|\leq8}[/tex]
Step-by-step explanation:
[tex]-1.2\leq x\leq2\qquad\text{multiply all sides by 5}\\\\-6\leq5x\leq10\qquad\text{subtract 2 from both sides}\\\\-8\leq5x-2\leq8\iff|5x-2|\leq8[/tex]
Name an intersection of plane GFL and plane that contains points A and C
The intersection of plane GFL and a plane that contains points A and C can be any plane that passes through those two points.
In mathematics, an intersection of two planes is the set of points that are common to both planes.
In this case, we want to find the intersection of plane GFL and a plane that contains points A and C.
Since both points A and C lie on the same plane, any plane that contains both points A and C would intersect plane GFL at those points.
Therefore, any plane that passes through points A and C would be an intersection of plane GFL and a plane that contains points A and C.
Examples of planes that contain points A and C are:
A plane that contains the line segment AC
A plane that is perpendicular to line AC at point A
A plane that is perpendicular to line AC at point C
For more such questions on intersection of plane, click on:
https://brainly.com/question/118569
#SPJ12
Please help me!
The angle of elevation of the top of a tower to a point on the ground is 61°. At a point 600 feet farther from the base, in line with the base and the first point and in the same plane, the angle of elevation is 32°. Find the height of the tower.
Answer:
573.6 ft
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you of the relationship of right triangle sides and angles:
Tan = Opposite/Adjacent
This tells us ...
tan(61°) = (height)/(distance to first point)
or
distance to first point = height/tan(61°)
Likewise, ...
distance to second point = height/tan(32°)
Then the difference of the distances is ...
distance to second point - distance to first point
= height/tan(32°) -height/tan(61°)
600 ft = height × (1/tan(32°) -1/tan(61°))
Dividing by the coefficient of height, we have ...
height = (600 ft)/(1/tan(32°) -1/tan(61°)) ≈ (600 ft)/(1.04603) ≈ 573.6 ft
Answer:
574
Step-by-step explanation:
The cost in dollars to manufacture x pairs of shoes is given by 12,000 + 19x. This month, the manufacturer produced 1000 more pairs of shoes than last month. The average cost per pair dropped by $0.43.
a) Write an expression for the average cost per pair of shoes. Use this expression to write an equation to represent there situation.
b) Solve your equation
c) Are there any mathematical restrictions on the domain? Explain.
d) Determine reasonable domain in the context of the problem. Use your answers to parts I and II to answer the question.
Answer:
(a) The expression for the average cost per pair of shoes is [tex]A(x)=\frac{12000}{x}+19[/tex] and equation for the situation is [tex]\frac{12000}{x}+19-(\frac{12000}{x+1000}+19)=0.43[/tex].
(b) x=[tex]x\approx 4806[/tex]
(c) The average function is not defined for x=0, so the domain of the function is all real numbers except 0.
(d) The reasonable domain is all natural numbers.
Step-by-step explanation:
The cost in dollars to manufacture x pairs of shoes is given by
[tex]C(x)=12000+19x[/tex]
where, x is the pairs of shoes.
(a)
The expression for the average cost per pair of shoes.
[tex]A(x)=\frac{C(x)}{x}[/tex]
[tex]A(x)=\frac{12000+19x}{x}[/tex]
[tex]A(x)=\frac{12000}{x}+19[/tex]
This month, the manufacturer produced 1000 more pairs of shoes than last month. The average cost per pair dropped by $0.43.
[tex]A(x)-A(x+1000)=0.43[/tex]
[tex]\frac{12000}{x}+19-(\frac{12000}{x+1000}+19)=0.43[/tex]
Therefore the expression for the average cost per pair of shoes is [tex]A(x)=\frac{12000}{x}+19[/tex] and equation for the situation is [tex]\frac{12000}{x}+19-(\frac{12000}{x+1000}+19)=0.43[/tex].
(b)
On solving the above equation we get
[tex]\frac{12000}{x}-\frac{12000}{x+1000}=0.43[/tex]
[tex]\frac{12000000}{x^2 + 1000 x} = 0.43[/tex]
[tex]12000000=0.43(x^2 + 1000 x)[/tex]
[tex]12000000=0.43x^2 + 430x[/tex]
[tex]0=0.43x^2 + 430x-12000000[/tex]
Using graphing calculator we get
[tex]x\approx -5806.31,4806.31[/tex]
The pair of shoe can not be native and decimal value.
[tex]x\approx 4806[/tex]
Therefore the solution is [tex]x\approx 4806[/tex].
(c)
The average cost function is
[tex]A(x)=\frac{12000}{x}+19[/tex]
The function is not defined if the denominator is 0.
The above function is not defined for x=0, so the domain of the function is all real numbers except 0.
(d)
In the average function x represents the number of pair of shoe.
It means the value of x must be a positive integer.
Since the average function is not defined for x=0, So the reasonable domain of average function is
Domain={x : x∈Z⁺, x≠0}
Domain=N
Therefore the reasonable domain is all natural numbers.
A pair of angles which share a common side and vertex is called
Answer: Adjacent Angles
A pair of angles which share a common side and vertex is called adjacent angles.
What is an angle measure?When two lines or rays intersect at a single point, an angle is created. The vertex is the term for the shared point. An angle measure in geometry is the length of the angle created by two rays or arms meeting at a common vertex.
Given:
A pair of angles which share a common side and vertex.
If two angles share a side and a vertex, they are said to be adjacent in geometry.
In other words, adjacent angles do not overlap and are placed precisely next to one another.
Therefore, the right definition is adjacent angles.
To learn more about the angle measure;
brainly.com/question/14684647
#SPJ6
A new board game comes with a deck of 20 cards: 5 red, 3 blue, 2 orange, and 10 green.
After the deck is shuffled, the player is to choose the top card and note its color, replace
the card, shuffle the deck again, and then choose the top card again and note its color.
What is the probability that both cards selected are blue?
I am have trouble with these x-intercepts. Please help me.
Answer:
x=8, x=2 no solution no solutionStep-by-step explanation:
For the equation ...
y = a(x -h)² +k
you can find the x-intercepts by setting y=0 and solving for x.
0 = a(x -h)² +k
-k = a(x -h)² . . . . . . subtract k
-k/a = (x -h)² . . . . . divide by a
±√(-k/a) = x -h . . . . take the square root
h ± √(-k/a) = x . . . . add h . . . . this is the general solution
__
So, for each of your problems, fill in the corresponding numbers and do the arithmetic. If (-k/a) is a negative number, the square root gives imaginary values, so there is "no solution".
1. x = 5 ± √9 = {5 -3, 5 +3} = {2, 8} . . . . the x-intercepts are 2 and 8
2. x = -3 ± √(-2) . . . . . . no solution; the roots are complex
3. x = 5 ± √(-8/4) . . . . . no solution; the roots are complex
Answer:
Step-by-step explanation:
These are all done the exact same way. I'll do the first one in its entirety, and you can do the rest, following my example.
Finding x-intercepts means that you find the places in the polynomial where the graph of the function goes through the x-axis. Here, the y-coordinates will be 0. To find these x-intercepts, you have to set y equal to 0 and then factor. First, though, we need to know exactly what the polynomial looks like in standard form. The ones you have are all in vertex form. We find the standard form by first expanding the binomial, like this:
[tex]0=(x-5)(x-5)-9[/tex]
FOIL those out to get
[tex]x^2-10x+25-9=0[/tex]
Combine like terms to get
[tex]0=x^2-10x+16[/tex]
Now we have to factor that. I'll use regular old factoring, although the quadratic formula will work also.
In our quadratic, a = 1, b = -10 and c = 16
The product of a * c = 16. The factors of 16 are:
1, 16
2, 8
4, 4
Some combination of those factors will give us a -10, the b term. 2 and 8 will work, as long as they are both negative. -2 + -8 = -10. Fit them into the polynomial with the absolute value of the largest number named first:
[tex]x^2-8x-2x+16=0[/tex]
Now we group them by 2's without ever changing their order:
[tex](x^2-8)-(2x+16)=0[/tex]
and then factor out the common thing in each set of parenthesis. The common thing in the first set of parenthesis is an x; the common thing in the second set is a 2:
[tex]x(x-8)-2(x-8)=0[/tex]
Now the common thing is (x - 8), so we factor that out and group together in a separate set of parenthesis what's left over:
[tex](x-8)(x-2)=0[/tex]
By the Zero Product Property, either x - 8 = 0 or x - 2 = 0. Solving the first one for x:
x - 8 = 0 so x = 8
Solving the second one for x:
x - 2 = 0 so x = 2
The 2 solutions are x = 2 and x = 8, choices a and d.
Safari Adventure Theme Park is a selfguided theme park in which people drive through a park filled with African wildlife. They are given a map and a written guide to the wildlife of the park. They charge $20.00 per car plus $2.00 per person in the car. The number of people per car can be represented by the random variable X which has a mean value μX = 3.2, and a variance σ2x = 1.4. What is the mean of the total amount of money per car that is collected entering the park?
Answer:
$26.40
Step-by-step explanation:
For a linear function, the mean of the function is the function of the mean:
20 + 2.00·μX = 20 + 2.00·3.2 = 20 + 6.40 = 26.40 . . . . dollars
The mean total amount collected per car entering the Safari Adventure Theme Park is $26.40.
The mean of the total amount of money collected per car entering the park can be calculated by finding the expected value of the total amount, considering the price per car and per person. In this case, the mean total amount collected per car = price per car + (mean number of people per car) * price per person. Substituting the given values: 20 + 3.2 * 2 = $26.40.
If you were to place $2500 in a savings account that pays 3% interest compound continually how much money will you have after 5 years. Assume you make no other deposits or withdrawals.
[tex]\bf ~~~~~~ \textit{Continuously Compounding Interest Earned Amount} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$2500\\ r=rate\to 3\%\to \frac{3}{100}\dotfill &0.03\\ t=years\dotfill &5 \end{cases} \\\\\\ A=2500e^{0.03\cdot 5}\implies A=2500e^{0.15}\implies A\approx 2904.59[/tex]
Answer:
C. $2904.59
Step-by-step explanation:
Compounded continually means that the principal amount is constantly earning interest and the interest keeps earning on the interest earned.
The formula to apply is
[tex]A=Pe^{rt}[/tex]
where A is the amount, P is the principal, r is rate of interest, t is time in years and e is the mathematical constant
Taking
e=2.7183, P=$2500, r=3% and t=5 years
[tex]A=Pe^{rt} \\\\\\A=2500*2.7183^{0.03*5} \\\\\\A=2500*1.1618\\\\\\A=2904.59\\\\A=2904.59[/tex]
What is the third term in the binomial expansion of (3x+y^3)^4
Answer:
The last choice is the one you want.
Step-by-step explanation:
Use the 5th row of Pascal's Triangle. Since you have a 4th degree polynomial, there will be 5 terms in it. The 5 coefficients, in order, are:
1, 4, 6, 4, 1
We will use these coefficients only up to and including the third one, since that is the one you want. Binomial expansion using Pascal's Triangle looks like this:
[tex]1(3x)^4(y^3)^0+4(3x)^3(y^3)^1+6(3x)^2(y^3)^2+...[/tex]
That third term is the one we are interested in. That simplification gives us:
[tex]6(9x^2)(y^6)[/tex]
Multiply 6 and 9 to get 54, and a final term of:
[tex]54x^2y^6[/tex]
The third term of the given binomial expansion is [tex]54(x^{2})(y^{5})\\[/tex]
What is binomial expansion?The binomial expansion is based on a theorem that specifies the expansion of any power [tex](a+b)^{m}[/tex] of a binomial (a + b) as a certain sum of products [tex]a^{i} b^{i}[/tex], such as (a + b)² = a² + 2ab + b².
How to find the third term in the binomial expansion of (3x+y^3)^4 ?We know that the binomial expansion of [tex](a+b)^{m}[/tex] can be written as [tex]mC_{0}(a^{m-0}) +mC_{1}(a^{m-1})b+ mC_{2}(a^{m-2})b^{2}+..................+mC_{m}b^{m}[/tex]So the (r+1)th term will be [tex]mC_{r}(a^{m-r})b^{r}[/tex]The given term is [tex](3x + y^{3}) ^{4}[/tex]
The third term in the expansion will be
[tex]4C_{2}(9x^{2})(y^{3})^{2}\\ = 54(x^{2})(y^{5})\\[/tex]
Find more about "Binomial Expansion" here : https://brainly.com/question/13602562
#SPJ2
Evaluate the expression
5⋅x3x2\dfrac{5\cdot x^3}{x^2}
x
2
5⋅x
3
start fraction, 5, dot, x, start superscript, 3, end superscript, divided by, x, start superscript, 2, end superscript, end fraction
for
x=2x=2
x=2
x, equals, 2
The simplified expression for [tex]\((5 \cdot x^3) / (x^2)\) is \(5 \cdot x\).[/tex]
When x = 2, the result is [tex]\(5 \times 2 = 10.[/tex]
The answer is 10.
To evaluate the expression[tex]\((5 \cdot x^3) / (x^2)\) for \(x = 2\),[/tex] we first need to simplify the given expression.
Given:
[tex]\[ \dfrac{5 \cdot x^3}{x^2} \][/tex]
Simplifying, we divide the powers of x :
[tex]\[ x^3 / x^2 = x^{3-2} = x^1 = x. \][/tex]
So the expression simplifies to:
[tex]\[ 5 \cdot x. \][/tex]
Now substitute x = 2 :
[tex]\[ 5 \cdot 2 = 10[/tex]
Thus, the value of [tex]\((5 \cdot x^3) / (x^2)\) when \(x = 2\)[/tex] is: 10.
Question : Evaluate the expression [tex]\[ \dfrac{5 \cdot x^3}{x^2} \][/tex]for x = 2. start fraction, 5, dot, x, cubed, divided by, x, squared, end fraction for x=2x=2x, equals, 2.
What is the degree of vertex B?
Answer:
2
Step-by-step explanation:
The degree of the vertex B is 2 because from vertex B there are 2 line segments coming out of it.
Another example, C has degree 4 because from it there are 4 line segments coming from it.
A vine maple grows fast when it is planted under the cover of cedar trees. One month after it is planted it has grown 12 inches, and after eight weeks it had grown 19 inches. Write an equation that models the growth, in inches, of the vine maple as a function of time, in weeks.
Answer:
y = (7/4)(x -4) +12
Step-by-step explanation:
The rate of growth is ...
(19 in -12 in)/(8 wk -4 wk) = 7/4 in/wk
Using this slope in a point-slope form of the equation for a line, we get ...
y = m(x -h) +k . . . . . line with slope m through point (h, k)
y = (7/4)(x -4) +12 . . . . . line with slope 7/4 through the point (4 wk, 12 in)
Proportions in Triangles (3)
Answer:
7 6/7
Step-by-step explanation:
Parallel segment BD creates triangle BDC similar to triangle AEC. The sides and segments of similar triangles are proportional:
x/11 = 5/7
x = 55/7 = 7 6/7 . . . . . multiply by 11
Can someone let me know if I simplified these equations correctly or at least show me how to do it?
Answer:
Your work is correct as far as it goes. Now eliminate the terms that are zero.
Step-by-step explanation:
Multiplying anything by zero gives zero. Adding zero is like adding nothing. Zero is called the "additive identity element" because ...
a + 0 = a
Adding zero doesn't change anything. You can (and should) drop the zero if your goal is to simplify the expression.
[tex]a. \quad x_{f}=v_{0}\\\\b. \quad x_{f}=v_{0}t\\\\c. \quad v_{f}^2=v_{0}^2[/tex]
What ia the measure of x?
Answer:
58
Step-by-step explanation:
Rule: the exterior angle = the sum of the two angles that do not share a side with the exterior angle. Put in much simpler terms <DAB = <B + <C
Solution
<C + <B = <DAB
<C + 56 = 114 Subtract 56 from both sides
<C +56-56 = 114-56 Combine
<C = 58
x = 58
Which statement is true about the end behavior of the graphed function?
As the x-values go to positive infinity, the function's values go to negative infinity.
As the x-values go to zero, the function's values go to positive infinity.
As the x-values go to negative infinity, the function's values are equal to zero.
As the x-values go to negative infinity, the function's values go to positive infinity.
Answer:
Option D (As the x-values go to negative infinity, the function's values go to positive infinity).
Step-by-step explanation:
The graphed function shows a curve which has two turning points and three x-intercepts, which means it is a cubic polynomial. To check which statement is true, we will check all the statements one by one.
Option A) The graph shows that after the second turning point, the function starts to increase. Which means that as x-values increase, the function values will approach positive infinity. Therefore, option A is incorrect.
Option B) This option is incorrect because the graph explicitly shows that f(0) = 0, which means that when x = 0, the function value is also 0.
Option C) This option is incorrect because the function value is 0 at the x-value = 0, as shown in the graph. It can be also seen that As the x-values go to negative infinity, the function's values go to positive infinity since the value of the function decreases as the value of x decreases. Hence Option D is the correct answer!!!
Answer:
The correct option is D.
Step-by-step explanation:
Consider the provided graph of the function.
As the x values go to positive infinity or negative infinity the function value increase or goes to positive infinity.
The end behavior of the function is,
[tex]f(x)\rightarrow +\infty, as x\rightarrow -\infty[/tex]
[tex]f(x)\rightarrow +\infty, as x\rightarrow +\infty[/tex]
Now consider the provided options.
Option A is incorrect because As the x-values go to positive infinity, the function's values go to positive infinity.
Option B is incorrect because As the x-values go to zero, the function's values doesn't go to positive infinity.
Option C is incorrect because As the x-values go to negative infinity, the function's values are not equal to zero.
Option D is the correct option because As the x-values go to negative infinity, the function's values go to positive infinity.
Therefore, the correct option is D.
The value of a collector’s item is expected to increase exponentially each year. The item is purchased for $500. After 2 years, the item is worth $551.25. Which equation represents y, the value of the item after x years?y = 500(0.05)xy = 500(1.05)xy = 500(0.1025)xy = 500(1.1025)x
Answer:
y = 500(1.05)^x.
Step-by-step explanation:
551.25 = 500x^2 where x is the multiplier for each year.
x^2 = 551.25/500
x = 1.05
So the value after x years is 500(1.05)^x.
Answer: [tex]y=500(1.05)^x[/tex]
Step-by-step explanation:
The exponential growth equation is given by :-
[tex]y=A(1+r)^x[/tex] (1)
, where A is the initial value of , r is the rate of growth ( in decimal) and t is the time period ( in years).
Given : The value of a collector’s item is expected to increase exponentially each year.
The item is purchased for $500. After 2 years, the item is worth $551.25.
Put A= 500 ; t= 2 and y= 551.25 in (1), we get
[tex]551.25=500(1+r)^2\\\\\Rightarrow\ (1+r)^2=\dfrac{551.25}{500}\\\\\Rightarrow (1+r)^2=1.1025[/tex]
Taking square root on both sides , we get
[tex]1+r=\sqrt{1.1025}=1.05\\\\\Rightarrow\ r=1.05-1=0.5[/tex]
Now, put A= 500 and r= 0.5 in (1), we get the equation represents y, the value of the item after x years as :
[tex]y=500(1+0.5)^x\\\\\Rightarrow\ y=500(1.05)^x[/tex]
Y – 4 = 20 A. The difference between a number and 4 is 20. B. The product of a number and 4 is 20. C. A number combined with 4 is 20. D. The quotient of a number and 4 is 20.
Answer:
A
Step-by-step explanation:
Subtraction means "difference". The only choice there that has the word "difference" in it is choice A.
the vertex of this parabola is at (5,5). when the x-value is 6, the y-value is -1. what is the coefficient of the squared in the parabola's equations
Answer: OPTION D.
Step-by-step explanation:
The vertex form of a quadratic function is:
[tex]y= a(x - h)^2 + k[/tex]
Where (h, k) is the vertex of the parabola and "a" is the coefficient of the squared in the parabola's equation.
We know that the vertex of this parabola is at (5,5) and we also know that when the x-value is 6, the y-value is -1.
Then we can substitute values into [tex]f (x) = a(x - h)^2 + k[/tex] and solve for "a". This is:
[tex]-1= a(6- 5)^2 + 5\\\\-1=a+5\\\\-1-5=a\\\\a=-6[/tex]
Answer:
D
Step-by-step explanation:
In the coin value formula, V(t)= P(1+r)^t, which parts form the base of the exponential function? Which parts from the constant, or initial value? Which parts form the exponent?
Answer:
Step-by-step explanation:
The base of the exponential function is 1 + r.
The initial value is P.
The exponent is t.
The base of the exponential function is 1 + r
exponent is t, and
initial value is P
What is exponential function?The mathematical expression for an exponential function is f (x) = a ˣ, where “x” denotes a variable and “a” denotes a constant. This constant is referred to as the base of the function and should be greater than zero. The most common use exponential function is with base e
Given A coin formula V(t) = P(1+r)^t
to find the initial value put t = 0
V(0) = P(1+r)⁰
V(0) = P
P is the initial value
and exponent is the term which is in the power of any exponential function
here t is exponent and (1+r) is base function
Hence according to coin formula The base of the exponential function is 1 + r; exponent is t; and initial value is P.
Learn more about exponential function
https://brainly.com/question/14355665
#SPJ5
Emails arrive at the server of a company at the rate of an average of 10 per hour. It is assumed that a Poisson process is a good model for the arrivals of the emails. What is the probability (to 2 decimal places) that the time between two consecutive emails is more than two minutes?
Answer:
0.37
Step-by-step explanation:
we have given that emails arrives at the server at the rate of 10 per hour means [tex]\frac{10}{60}=0.166[/tex] per minute
we have to find the probability that the time difference between the two email is more than 2 minute
so probability [tex]P\left ( X> 2 \right )=e^{-2\lambda }=e^{-2\times 0.166}=0.7166[/tex]
The probability that the time between two consecutive emails arriving at the server is more than two minutes is 0.72 (or 72%).
Given:
- Average rate of email arrivals [tex](\( \lambda \))[/tex] = 10 per hour
1. Understanding the Poisson Process:
- In a Poisson process, the time between events (in this case, email arrivals) follows an exponential distribution.
- If [tex]\( \lambda \)[/tex] is the average rate of events per unit time (here, per hour), the time between events (interarrival time) T follows an exponential distribution with parameter [tex]\( \lambda \)[/tex].
2. Parameter Conversion:
- Since [tex]\( \lambda = 10 \)[/tex] emails per hour, we convert this to the rate per minute:
[tex]\[ \lambda_{\text{minute}} = \frac{10}{60} = \frac{1}{6} \text{ emails per minute} \][/tex]
3. Probability Calculation:
- We are interested in the probability that the time between two consecutive emails is more than two minutes.
- Let X denote the time between two consecutive emails. X follows an exponential distribution with rate [tex]\( \lambda_{\text{minute}} = \frac{1}{6} \)[/tex].
[tex]\[ P(X > 2) = e^{-\lambda_{\text{minute}} \cdot 2} \][/tex]
Substitute [tex]\( \lambda_{\text{minute}} = \frac{1}{6} \)[/tex]:
[tex]\[ P(X > 2) = e^{-\frac{1}{6} \cdot 2} \] \[ P(X > 2) = e^{-\frac{1}{3}} \][/tex]
4. Calculating the Probability:
- Use a calculator to find [tex]\( e^{-\frac{1}{3}} \)[/tex].
[tex]\[ e^{-\frac{1}{3}} \approx 0.7165 \][/tex]
Therefore, the probability that the time between two consecutive emails is more than two minutes is approximately 0.72 (rounded to two decimal places).
This result aligns with the characteristics of a Poisson process with an average arrival rate of 10 emails per hour.
[tex]cos\frac{x}{2} =[/tex]±[tex]\sqrt{\frac{1+cosx}{2} }[/tex], if A=[tex]\frac{x}{2}[/tex] then cosA=
Answer:
[tex]\cos{A}=\pm\sqrt{\dfrac{1+\cos{x}}{2}}[/tex]
Step-by-step explanation:
[tex]\cos{A}=\cos{\frac{x}{2}}=\pm\sqrt{\dfrac{1+\cos{x}}{2}}[/tex]
Apparently, you're supposed to recognize that the formula tells you the value of cos(x/2).
Evaluate 3x3 − 2x2 for x = -2.
Step-by-step explanation:
3x3-2x2
3(-2)3-2(-2)2
-6×3+4×2
-18+8
-10
I hope it will help you!
Answer:
-10
Step-by-step explanation:
Yes. All you have to remember is that double negatives result in POSITIVES.
I am joyous to assist you anytime.
Can you use the Law of Cosines in the triangle below? Why or why not?
Answer:
Yes
Step-by-step explanation:
The law of cosines relates the three sides of a triangle with the cosine of the angle opposite one of them. It is useful for finding an angle of the triangle when only the side lengths are given, as here.
If f(x) = 2x + 2 and g(x) = x3, what is (gºf)(2)?
Answer:
216
Step-by-step explanation:
(g∘f)(x) = g(f(x))
f(2) = 2·2 +2 = 6
g(f(2)) = g(6) = 6³ = 216
Answer:
216
Step-by-step explanation:
Correct Plato
Determine whether the two triangles are similar. HELP ASAP! I AM RUNNING OUT OF POINTS!!
Answer:
ΔKLJ ~ ΔRPQ by AA~
Step-by-step explanation:
Angle angle similarity needs two corresponding angles in two triangles to be same. The two given triangles are similar by: ΔKLJ ~ ΔRPQ by AA~
How to find measure of missing third angle in a triangle?It is a theorem in mathematics that sum of internal angles of a triangle equate to [tex]180^\circ[/tex]
Suppose that two angles are given as [tex]a^\circ[/tex] and [tex]b^\circ[/tex] and let there is one angle missing. Let its measure be [tex]x^\circ[/tex]
Then, by the aforesaid theorem, we get:
[tex]a^\circ + b^\circ + x^\circ = 180^\circ\\\\ \text{Subtracting a + b degrees from both sides} \\\\x^\circ = 180^\circ - (a^\circ + b^\circ)[/tex]
What is Angle-Angle similarity for two triangles?Two triangles are similar if two corresponding angles of them are of same measure. It is because when two pairs of angles are similar, then as the third angle is fixed if two angles are fixed, thus, third angle pair also gets proved to be of same measure. This makes all three angles same and thus, those two triangles are scaled copies of each other. Thus, they're called similar.
For given case, we've got
[tex]m\angle K = m\angle R\\m\angle J = m\angle Q\\[/tex]
Thus, for the rest of the angle pair, we have:
[tex]m\angle L = 180 - (m\angle J + m\angle K) = 180 - (m\angle Q + m\angle R) = m\angle P\\\\m\angle L = m\angle P[/tex]
Thus, given two triangles are similar by angle-angle similarity.
Thus,
The two given triangles are similar by: ΔKLJ ~ ΔRPQ by AA~
Learn more about angle-angle similarity here:
https://brainly.com/question/11929676
Find the product. 8y 3(-3y 2)
For this case we must find the product of the following expression:
[tex]8y ^ 3 (-3y ^ 2) =[/tex]
We have to by law of signs of multiplication:
[tex]+ * - = -[/tex]
Also, by definition of multiplication of powers of the same base, we put the same base and add the exponents, then the expression is rewritten as:
[tex]-24y ^ {3 + 2} =\\-24y ^ 5[/tex]
Answer:
[tex]-24y ^ 5[/tex]
Answer:
The Answer is -24y^5
Step-by-step explanation:
We know this because multiplying 8 by -3 = -24
Then we have to combine the exponents and we get 5.
Hope I helped. I used a website called mathwa3 to help, the 3 stands for a y.
Have a great day!!!
If f(x) = 2x - 3 and g(x) = Radical over x-8,
what is (fºg)(24)?
Answer:
5
Step-by-step explanation:
Plug in 24 for x in your g(x) equation.
[tex]g(24)=\sqrt{24-8} \\g(24)=\sqrt{16} \\g(24)=4[/tex]
Next, plug in your g(x) value, 4, to your f(x) equation for x.
[tex]f(4)=2(4)-3\\f(4)=8-3\\f(4)=5[/tex]